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Potential Theory – basics

For a compact set K ⊂ C and a probabilistic Borel measure µ on
K (µ ∈ P(K )) define the potential pµ

pµ(z) :=

∫
K

log |z − w |dµ(w), z ∈ C. (1)

Then pµ ∈ H(C \ K ) ∩ SH(C).
Define I (µ) :=

∫
K pµ(z)dµ(z). For a Borel set E ⊂ C we define

c(E ) := exp(sup{I (µ) : µ ∈ P(K ),K ⊂ E − compact}).

Then c(E ) = 0 iff E is polar.

Theorem

For any non-polar compact K ⊂ C there is only one measure
µK ∈ P(K ) such that c(K ) = exp(I (µK )).

The above measure µK is called the equilibrium measure of K .
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Basic properties of the capacity

The following properties hold

(monotonicity) if E1 ⊂ E2 then c(E1) ≤ c(E2),

(continuity w.r.t. increasing and decreasing sequences of sets)
if for Borel sets Bj ⊂ Bj+1 then c(

⋃∞
j=1 Bj) = limj→∞ c(Bj),

if for compact sets Kj ⊃ Kj+1 then
c(
⋂∞

j=1 Kj) = limj→∞ c(Kj);

(subadditivity) if B =
⋃N

j=1 Bj , Bj is Borel and diam(B) ≤ d
then

1

log
(

d
c(B)

) ≤ N∑
j=1

1

log
(

d
c(Bj )

) (2)

;

c(4(z , r)) = c(∂4(z , r)) = r , c([a, b]) = |b − a|/4.
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Frostman’s theorem

A point z0 ∈ ∂D is called regular (w.r.t. Dirichlet problem) if there
are a neighborhood U of z0 and a negative subharmonic function u
defined on U ∩ D such that limD3z→z0 u(z) = 0.

Theorem

(Frostman) For a non-polar K we have pµK ≥ log c(K ) and
pµK = log c(K ) on K \ F where F is an Fσ-polar subset of ∂K.
Moreover, if the point z ∈ ∂K is regular for the Dirichlet problem
for the unbounded connected component of C \ K then
pµK (z) = log c(K ).
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Wiener’s criterion

Regular points are well described. In particular, if a connected
component of the boundary is a continuum then all its points are
regular.

The last property (and many others) follow from the following
fundamental theorem.

Theorem

(Wiener’s criterion) Let D be a bounded domain in C,
z0 ∈ ∂D, θ ∈ (0, 1). Denote

Aj(z0) := {z ∈ C \ D : θj+1 ≤ |z − z0| < θj}. (3)

Then z0 is regular iff
∑∞

j=1
−j

log c(Aj (z0)) =∞.
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The Green function

For a domain D ⊂ Cn, p, z ∈ D we define the pluricomplex Green
function with the logarithmic pole at p as gD(p, z) := sup{u(z)},
where the supremum is taken over all u ∈ PSH(D), u < 0 and
such that lim supw→p(u(w)− log ||w − p||) <∞.

If n = 1 then the following is well-known

gD(p, ·) ∈ H(D \ {p}) ∩ SH(D),

gD is symmetric,

z0 ∈ ∂D is regular iff for some (any) p ∈ D we have
limz→z0 gD(p, z) = 0.

The last property means that regular points are exactly those that
are Green exhaustive.
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The Green function – continued

If n is arbitrary then

gD(p, ·) ∈ PSH(D), gD < 0 and it is maximal on D \ {p},

gD is only upper semicontinuous,

gD need not be symmetric,

gD(p, ·) extends continusously to D̄ and gD(p, ·) = 0 on ∂D
iff D is hyperconvex (to be defined later).
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The Azukawa metric

For a domain D ⊂ Cn, p ∈ D, X ∈ Cn we define the Azukawa
pseudometric AD(p;X ) := lim supλ→0

exp(gD(p,p+λX ))
|λ| .

The following holds.

AD(p;λX ) = |λ|AD(p;X ),

If n = 1 or D is hyperconvex then lim sup may be replaced by
lim,

If n = 1 or D is hyperconvex then AD is continuous; in
general, AD is upper semicontinuous.

The Azukawa indicatrix IAD is defined as follows

IAD (w) := {X ∈ Cn : AD(w ;X ) < 1}. (4)

IAD is a balanced pseudoconvex domain.
If n = 1 we denote AD(p) := AD(p; 1).
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Bergman functions

The space of L2-holomorphic functions defined on the domain
D ⊂ Cn is denoted by L2

h(D). The reproducing kernel for the
evaluation L2

h(D) 3 f 7→ f (z) ∈ C is called the Bergman kernel of
D and is denoted by KD(·, z).

In particular, KD(·, z) ∈ L2
h(D), f (z) =

∫
D f (w)KD(w , z)dL2n(w),

f ∈ L2
h(D). We also have KD(w , z) = KD(z ,w).

If (φj)j is a complete orthonormal system of L2
h(D) then

KD(w , z) =
∑
j∈J

φj(w)φj(z). (5)

We also put KD(z) := KD(z , z) ≥ 0.

The following formula holds

KD(z) = sup{|f (z)|2 : f ∈ L2
h(D), ||f || ≤ 1}. (6)
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Bergman functions – continued

One may prove that KD is (real) analytic and logKD ∈ PSH(D).

Therefore, the well-defined Bergman (pseudo)metric defined as
follows

β2
D(z ;X ) :=

n∑
j ,k=1

∂2 logKD(z)

∂zj∂z̄k
Xj X̄k ≥ 0, z ∈ D,X ∈ Cn (7)

gives in the case of D bounded that this metric introduces the
length of a piecewise C 1-curves and consequently a distance,
denoted by bD .

One may express βD in another way. Namely, if D is bounded then

β2
D(z ;X ) =

MD(z ;X )

KD(z)
, (8)

where

MD(z ;X ) := sup{|f
′(z)X |
||f ||2

, f 6≡ 0, f (z) = 0}. (9)
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Bergman functions – continued

In the case n = 1 we denote βD(z) := βD(z ; 1),
MD(z) := MD(z ; 1).

We say that a bounded domain D ⊂ Cn is

Bergman exhaustive at z0 ∈ ∂D if limD3z→z0 KD(z) =∞,

Bergman exhaustive if D is Bergman exhaustive at every
z0 ∈ ∂D,

Bergman complete if the metric space (D, bD) is complete.

In dimension one we may analoguously introduce β-exhaustiveness
of a bounded domain.
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(Pluri)Potential theory meets Bergman functions

The following is a full characterization of extendability of L2
h

holomorphic function in the sense of the Riemann removability
theorem for bounded holomorphic functions.

Theorem

Let D be a domain in C, z0 ∈ ∂D. Then z0 is a removable
singularity for L2

h(D) (i. e. there is an open neighborhood U of z0

such that any function from L2
h(D) extends analytically to D ∪ U)

iff there is an open neighborhood U of z0 such that U \ D is polar.

The above theorem has also a higher dimensional analogue.
There is another relation between the Bergman kernel and the
Green function in dimension one.

Theorem

Let D be a domain in C. Then 2
π
∂2gD
∂w∂z̄ (w , z) = KD(w , z),

w , z ∈ D, w 6= z.
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Suita conjecture: potential theory & Bergman kernel once
more

One may explicitly calculate that A2
D ≡ πKD.

N. Suita conjectured
(1972) that A2

D ≤ πKD for any planar domain. After some partial
results had been obtained (Suita, Ohsawa, B.-Y. Chen, B locki) the
(positive) solution was presented in 2013 by Z. B locki.
Later the result was extended to a sharp version (describing the
situation when the equality holds) and for the Riemann surfaces
(Q. Guan, X. Zhou, 2014).
It is interesting that in the proof of the one-dimensional problem
methods of SCV were used.
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Multidimensional (SCV) version of the Suita conjecture

As already mentioned the methods used in the proof of the Suita
conjecture were higher dimensional.

The analysis of the proof led
to its following higher dimensional version.The key observation was
that for hyperconvex domains we have

e−2ntλ({gD(w , ·) < t})→ λ(IAD (w)) as t → −∞.

This led to SCV version of the Suita conjecture.

Theorem

(B locki-Zwonek, 2015) Let D be a bounded pseudoconvex
domain in Cn. Then

KD(w) ≥ 1

λ(IAD (w))
.
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SCV Suita conjecture - remarks

Remark 1. For n = 1 one has λ(IAD (w)) = π/AD(w)2.

2. If D is convex then IAD (w) = IκΩ(w). κ here comes from the
Kobayashi metric.In other words

IκD(w) := {ϕ′(0) : ϕ ∈ O(D,D), ϕ(0) = w}.

3. In the case D is not pseudoconvex but smooth we have no lower
estimate as above (Nikolov).
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The problems behind the proof of the Suita conjecture

Conjecture For D pseudoconvex and w ∈ D the function

(−∞, 0) 3 t 7−→ e−2ntλ({gD(w , ·) < t})

is non-decreasing.

It would easily follow if we knew that the function

t 7−→ log λ({Gw < t})

is convex on (−∞, 0]. Fornæss however constructed a
counterexample to this (already for n = 1).

Theorem The conjecture is true for n = 1.
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Suita conjecture – continued

What about the corresponding upper bound in the Suita
conjecture?

Not true in general:

Proposition Let D = {r < |z | < 1}. Then

KD(
√
r)

(AD(
√
r))2

≥ −2 log r

π3
.

It would be interesting to find un upper bound of the Bergman
kernel for domains in C in terms of logarithmic capacity which
would in particular imply the ⇒ part in the well known equivalence
(due to Carleson)

KD > 0 ⇔ AD > 0

(A2
D ≤ πKD being a quantitative version of ⇐).
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SCV Suita conjecture – continued

The upper bound in the SCV Suita conjecture holds for convex
domains:

Theorem For a convex D and w ∈ D set

FD(w) :=
(
KD(w)λ(IκD(w))

)1/n
.

Then FD(w) ≤ 4.

Sketch of the proof Denote I := int IκD(w) and assume that w = 0.
One can show that I ⊂ 2D. Then

KD(0)λ(I ) ≤ KI/2(0)λ(I ) =
λ(I )

λ(I/2)
= 4n.

If D is in addition symmetric w.r.t. w then
FD(w) ≤ 16/π2 = 1.621 . . . .

Remark The proof of the optimal lower bound FD ≥ 1 used ∂̄.
The proof of the (probably) non-optimal upper bound FD ≤ 4 is
much more elementary!
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SCV Suita conjecture – continued

For domain D the function

FD(w) =
(
λ(IAD (w))KD(w))

)1/n

is a biholomorphically invariant function satisfying for convex D
the inequalities 1 ≤ FD ≤ 4.

• Find a convex example with FD 6≡ 1.

• What are the properties of the function w 7−→ λ(ID(w))?

• In case D is C-convex the upper estimate above is 16.

• What is the optimal upper bound for FD for convex domain D?
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SCV Suita conjecture – continued

The function FD is a biholomorphic invariant.

For the balanced pseudoconvex domain D ⊂ Cn we have
FD(0) = 1.

Therefore, we have FD ≡ 1 in the case AutD is additionally
transitive (unit ball, polydisc).

In the case D being strongly pseudoconvex we have

lim
w→∂D

FD(w) = 1.

In all known pseudoconvex domains the above property also holds.
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Graph of FD - example
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SCV Suita conjecture: convex case – discussion

For convex domains it was not so simple to find examples such
that FD 6≡ 1.

In the case of C-convex domains the example was much easier to
find – it was the symmetrised bidisc

G2 := {(w + z ,wz) : w , z ∈ D}.

As we shall see the examples we could find had the possible values
differing very little from 1.
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First example of convex D with FD 6≡ 1

E(p, q) = {z ∈ C2 : |z1|2p + |z2|2q < 1}, p, q ≥ 1/2.

Blank-Fan-Klein-Krantz-Ma-Pang (1992) found implicit formulas
for the Kobayashi function of E(m, 1). They can be made explicit
for m = 1/2. Using this one can prove

Theorem For D = {|z1|+ |z2|2 < 1} and b ∈ [0, 1) one has

λ(ID((b, 0))) =
π2

3
(1− b)3(1 + 3b + 3b2 − b3)

and

λ(ID((b, 0)))KD((b, 0)) = 1 +
(1− b)3b2

3(1 + b)3
.
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FD 6≡ 1 - first example, graph
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Further examples - ellipsoids

Although the Kobayashi function of E(m, 1) is given by implicit
formulas, it turns out that the volume of the Kobayashi indicatrix
can be computed explicitly:

Theorem For D = {|z1|2m + |z2|2 < 1}, m ≥ 1/2, and b ∈ [0, 1)
one has

λ(ID((b, 0)))

= π2

[
− m − 1

2m(3m − 2)(3m − 1)
b6m+2 − 3(m − 1)

2m(m − 2)(m + 1)
b2m+2

+
m

2(m − 2)(3m − 2)
b6 +

3m

3m − 1
b4 − 4m − 1

2m
b2 +

m

m + 1

]
.

For m = 2/3

λ(ID((b, 0))) =
π2

80

(
−65b6 + 40b6 log b + 160b4 − 27b10/3 − 100b2 + 32

)
,

and m = 2

λ(ID((b, 0))) =
π2

240

(
−3b14 − 25b6 − 120b6 log b + 288b4 − 420b2 + 160

)
.
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Formula for FD – sketch of the proof

About the proof

Main tool: Jarnicki-Pflug-Zeinstra (1993) formula
for geodesics in convex complex ellipsoids. If

C ⊃ U 3 z 7−→ (f (z), g(z)) ∈ ∂I

is a parametrization of an S1-invariant portion of ∂I then the
volume of the corresponding part of I is given by

π

2

∫
U
|H(z)|dλ(z), (10)

where

H = |f |2(|gz̄ |2 − |gz |2) + |g |2(|fz̄ |2 − |fz |2) + 2<
(
f ḡ(fzgz − fz̄gz̄)

)
.

Both H and the integral (10) are computed with the help of
Mathematica.
The same method is used for computations in other ellipsoids.
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Proof – continued

For D = {|z1|2m + |z2|2 < 1} the formula for the Bergman kernel is
well known:

KD(w) =
1

π2
(1−|w2|2)1/m−2 (1/m + 1)(1− |w2|2)1/m + (1/m − 1)|w1|2(

(1− |w2|2)1/m − |w1|2
)3

,

so that

KD((b, 0)) =
m + 1 + (1−m)b2

π2m(1− b2)3
.

Since for t ∈ R and a ∈ ∆ the mapping

D 3 z 7−→

(
e it

(1− |a|2)1/2m

(1− āz2)1/m
z1,

z2 − a

1− āz2

)

is a holomorphic automorphism of D, FD((b, 0)) for b ∈ [0, 1)
attains all values of FD in D.
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Formulas - graphs

0.2 0.4 0.6 0.8 1.0

1.002

1.004

1.006

1.008

1.010

FD((b, 0)) in D = {|z1|2m + |z2|2 < 1} for m = 1/2, 4, 8, 16, 32, 64, 128

sup
0<b<1

FD((b, 0))→ 1.010182 . . . as m→∞

(highest value of FD obtained so far in arbitrary dimension)
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Analyticity of FD – counterexample

Theorem For D = {|z1|+ |z2| < 1} and b ∈ [0, 1) one has

λ(ID((b, 0))) =
π2

6
(1− b)4

(
(1− b)4 + 8b

)
and

λ(ID((b, 0)))KD((b, 0)) = 1 + b2 (1− b)4

(1 + b)4
.

The Bergman kernel for this ellipsoid was found by Hahn-Pflug
(1988):

KD(w) =
2

π2
· 3(1− |w |2)2(1 + |w |2) + 4|w1|2|w2|2(5− 3|w |2)(

(1− |w |2)2 − 4|w1|2|w2|2
)3

,

so that

KD((b, 0)) =
6(1 + b2)

π2(1− b2)4
.

In all examples so far the function w 7→ λ(ID(w)) is analytic. Is it
true in general?
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Analyticity of FD - counterexample, continued

By χ−(b), resp. χ+(b), denote λ(ID((b, b))) for b ≤ 1/4, resp.
b ≥ 1/4.

Then at b = 1/4

χ− = χ+ =
15887

196608
π2, χ′− = χ′+ = −3521

6144
π2,

χ′′− = χ′′+ = − 215

1536
π2, χ

(3)
− = χ

(3)
+ =

1785

64
π2,

but

χ
(4)
− =

1549

16
π2, χ

(4)
+ =∞.

Corollary For D = {|z1|+ |z2| < 1} the function w 7→ λ(ID(w)) is
not C 3,1 at w = (1/4, 1/4).
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Analyticity of FD - counterexample, continued
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FD((b, b)) in D = {|z1|+ |z2| < 1} for b ∈ [0, 1/2)



Kobayashi criterion for Bergman completeness

The following is a basic tool in the study of the Bergman
completeness.

Theorem

(Kobayashi, 1960) Let D be a bounded domain in Cn.
Assume that there is a dense set E ⊂ L2

h(D) such that for any
sequence (zν) ⊂ D without accummulation point in D the equality

lim
ν→∞

|f (zν)|2

KD(zν)
= 0, f ∈ E (11)

holds. Then D is Bergman complete.



Recall that a bounded domain D ⊂ Cn is said to be hyperconvex if
there is u ∈ PSH−(D) ∩ C (D) such that limw→∂D u(w) = 0 (such
a function is called negative exhausting). In dimension one
hyperconvexity means regularity (and we may take u := gD(p, ·))

Theorem

(Ohsawa, 1993, B locki-Pflug, 1998, Herbort, 1998)
Let D be a bounded hyperconvex domain. Then D is both
Bergman complete and Bergman exhaustive.

There are examples of Bergman complete and exhaustive domains
that are non-hyperconvex (we shall see the examples in dimension
one later).
In 2000 Bo-Yong Chen showed that in dimension one the Bergman
exhaustivity implies the completeness (the Hartogs triangle
{z ∈ C2 : |z1| < |z2|} is a counterexample for the converse
implication in dimension two).
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Potential theory comes into play

Let D be a bounded domain in C, z ∈ C, k ∈ N. Define

γ
(k)
D (z) :=

∫ 1/4

0

dδ

δ2k+3(− log c(4̄(z , δ) \ D))
. (12)

It is easy to see that

2−2k−3
∞∑
j=3

22(k+1)j

− log c(Ak(z) \ D)
≤ γ(k)

D (z) ≤ 22k+3
∞∑
j=3

22(k+1)j

− log c(Ak(z) \ D)
.

(13)
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Potential theory comes into play – continued

We also need the following function. For a non-polar compact
K ⊂ C define

fK (z) :=

∫
K

dµK (λ)

λ− z
, z ∈ C \ K . (14)

We also put fK ≡ 0 when K is polar.

Note that

2
∂pµK
∂z

= fK . (15)

It is easy to see that fK ∈ O(C \ K ).

Before we formulate the main tools in the study of the Bergman
functions in the complex plane let us generalize the notions used in
the definition of the Bergman kernel and the Bergman metric.
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Potential theory comes into play – continued

For a domain D ⊂ C, z ∈ D and k ∈ N consider the following
linear functionals

L2
h(D) 3 f → f (k)(z) ∈ C. (16)

And let us denote the operator norm of the above operator by

K
(k)
D (z).

Note that KD(z) = K
(0)
D (z), MD(z) ≤ K

(1)
D (z).
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Estimates of the operator norms in terms of the
potential-theoretic objects

The main result on the norms is the following.

Theorem

(Pflug-Zwonek, 2003) Fix k ∈ N, d > 1. Then there is a
C > 0 such that

for any bounded domain D with diam(D) < d the inequality

Cγ
(k)
D (z) ≤ K

(k)
D (z), z ∈ D, holds;

for any bounded domain D with 1/d < diam(D) < d the

inequality K
(k)
D (z) ≤ C max{1, γ(k)

D (z)(log γ
(k)
D (z))2}, z ∈ D,

holds



Direct consequences of estimates of the norms on
Bergman functions

We get directly the following.

Corollary

Let D be a bounded domain in C, z0 ∈ ∂D. Then the following are
equivalent

limD3z→z0 γD(z) =∞,

D is Bergman exhaustive at z0.
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Zalcman-type domains

We do not have yet the characterization of Bergman completeness
w.r.t. the potential theoretic objects. However, a full
characterization of Bergman exhaustiveness, Bergman
completeness and hyperconvexity in the class of Zalcman-type
domains is known.

The domain D := D \
(⋃∞

j=1 4̄(xk , rk) ∪ {0}
)

, where

xj > xj+1 > 0, xj → 0, 4̄(xj , rj) ⊂ D, 4̄(xj , rj) ∩ 4̄(xk , rk) = ∅,
j 6= k, is called a Zalcman-type domain.
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Zalcman-type domains – results

Theorem

(Jucha, 2004) Let D be a Zalcman-type domain as above such
that additionally there is a θ ∈ (0, 1) that

xj+1

xj
≤ θ. Then

D is Bergman exhaustive iff
∑∞

j=1
−1

x2
j log rj

=∞,

D is Bergman complete iff
⋃∞

j=1
1

xj
√
− log rj

=∞,

if there is additionally θ′ > 0 such that θ′ ≤ xj+1

xj
then D is

hyperconvex iff
∑∞

j=1
log xj
log rj

=∞.

The above theorem allows us easily to construct examples of the
Zalcman-type domains of the following types:

Bergman complete that are not hyperconvex,

Bergman complete that are not Bergman exhaustive.
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More examples

The above objects deliver us more (counter)examples. For instance

there are Bergman complete domains that are not
β-exhaustive,

there are two domains D ⊂ G ⊂ C such that the inequality
βD ≥ βG does not hold,

Bergman completeness is not a quasiconformal invariant (Xu
Wang),

there are examples of planar domains with the infimum of the
holomorphic sectional curvature of the Bergman metric equal
to −∞.
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