# Estimates of the Bergman distance on Dini-smooth bounded planar domains

#### Maria Trybuła

Institute of Mathematics, Faculty of Mathematics and Computer Science, Jagiellonian University, Cracov, Poland

20/08/2015

Let D be a domain in  $\mathbb{C}^n$ ,  $n \in \mathbb{Z}_{>0}$ .

Let D be a domain in  $\mathbb{C}^n$ ,  $n \in \mathbb{Z}_{>0}$ .

$$\beta_D(z;X) = \frac{M_D(z;X)}{K_D(z)}, \quad z \in D, \ X \in \mathbb{C}^n,$$

where

$$M_D(z;X) = \sup \left\{ |f'(z)X| : f \in L^2_h(D), \|f\|_D = 1, f(z) = 0 \right\}$$

and

$$K_D(z) = \sup \left\{ |f(z)| : f \in L_h^2(D), \|f\|_D = 1 \right\}$$

is the square root of the Bergman kernel on the diagonal.

### Bergman distance

$$b_D(z,w)=\inf\Big\{\int_{[0,1]}eta_D(\gamma(t);\gamma'(t))dt\,|\,\gamma:[0,1] o D ext{ smooth,} \ \gamma(0)=z,\,\gamma(1)=w\Big\},$$

We shall use also  $c_D$  and  $I_D$  the Carathéodory distance and the Lempert function of D, respectively:

$$c_D(z,w) = \sup \Big\{ \operatorname{tgh}^{-1} |f(w)| : f \in \mathcal{O}(D,\mathbb{D}), \text{ with } f(z) = 0 \Big\},$$
  $I_D(z,w) = \inf \Big\{ \operatorname{tgh}^{-1} |\alpha| : \exists \varphi \in \mathcal{O}(\mathbb{D},D) \text{ with } \varphi(0) = z, \varphi(\alpha) = w \Big\},$   $\mathbb{D} = \{ z \in \mathbb{C} \, | \, |z| < 1 \}.$ 

We shall use also  $c_D$  and  $I_D$  the Carathéodory distance and the Lempert function of D, respectively:

$$c_D(z,w) = \sup \Big\{ \operatorname{tgh}^{-1} |f(w)| : f \in \mathcal{O}(D,\mathbb{D}), \text{ with } f(z) = 0 \Big\},$$
  $I_D(z,w) = \inf \Big\{ \operatorname{tgh}^{-1} |\alpha| : \exists \varphi \in \mathcal{O}(\mathbb{D},D) \text{ with } \varphi(0) = z, \varphi(\alpha) = w \Big\},$   $\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \}.$ 

The Kobayashi distance  $k_D$  is the largest pseudodistance not exceeding  $I_D$ .

We shall use also  $c_D$  and  $I_D$  the Carathéodory distance and the Lempert function of D, respectively:

$$c_D(z,w) = \sup \Big\{ \operatorname{tgh}^{-1} |f(w)| : f \in \mathcal{O}(D,\mathbb{D}), \text{ with } f(z) = 0 \Big\},$$
  $I_D(z,w) = \inf \Big\{ \operatorname{tgh}^{-1} |\alpha| : \exists \varphi \in \mathcal{O}(\mathbb{D},D) \text{ with } \varphi(0) = z, \varphi(\alpha) = w \Big\},$   $\mathbb{D} = \{ z \in \mathbb{C} \mid |z| < 1 \}.$ 

The Kobayashi distance  $k_D$  is the largest pseudodistance not exceeding  $I_D$ . For any planar domain D we have equality of  $k_D$  and  $I_D$ .

In general,  $k_D$  is the integrted form of Kobayashi metric  $\kappa_D$ 

$$\kappa_D(z;X) = \inf \{ |\alpha| : \exists \varphi \in \mathcal{O}(\mathbb{D},D) \text{ with } \varphi(0) = z, \, \alpha \varphi'(0) = X \}.$$

In general,  $\textit{k}_{\textit{D}}$  is the integrted form of Kobayashi metric  $\kappa_{\textit{D}}$ 

$$\kappa_D(z;X) = \inf \{ |\alpha| : \exists \varphi \in \mathcal{O}(\mathbb{D},D) \text{ with } \varphi(0) = z, \, \alpha \varphi'(0) = X \}.$$

$$k_D(z, w)$$
  
=  $\inf\{\int \kappa_D(\gamma(t), \gamma'(t))dt : \gamma \text{ is a piecewise } \mathcal{C}^1 \text{ curve joining } z, w\}.$ 

In general,  $\emph{k}_{\emph{D}}$  is the integrted form of Kobayashi metric  $\emph{\kappa}_{\emph{D}}$ 

$$\kappa_D(z;X) = \inf \{ |\alpha| : \exists \varphi \in \mathcal{O}(\mathbb{D},D) \text{ with } \varphi(0) = z, \ \alpha \varphi'(0) = X \}.$$

$$k_D(z, w)$$
  
=  $\inf\{\int \kappa_D(\gamma(t), \gamma'(t))dt : \gamma \text{ is a piecewise } \mathcal{C}^1 \text{ curve joining } z, w\}.$ 

From now n = 1.

The function  $\vartheta$  is called *Dini-continuous* if

$$\int_0^\delta \frac{\omega(t)}{t} dt < \infty, \ \ \text{for some } \delta > 0,$$

where  $\omega$  is the modulus of continuity of  $\vartheta$ .

The function  $\vartheta$  is called *Dini-continuous* if

$$\int_0^\delta \frac{\omega(t)}{t} dt < \infty, \quad \text{for some } \delta > 0,$$

where  $\omega$  is the modulus of continuity of  $\vartheta$ .

A planar domain D is Dini smooth at a ( $\in \partial D$ ) if there exist a neighborhood U of a and a Dini-smooth Jordan arc  $\gamma$  such that  $\partial D \cap U = \gamma^*$ .

## Theorem (Warschawski Theorem, 1932)

Let F maps  $\mathbb D$  conformally  $\mathbb D$  onto the inner domain of the Dini-smooth Jordan curve J. Then F' extends continuously to  $\overline{\mathbb D}$  and

$$\lim_{z\to w}\frac{F(z)-F(w)}{z-w}=F'(w)\neq 0,\ z,\ w\in\overline{\mathbb{D}}.$$

## Theorem (Warschawski Theorem, 1932)

Let F maps  $\mathbb D$  conformally  $\mathbb D$  onto the inner domain of the Dini-smooth Jordan curve J. Then F' extends continuously to  $\overline{\mathbb D}$  and

$$\lim_{z\to w}\frac{F(z)-F(w)}{z-w}=F'(w)\neq 0,\ z,\ w\in\overline{\mathbb{D}}.$$

Warschawski Theorem implies that

$$d_{\mathbb{D}}(z) \sim d_D(F(z))$$

for  $z \in D$  sufficiently close to a if D is Dini-smooth at a,

## Proposition (Nikolov, 2013)

Let D be a Dini-smooth bounded planar domain. Then there exists a constant  $c_1 > 1$  such that

$$\log \left(1 + \frac{|z - w|}{c_1 \sqrt{d_D(z)d_D(w)}} + \frac{|z - w|^2}{c_1 d_D(z)d_D(w)}\right) \leqslant s_D(z, w)$$

$$\leqslant \log \left(1 + \frac{c_1|z - w|}{\sqrt{d_D(z)d_D(w)}} + \frac{c_1|z - w|^2}{d_D(z)d_D(w)}\right), \quad z, w \in D,$$

where 
$$s_D(z, w) = 2c_D(z, w)$$
 or  $s_D(z, w) = 2k_D(z, w)$ .

## Proposition (Nikolov - T., 2015)

Led D be a Dini-smooth bounded planar domain. Then there exists a constant c>1 such that

$$\sqrt{2}\log\left(1+\frac{|z-w|}{c\sqrt{d_D(z)d_D(w)}}\right) \leqslant b_D(z,w)$$

$$\leqslant \sqrt{2}\log\left(1+\frac{c|z-w|}{\sqrt{d_D(z)d_D(w)}}\right), \quad z, \ w \in D.$$

#### Corollary

If D is a Dini-smooth bounded planar domain, then the differences  $b_D - \sqrt{2}c_D$  and  $b_D - \sqrt{2}k_D$  are bounded.

If the regularity condition is missing, then there is no constant such that the upper bound holds. Indeed, let  $D\subset \mathbb{C}$  be the image of  $\mathbb{D}$  under the map  $z\to 2z+(1-z)\log{(1-z)}$ . Then D is a  $\mathcal{C}^1$ -smooth bounded domain and

$$\lim_{\mathbb{R}\ni w\to 2^-}\frac{1-\operatorname{tgh} I_D(0,w)}{d_D(w)}=0$$

## Proposition (Nikolov, 2013)

Assume that D is a Dini-smooth domain. For every point  $p \in \partial D$  and any compact subset K of D, there exist a neighborhood V of p, and a constant c > 0 such that

$$|2s_D(z, w) + \log d_D(w)| \leq c, \quad z \in K, \ w \in D \cap V,$$

where 
$$s_D = c_D$$
,  $s_D = k_D$ , or  $s_D = b_D/\sqrt{2}$ .

## Proposition (Nikolov, 2013)

Assume that D is a Dini-smooth domain. For every point  $p \in \partial D$  and any compact subset K of D, there exist a neighborhood V of p, and a constant c > 0 such that

$$|2s_D(z, w) + \log d_D(w)| \leq c, \quad z \in K, \ w \in D \cap V,$$

where  $s_D = c_D$ ,  $s_D = k_D$ , or  $s_D = b_D/\sqrt{2}$ .

### Corollary (Nikolov, 2013)

Assume that D is a Dini-smooth, bounded domain. Let p, q be different boundary points of D. If  $s_D = k_D$  or  $s_D = b_D/\sqrt{2}$ , then the function

$$2s_D(z, w) + \log d_D(z) + \log d_D(w)$$

is bounded for z near q and w near p.



## Theorem (Forstneric - Rossay, 1987)

Let  $\Omega$  be a bounded domain in  $\mathbb{C}^n$ . Assume that  $\Omega$  is strictly pseudoconvex at a point  $z_0 \ (\in \partial \Omega)$ . Let  $\Omega_0 \subset \Omega$  be a domain such that  $z_0 \in \operatorname{int}_{\partial \Omega} \partial \Omega_0$ . Then there exists a neighbborhood U of  $z_0$  and a constant c>0 such that for any point  $z\in \Omega_0\cap U$ , any vector  $X\in \mathbb{C}^n$  the following relation between  $\kappa_\Omega$  and  $\kappa_{\Omega_0}$  holds

$$\kappa_{\Omega}(z;X) \geqslant \left(1 - c \, d_{\Omega}(z)\right) \kappa_{\Omega_0}(z;X).$$
(1)

#### Recall

$$\gamma_{\mathbb{B}_n}(z;X) = \sqrt[2]{\frac{\|X\|^2}{1-\|z\|^2}} + \frac{|\langle z;X\rangle|^2}{(1-\|z\|^2)^2}, \quad z\in\mathbb{B}_n, \ X\in\mathbb{C}^n.$$

## Theorem (Balough - Bonk, 2000)

Let  $F_j$ , j = 1, 2 be metrics on  $\mathbb{B}_2$  such that

$$(1 - C_j d_{\mathbb{B}_2}(z)^{\delta}) \left( \frac{|\langle z; X \rangle|^2}{(1 - \|z\|^2)^2} + 1/C_j \frac{\|X\|^2}{1 - \|z\|^2} \right)^{1/2} \leqslant F_j(z; X)$$

$$\leqslant (1 + C_j d_{\mathbb{B}_2}(z)^{\delta}) \left( \frac{|\langle z; X \rangle|^2}{(1 - \|z\|^2)^2} + C_j \frac{\|X\|^2}{1 - \|z\|^2} \right)^{1/2},$$

 $z \in \mathbb{B}_2$ ,  $X \in \mathbb{C}^2$ , where  $C_j > 1$ ,  $\delta > 0$ . Then, the difference of the distance functions associated with  $F_j$ , j = 1, 2 is bounded.

It is enough to find a constant c>1 such that the respective estimates hold for  $b_D(z_n,w_n)$  for every sequences  $(z_n)$ ,  $(w_n)\subset D$  such that  $z_n\to 1$  and  $w_n\to 1$  for any n.

For a planar domain  $\Omega$  set  $\beta_{\Omega}(z) := \beta_{\Omega}(z; 1), M_{\Omega}(z) := M_{\Omega}(z; 1)$  and  $\kappa_{\Omega}(z) := \kappa_{\Omega}(z; 1)$  for a point  $z \in \Omega$ .

It is enough to find a constant c>1 such that the respective estimates hold for  $b_D(z_n,w_n)$  for every sequences  $(z_n), (w_n) \subset D$  such that  $z_n \to 1$  and  $w_n \to 1$  for any n.

For a planar domain  $\Omega$  set  $\beta_{\Omega}(z) := \beta_{\Omega}(z;1), \ M_{\Omega}(z) := M_{\Omega}(z;1)$  and  $\kappa_{\Omega}(z) := \kappa_{\Omega}(z;1)$  for a point  $z \in \Omega$ .

Then, we might write the following

$$\sqrt{2} \frac{\kappa_{\mathbb{D}}^{2}(z)}{\kappa_{E_{r}}(z)} = \frac{M_{\mathbb{D}}(z)}{\sqrt{K_{E_{r}}(z)}} \leqslant \beta_{D}(z) \leqslant \frac{M_{E_{r}}(z)}{\sqrt{K_{\mathbb{D}}(z)}} = \sqrt{2} \frac{\kappa_{E_{r}}^{2}(z)}{\kappa_{\mathbb{D}}(z)}, \quad z \in E_{r}$$
(2)

(the both equalities hold because  $E_r$  is a simply connected domain, here the smoothness of D is not required).

Fix an  $r_1 \in (0, r_0)$ . The localization of the Kobayashi metric implies that

$$\kappa_{\mathbb{D}}(z) \geqslant (1 - c_2 d_{\mathbb{D}}(z)) \kappa_{E_r}(z), \quad z \in E_{r_1}, \tag{3}$$

for some constant  $c_2 > 0$ .



Then (2) and (3) imply that there exists a  $r_2 \in (0, r_1]$  with  $3c_2r_2 \leqslant 1$  such that

$$\begin{split} &\sqrt{2} \big(1 - c_2 \, d_{\mathbb{D}}(z)\big) \kappa_{\mathbb{D}}(z) \leqslant \beta_D(z) \leqslant \sqrt{2} \big(1 + \frac{5}{2} c_2 d_{\mathbb{D}}(z)\big) \kappa_{\mathbb{D}}(z), \quad z \in E_{r_2} \end{split}$$
 Since  $\kappa_{\mathbb{D}}(z) = \frac{\beta_{\mathbb{D}}(z)}{\sqrt{2}} = \frac{1}{1 - |z|^2}$ , it follows for  $c_3 = \frac{\sqrt{2}}{2} c_2$  that 
$$\frac{\beta_{\mathbb{D}}(z)}{2} < \beta_{\mathbb{D}}(z) - 2c_3 < \beta_D(z) < \beta_{\mathbb{D}}(z) + 5c_3, \quad z \in E_{r_2}. \tag{4}$$

Then (2) and (3) imply that there exists a  $r_2 \in (0, r_1]$  with  $3c_2r_2 \leqslant 1$  such that

$$\sqrt{2}(1-c_2\,d_{\mathbb{D}}(z))\kappa_{\mathbb{D}}(z)\leqslant\beta_D(z)\leqslant\sqrt{2}(1+\frac{5}{2}c_2d_{\mathbb{D}}(z))\kappa_{\mathbb{D}}(z),\quad z\in E_{r_2}$$

Since  $\kappa_{\mathbb{D}}(z)=rac{eta_{\mathbb{D}}(z)}{\sqrt{2}}=rac{1}{1-|z|^2},$  it follows for  $c_3=rac{\sqrt{2}}{2}c_2$  that

$$\frac{\beta_{\mathbb{D}}(z)}{3} < \beta_{\mathbb{D}}(z) - 2c_3 < \beta_D(z) < \beta_{\mathbb{D}}(z) + 5c_3, \quad z \in E_{r_2}. \tag{4}$$

We may assume that  $z_n, w_n \in E_{r_3}$ , where  $r_3 \in (0, r_2)$  is such that if  $\alpha_n$  is the shorter arc with endpoints  $z_n$  and  $w_n$  of the circle through  $z_n$  and  $w_n$  which is orthogonal to the unit circle, then  $\alpha_n \subset E_{r_2}$ . Hence

$$b_D(z_n, w_n) < \int_{\alpha_n} \left( \frac{\sqrt{2}}{1 - |z|^2} + 5c_3 \right) dl$$
  
=  $b_{\mathbb{D}}(z_n, w_n) + 5c_3 L_{||}(\alpha_n) < b_{\mathbb{D}}(z_n, w_n) + 10c_3|z_n - w_n|$ 

for any n.

The above equality follows from the description of the shortest curves with respect to the Bergman distance on  $\mathbb{D}$ . To get the second inequality we applied an elementary inequality  $1 \leqslant \frac{x}{\sin x} < 2$  for  $x \in (0, \frac{\pi}{2})$ .

Now, using Lemma and the inequality

$$d_{\mathbb{D}}(z) \geqslant d_{D}(z), \quad z \in D,$$

it is easy to find a constant c > 1 such that the upper estimate for  $b_D(z_n, w_n)$  holds for any n.

It is left to manage with the lower estimate. Shrinking  $r_3$  (if necessary), we may assume that

$$d_{\mathbb{D}}(z) = d_{D}(z), \quad z \in E_{r_3}. \tag{5}$$

Consider the set A of all n for which there exists a smooth curve  $\gamma_n: [0,1] \to D$  such that  $\gamma_n(0) = z_n, \ \gamma_n(1) = w_n, \ \gamma_n((0,1)) \not\subset E_{r_2}$  and

$$b_D(z_n,w_n)+|z_n-w_n|>\int_0^1\beta_D(\gamma_n(t);\gamma'_n(t))dt.$$

For any  $n \in A$  we may find a number  $t_n \in (0,1)$  such that  $|u_n-1|=r_2$ , where  $u_n=\gamma(t_n)$ . By (4), there exists a constant  $c_4>0$ , which does not depend on  $n \in A$ , such that

$$b_D(z_n, w_n) + |z_n - w_n| > b_D(z_n, u_n) + b_D(u_n, w_n)$$
  
 $> -\frac{\log d_D(z_n)}{\sqrt{2}} - \frac{\log d_D(w_n)}{\sqrt{2}} - c_4.$ 

This inequality easily provides a constant c > 1 for which the lower estimate for  $b_D(z_n, w_n)$  holds for any  $n \in A$ .

Let now  $n \notin A$ . Then, using (4) and the formula for the Kobayashi metric for the unit ball we get that

$$b_D(z_n, w_n) + |z_n - w_n| \geqslant \sqrt{2} \hat{k}_{\mathbb{B}_2}((z_n, 0), (w_n, 0)),$$

where  $\hat{k}_{\mathbb{B}_2}$  is the pseudodistance arising from the Finsler pseudometric  $\hat{\kappa}_{\mathbb{B}_2}(w;Y)=(\kappa_{\mathbb{B}_2}(w;Y)-2c_2||Y||)^+$  (i.e. its integrated form). By Balough-Bonk Theorem  $\kappa_{\mathbb{B}_2}$  and  $\hat{\kappa}_{\mathbb{B}_2}$ , we may find a constant  $c_5>0$  such that  $0< k_{\mathbb{B}_2}-\hat{k}_{\mathbb{B}_2}< c_5$ ,

It follows from here and  $\beta_{\mathbb{D}} = \sqrt{2} k_{\mathbb{B}_2}|_{\mathbb{D} \times \{0\}}$  that

$$b_D(z_n, w_n) + |z_n - w_n| > b_{\mathbb{D}}(z_n, w_n) - \sqrt{2}c_5$$

which, together with Lemma and (5), easily implies the lower estimate if  $|z_n - w_n|^2 > d_D(z_n)d_D(w_n)$ .

To prove the lower estimate in Proposition 1.5.8 when  $n \notin A$  and  $|z_n - w_n|^2 \le d_D(z_n) d_D(w_n)$ , it suffices to observe that (4) leads to  $3b_D(z_n, w_n) \ge b_{\mathbb{D}}(z_n, w_n)$  and then to apply Lemma and (5).

- [1] Balogh, Z.M., Bonk, M.: Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv. **75** (2000), 504-533.
- [2] Jarnicki, M., Pflug, P.: Invariant distances and metrics in complex analysis, de Gruyter Exp. Math. 9, de Gruyter, Berlin, 1993.
- [3] Nikolov, N., Trybula, M.: Estimates of the Bergman distance on Dini-smooth bounded planar domains, to appear in Collecteania Mathematica.

Thank you for your atention!