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Let D be a domain in Cn, n ∈ Z>0.

βD(z ;X ) =
MD(z ;X )

KD(z)
, z ∈ D, X ∈ Cn,

where

MD(z ;X ) = sup
{
|f ′(z)X | : f ∈ L2

h(D), ‖f ‖D = 1, f (z) = 0
}

and
KD(z) = sup

{
|f (z)| : f ∈ L2

h(D), ‖f ‖D = 1
}

is the square root of the Bergman kernel on the diagonal.
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Bergman distance

bD(z ,w) = inf
{∫

[0,1]
βD(γ(t); γ′(t))dt | γ : [0, 1]→ D smooth,

γ(0) = z , γ(1) = w
}
,
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We shall use also cD and lD the Carathéodory distance and the
Lempert function of D, respectively:

cD(z ,w) = sup
{
tgh−1 |f (w)| : f ∈ O(D,D), with f (z) = 0

}
,

lD(z ,w) = inf
{
tgh−1 |α| : ∃ϕ ∈ O(D,D) with ϕ(0) = z , ϕ(α) = w

}
,

D = {z ∈ C | |z | < 1}.

The Kobayashi distance kD is the largest pseudodistance not
exceeding lD . For any planar domain D we have equality of
kD and lD .
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In general, kD is the integrted form of Kobayashi metric κD

κD(z ;X ) = inf
{
|α| : ∃ϕ ∈ O(D,D) with ϕ(0) = z , αϕ′(0) = X

}
.

kD(z ,w)

= inf{
∫
κD(γ(t), γ′(t))dt : γ is a piecewise C1 curve joining z , w}.

From now n = 1.
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The function ϑ is called Dini-continuous if∫ δ

0

ω(t)

t
dt <∞, for some δ > 0,

where ω is the modulus of continuity of ϑ.

A planar domain D is Dini smooth at a (∈ ∂D) if there exist a
neighborhood U of a and a Dini-smooth Jordan arc γ such that
∂D ∩ U = γ∗.
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Theorem (Warschawski Theorem, 1932)

Let F maps D conformally D onto the inner domain of the
Dini-smooth Jordan curve J. Then F ′ extends continuously to D
and

lim
z→w

F (z)− F (w)

z − w
= F ′(w) 6= 0, z , w ∈ D.

Warschawski Theorem implies that

dD(z) ∼ dD(F (z))

for z ∈ D sufficiently close to a if D is Dini-smooth at a,
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Proposition (Nikolov, 2013)

Let D be a Dini-smooth bounded planar domain. Then there exists
a constant c1 > 1 such that

log
(
1 +

|z − w |
c1
√
dD(z)dD(w)

+
|z − w |2

c1dD(z)dD(w)

)
¬ sD(z ,w)

¬ log
(
1 +

c1|z − w |√
dD(z)dD(w)

+
c1|z − w |2

dD(z)dD(w)

)
, z , w ∈ D,

where sD(z ,w) = 2cD(z ,w) or sD(z ,w) = 2kD(z ,w).
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Proposition (Nikolov - T., 2015)

Led D be a Dini-smooth bounded planar domain. Then there exists
a constant c > 1 such that

√
2 log

(
1 +

|z − w |
c
√
dD(z)dD(w)

)
¬ bD(z ,w)

¬
√
2 log

(
1 +

c |z − w |√
dD(z)dD(w)

)
, z , w ∈ D.

Corollary
If D is a Dini-smooth bounded planar domain, then the differences
bD −

√
2cD and bD −

√
2kD are bounded.
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If the regularity condition is missing, then there is no constant such
that the upper bound holds. Indeed, let D ⊂ C be the image of D
under the map z → 2z + (1− z) log (1− z). Then D is a
C1-smooth bounded domain and

lim
R3w→2−

1− tgh lD(0,w)

dD (w)
= 0
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Proposition (Nikolov, 2013)

Assume that D is a Dini-smooth domain. For every point p ∈ ∂D
and any compact subset K of D, there exist a neighborhood V of
p, and a constant c > 0 such that

|2sD(z ,w) + log dD(w)| ¬ c , z ∈ K , w ∈ D ∩ V ,

where sD = cD , sD = kD , or sD = bD/
√
2.

Corollary (Nikolov, 2013)

Assume that D is a Dini-smooth, bounded domain. Let p, q be
different boundary points of D. If sD = kD or sD = bD/

√
2, then

the function

2sD(z ,w) + log dD (z) + log dD (w)

is bounded for z near q and w near p.
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Theorem (Forstneric - Rossay, 1987)

Let Ω be a bounded domain in Cn. Assume that Ω is strictly
pseudoconvex at a point z0 (∈ ∂Ω). Let Ω0 ⊂ Ω be a domain such
that z0 ∈ int∂Ω ∂Ω0. Then there exists a neighbborhood U of z0
and a constant c > 0 such that for any point z ∈ Ω0 ∩ U, any
vector X ∈ Cn the following relation between κΩ and κΩ0 holds

κΩ(z ;X ) 
(
1− c dΩ(z)

)
κΩ0(z ;X ). (1)
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Recall

γBn(z ;X ) = 2

√
‖X‖2

1− ‖z‖2
+
|〈z ;X 〉|2

(1− ‖z‖2)2 , z ∈ Bn, X ∈ Cn.
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Theorem (Balough - Bonk, 2000)

Let Fj , j = 1, 2 be metrics on B2 such that

(1− CjdB2(z)δ)
( |〈z ;X 〉|2

(1− ‖z‖2)2 + 1/Cj
‖X‖2

1− ‖z‖2
)1/2

¬ Fj(z ;X )

¬ (1 + CjdB2(z)δ)
( |〈z ;X 〉|2

(1− ‖z‖2)2 + Cj
‖X‖2

1− ‖z‖2
)1/2

,

z ∈ B2, X ∈ C2, where Cj > 1, δ > 0. Then, the difference of the
distance functions associated with Fj , j = 1, 2 is bounded.
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It is enough to find a constant c > 1 such that the respective
estimates hold for bD(zn,wn) for every sequences (zn), (wn) ⊂ D
such that zn → 1 and wn → 1 for any n.
For a planar domain Ω set βΩ(z) := βΩ(z ; 1), MΩ(z) := MΩ(z ; 1)
and κΩ(z) := κΩ(z ; 1) for a point z ∈ Ω.

Then, we might write the following

√
2
κ2
D(z)

κEr (z)
=

MD(z)√
KEr (z)

¬ βD(z) ¬ MEr (z)√
KD(z)

=
√
2
κ2
Er

(z)

κD(z)
, z ∈ Er

(2)
(the both equalities hold because Er is a simply connected domain,
here the smoothness of D is not required).
Fix an r1 ∈ (0, r0). The localization of the Kobayashi metric implies
that

κD(z)  (1− c2 dD(z))κEr (z), z ∈ Er1 , (3)

for some constant c2 > 0.
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Then (2) and (3) imply that there exists a r2 ∈ (0, r1] with
3c2r2 ¬ 1 such that

√
2
(
1−c2 dD(z)

)
κD(z) ¬ βD(z) ¬

√
2
(
1+

5
2
c2dD(z)

)
κD(z), z ∈ Er2

Since κD(z) = βD(z)√
2

= 1
1−|z|2 , it follows for c3 =

√
2

2 c2 that

βD(z)

3
< βD(z)− 2c3 < βD(z) < βD(z) + 5c3, z ∈ Er2 . (4)

We may assume that zn,wn ∈ Er3 , where r3 ∈ (0, r2) is such that if
αn is the shorter arc with endpoints zn and wn of the circle through
zn and wn which is orthogonal to the unit circle, then αn ⊂ Er2 .
Hence

bD(zn,wn) <

∫
αn

( √
2

1− |z |2
+ 5c3

)
dl

= bD(zn,wn) + 5c3 L| |(αn) < bD(zn,wn) + 10c3|zn − wn|

for any n.
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The above equality follows from the description of the shortest
curves with respect to the Bergman distance on D. To get the
second inequality we applied an elementary inequality 1 ¬ x

sin x < 2
for x ∈ (0, π2 ).
Now, using Lemma and the inequality

dD(z)  dD(z), z ∈ D,

it is easy to find a constant c > 1 such that the upper estimate for
bD(zn,wn) holds for any n.
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It is left to manage with the lower estimate. Shrinking r3 (if
necessary), we may assume that

dD(z) = dD(z), z ∈ Er3 . (5)

Consider the set A of all n for which there exists a smooth curve
γn : [0, 1]→ D such that γn(0) = zn, γn(1) = wn, γn

(
(0, 1)

)
6⊂ Er2

and

bD(zn,wn) + |zn − wn| >
∫ 1

0
βD(γn(t); γ′n(t))dt.
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For any n ∈ A we may find a number tn ∈ (0, 1) such that
|un − 1| = r2, where un = γ(tn). By (4), there exists a constant
c4 > 0, which does not depend on n ∈ A, such that

bD(zn,wn) + |zn − wn| > bD(zn, un) + bD(un,wn)

> − log dD(zn)√
2

− log dD(wn)√
2

− c4.

This inequality easily provides a constant c > 1 for which the lower
estimate for bD(zn,wn) holds for any n ∈ A.
Let now n 6∈ A. Then, using (4) and the formula for the Kobayashi
metric for the unit ball we get that

bD(zn,wn) + |zn − wn| 
√
2k̂B2

(
(zn, 0), (wn, 0)

)
,

where k̂B2 is the pseudodistance arising from the Finsler
pseudometric κ̂B2(w ;Y ) = (κB2(w ;Y )− 2c2||Y ||)+ (i.e. its
integrated form). By Balough-Bonk Theorem κB2 and κ̂B2 , we may
find a constant c5 > 0 such that 0 < kB2 − k̂B2 < c5.
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It follows from here and βD =
√
2kB2 |D×{0} that

bD(zn,wn) + |zn − wn| > bD(zn,wn)−
√
2c5

which, together with Lemma and (5), easily implies the lower
estimate if |zn − wn|2 > dD(zn)dD(wn).
To prove the lower estimate in Proposition 1.5.8 when n 6∈ A and
|zn − wn|2 ¬ dD(zn)dD(wn), it suffices to observe that (4) leads to
3bD(zn,wn)  bD(zn,wn) and then to apply Lemma and (5).
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Thank you for your atention!
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