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Introduction

We are interested in studying type I Hermite-Padé approximants.
Since they are a generalization of classical Padé approximants,
we start from the basic definition of Padé approximants.

Let f be a power series,

f (z) =
∞∑︁
i=0

ciz
i .

Let P,Q be polynomials of degrees at most n,m, respectively. Then the
Padé approximant of f of order (n,m) is given by [Perron 1957]

Qf − P = 𝒪(zn+m+1).

The polynomials P,Q are not unique, but their ratio P/Q is uniquely
determined. We say that [n/m]f := P/Q is the Padé approximant of f .
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General concept of Hermite-Padé

Let f1, f2, . . . , fk be k different functions, given by power series at the point
z = 0. Let A1,A2, . . . ,Ak be polynomials of degrees at most 𝜈1, 𝜈2, . . . , 𝜈k .
The type I Hermite-Padé approximant of f1, f2, . . . , fk is given by
[Baker, Graves-Morris 1996]

A1f1 + A2f2 + . . .+ Ak fk = 𝒪(z𝜈1+𝜈2+...+𝜈k+k−1).

Apparently, the Padé approximant of f is a Hermite-Padé approximant of
f1 = −1, f2 = f of order 𝜈1 = n, 𝜈2 = m, and k = 2.

There are other types of Hermite-Padé approximants, like type II,
two-point, and others, but we discuss only type I.
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Padé approximant at the infinity point

Let f be a convergent power series, i.e. a germ (single-valued branch of a
multivalued analytic function given at the point z = ∞),

f =
∞∑︁
k=0

ck
zk+1 .

Now let P,Q be the Padé polynomials at the infinity point of f of degree
at most n such that [Nuttall 1984]

Qf − P = 𝒪
(︂

1
zn+1

)︂
, z → ∞.

The ratio [n/n]f := P/Q is the diagonal Padé approximant of f of order n
at the infinity point.
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Markov-type functions

Let Δ = [−1, 1] and D = C ∖Δ.
Let 𝜌(x) be a weight function, holomorphic on Δ and without zeros on Δ.
Define the Markov function ̂︀𝜌(z) [Markov 1895], [Bernstein 1937],
[GonSu 2004], ̂︀𝜌(z) = 1

𝜋

∫︁
Δ

𝜌(x)

z − x

dx√
1 − x2

.

Also, let r(z) be a complex rational function, with poles in D and
r(∞) = 0. Define the class of functions of Markov-type:

f = ̂︀𝜌+ r .
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Convergence of Padé approximants

Theorem (Gonchar, Suetin [GonSu 2004])
Let f = ̂︀𝜌+ r be a Markov-type function, where 𝜌(x) is holomorphic on Δ
and without zeros on Δ, all poles of r are in D and r(∞) = 0. Then the
sequence of diagonal Padé approximants [n/n]f converges uniformly in the
spherical metric to f inside D.

From the theorem follows that each pole of the function f attracts as many
poles of [n/n]f as its multiplicity. In addition all poles of [n/n]f are simple
ones (this result was obtained numerically, and then mathematically
proved).

The theorem was extended for a larger class of functions, meromorphic,
Dini-Lipschitz, and others.

The article by Gonchar and Suetin [GonSu 2004] is the basis for our
research.
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Zeros (blue points) and poles (red points) of the diagonal Padé approximant
[30/30]f of the function f (z) = 1/

√
z2 − 1.
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[30/30]f of the function f (z) = 1/

√
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Hermite-Padé approximant at the infinity point

We are interested in the general problem of the limit zero distribution of
type I Hermite–Padé polynomials for the collection of three functions
[1, f , g ].

Suppose that f and g are two convergent power series at the infinity point.
The type I Hermite-Padé polynomials P1,P2,P3 of degree at most n are
given by [Baker, Graves-Morris 1996], [Aptekarev 2008]

P1 + P2f + P3g = 𝒪
(︂

1
z2n+2

)︂
, z → ∞.

Comparing to the general definition, we have Hermite-Padé approximant of
f1 = 1, f2 = f , f3 = g of order 𝜈1 = 𝜈2 = 𝜈3 = n, and k = 3.
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Zeros of P1 (blue points), P2 (red points) and P3 (black points) of the
Hermite-Padé approximant [1, f , g ] with n = 30 of the two functions
f (z) = 1/

√
z2 − 1 and g(z) = 1/

√︀
(z − 3)(z − 4).
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Our contributions

We present only graphics about the type I Hermite-Padé approximants for
the collection of three functions [1, f , g ], and some ideas based on these
graphics. We are still working on the general theory.

There is software for computing Padé approximants (Maple, Mathematica),
but there was not present a reliable software for computing Hermite-Padé
approximants.

In September 2012 we started working on that task, and in December 2013
we had our own software for computing Hermite-Padé approximants for the
collection of three functions [1, f , g ] with the resulting polynomials having
the same degree n (the equivalent of diagonal Padé approximant).
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Papers in arXiv

By using this software, we presented our conjectures in two papers,
published in arXiv during 2015, [KovIkSu 2015a], [KovIkSu 2015b].

We are using PARI/GP computer algebra for the actual computations, and
gnuplot for the plotting of the points.

This project was realised under a bilateral agreement between the Steklov
Mathematical Institute (RAS, Moscow) and the Institute of Mathematics
and Informatics (BAS, Sofia).
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II, Encyclopedia of Mathematics and its Applications, Cambridge
University Press, 1996.

Ikonomov, Kovacheva, Suetin Limit zero distribution August 20, 2015 14 / 76



References

J. Nuttall, “Asymptotics of diagonal Hermite–Padé polynomials”, J.
Approx.Theory, 42 (1984), 299–386.

S. P. Suetin, “Uniform convergence of Padé diagonal approximants for
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2015, 95 pp, arXiv:1501.07090.

N. R. Ikonomov, R. K. Kovacheva, S. P. Suetin, On the limit zero
distribution of type I Hermite–Padé polynomials, 2015, 67 pp,
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Asymptotics of Padé approximants

We present the general theory of asymptotics of classical Padé
approximants.

First, we cite the general Stahl Theory about weak asymptotics of Padé
approximants, second, we present a conjecture for strong asymptotics of
Padé approximants.

After that, we focus on Hermite-Padé approximants.
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General results for Padé approximants

The basic general results of Padé approximants theory are of two types.

The first type is concerned with the limit zero distribution of Padé
polynomials for multivalued analytic functions with a finite set of branch
points on the Riemann sphere C. These results are referred to as “weak
asymptotics of Padé approximants”. The problem of first type was
completely solved by H. Stahl for classical Padé approximants.

The second type of results are devoted to the “strong asymptotics of Padé
approximants”, which is a generalization of the classical Bernstein–Szegő
asymptotic theory for polynomials, orthogonal on the unit segment
Δ := [−1, 1] and related to the general case of non-Hermitian orthogonal
polynomials. This problem is still open, and we present a conjecture on it.
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Stahl Theory

The Stahl Theorem gives a complete answer to the problem of limit
zero-pole distribution of the classical Padé appoximants to f . Stahl
Theorem is quite general, it admits multivalued functions with a finite
number of branch points on the Riemann sphere, and also multivalued
analytic functions with a singular set of zero (logarithmic) capacity.

The most important part of Stahl theory [Stahl 1985ab]–[Stahl 1986ab] is
the existence of a unique (up to a compact set of zero capacity) maximal
domain for the given multivalued function f (at the point z = ∞). This
“maximal domain” of holomorphy of f is a domain D = D(f ) ∋ ∞, such
that the given germ f can be continued as holomorphic function from a
neighborhood of the infinity point z = ∞ to D (the function f can be
continued analytically along each path that belongs in to D).
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Maximal domain

Maximal domain in the sense that 𝜕D is of “minimal capacity” among all
compact sets 𝜕G , such that G is a domain, ∞ ∈ G and f admits a
holomorphic continuation into G , f ∈ H (G ). Such maximal domain D is
unique (up to a compact set of zero capacity).

The compact set S = S(f ) := 𝜕D is now called “Stahl’s compact set”, and
D is called “Stahl’s domain”.

For example, if we have a set of two branch points, {−1, 1}, then Stahl’s
compact set (with respect to the infinity point) is S = [−1, 1].
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Stahl’s compact set

Properties of the compact set S : the complement of D = C ∖ S is a
domain, S consists of a finite number of analytic arcs, and, S possesses the
property of “symmetry”, that is,

𝜕gD(z ,∞)

𝜕n+
=

𝜕gD(z ,∞)

𝜕n−
, z ∈ S0,

where gD(z ,∞) is Green’s function for the domain D, with the logarithmic
singularity at the point z = ∞, S0 is the union of all open arcs of S (which
closures constitute S , that is S ∖ S0 is a finite set), and 𝜕n+ and 𝜕n− are
the inner (with respect to D) normal derivatives of gD(z ,∞) at a point
z ∈ S0 from the opposite sides of S0.
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Set of branch points

Let Σ ⊂ C, #Σ < ∞ be a finite set, and let A (C ∖ Σ) be the set of all
functions analytic in the domain C ∖ Σ.

Let A 0(C ∖Σ) := A (C ∖Σ) ∖ H (C ∖Σ), that is, a function f is from this
set if it is a multivalued analytic function in the domain C ∖ Σ, but not a
holomorphic function in C ∖ Σ (f is analytic, but not single-valued).

Let Σ = {a1, . . . , ap}, #Σ = p < ∞, be the set of all branch points of f ,
i.e. f ∈ A 0(C ∖Σ). Clearly, if Σ = {−1, 1}, then Stahl’s compact set (with
respect to the infinity point) is S = [−1, 1].

Ikonomov, Kovacheva, Suetin Limit zero distribution August 20, 2015 22 / 76



Potential theory

We recall some basic facts from the potential theory.

For a positive Borel measure 𝜇 with a compact support supp(𝜇) b C,
denote by V 𝜇(z) the logarithmic potential of 𝜇, that is:

V 𝜇(z) :=

∫︁
supp𝜇

log
1

|z − 𝜁|
d𝜇(𝜁).

Given an arbitrary polynomial Q ∈ C(z), Q ̸≡ 0, denote by

𝜒(Q) :=
∑︁

𝜁:Q(𝜁)=0

𝛿𝜁

the associated zero counting measure of Q (𝛿𝜁 denotes the Dirac measure
concentrated at the point 𝜁 ∈ C).
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Equilibrium measure

Denote with 𝜆 the unique probability equilibrium measure of the compact
set S , that is

V 𝜆(z) ≡ 𝛾, z ∈ S ,

where
V 𝜆(z) =

∫︁
log

1
|z − 𝜁|

d𝜆(𝜁)

is the logarithmic potential of the measure 𝜆, 𝛾 is the Robin constant for S .

It is known, that
gD(z ,∞) ≡ 𝛾 − V 𝜆(z).

Ikonomov, Kovacheva, Suetin Limit zero distribution August 20, 2015 24 / 76



Convergence

We use the notation “ *−→” for convergence of measures in the weak-star
topology. We say that a sequence {𝜇n}∞n=1 of Borel measures converges
weakly to a measure 𝜇, if for every continuous function g(x) ∈ A, where
A := supp(𝜇n), we have [Landkoff 1966, Theorem 0.4]

lim
n→∞

∫︁
A
g(x)d𝜇n(x) =

∫︁
A
g(x)d𝜇(x), 𝜇 ∈ A.

We use the notation “
cap−→” for convergence in capacity inside (on compact

subsets of) a domain. Let Ω be a domain in C and 𝜙 be a continuous
function defined in Ω with values in C. A sequence of functions {𝜙n},
meromorphic in Ω, is said to converge in “capacity inside” to 𝜙 inside Ω if
for any compact set K ⊂ Ω and any 𝜀 > 0 we have [Gonchar 1975, §2.3]

cap ({z ∈ K : |𝜙− 𝜙n| > 𝜀}) → 0, as n → ∞.
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Padé polynomials

We use the following definition for the Padé approximant.

Let Pn,0,Pn,1, Pn,1 ̸≡ 0, be the Padé polynomials of degree at most n (at
the infinity point) of the function f , for which the following holds true:

(Pn,0 + Pn,1f )(z) = O

(︂
1

zn+1

)︂
, z → ∞.

The polynomials Pn,0,Pn,1 are not unique, but their ratio Pn,0/Pn,1 is
uniquely determined. The rational function [n/n]f := −Pn,0/Pn,1 is called
the diagonal Padé approximant of order n of the function f (at the infinity
point).

Ikonomov, Kovacheva, Suetin Limit zero distribution August 20, 2015 26 / 76



Stahl Theorem (H. Stahl [Stahl 1986ab], [Stahl 1987b])

Let f ∈ H (∞), f ∈ A 0(C ∖ Σ), #Σ < ∞. Let D = D(f ) be Stahl’s
“maximal” domain for f , S = 𝜕D – Stahl’s compact set,
[n/n]f = −Pn,0/Pn,1 – the n-diagonal Padé approximant to the function f .
Then the following statements are valid:

1 there exists LZD of Padé polynomials Pn,j , j = 0, 1, namely,

1
n
𝜒(Pn,j)

*−→ 𝜆, as n → ∞, j = 0, 1;

2 the n-diagonal Padé approximants converge in capacity to the
function f inside the domain D,

[n/n]f (z)
cap−→ f (z), n → ∞, z ∈ D;

3 the rate of the convergence in 2) is completely characterized by the
relation⃒⃒

(f − [n/n]f )(z)
⃒⃒1/n cap−→ e−2gD(z,∞), n → ∞, z ∈ D.
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Zeros (blue points) and poles (red points) of the diagonal Padé approximant
[130/130]f of the function
f (z) = 1/((z − (−1.2 + 0.8i))(z − (0.9 + 1.5i))(z − (0.5 − 1.2i)))1/3.
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There is a Froissart doublet (spurious zero-pole pair) when n = 130.
It was proved that the genus of the Riemann surface is 1, there might be at
most one Froissart doublet.

The Froissart doublet “attracts” the Stahl S-compact S130
in full compliance with the electrostatical model by E. A. Rakhmanov
[Rakhmanov 2012].
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Poles (red points, left) and zeros (blue points, right) of the diagonal Padé
approximant [130/130]f of the function
f (z) = 1/((z − (−1.2 + 0.8i))(z − (0.9 + 1.5i))(z − (0.5 − 1.2i)))1/3.
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The poles of the Padé approximant [130/130]f approximate a Chebotarev
point v130 for the S-compact S130 (see [Rakhmanov 2012]). When n → ∞
we have that vn → v is a classical Chebotarev point (left picture).

The Chebotarev point should not be approximated by zeros of the Padé
approximant [130/130]f (changing f to 1/f reverses that).

There is one spurious pole of the Padé approximant [130/130]f , it is
accompanied by a spurious zero of the Padé approximant [130/130]f .

See articles from Rakhmanov, Nuttall, Suetin, and others about Froissart
doublets.
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Strong asymptotics

We turn our attention to strong asymptotics of Padé polynomials, we first
cite a theorem again by Gonchar and Suetin [GonSu 2004] (which
generalizes Nuttall’s results) for a special case, and then we present our
conjecture for the generic case.

We layout the approach of the proof for the special case.

Let R : 𝜔2 = z2 − 1 be a Riemann surface.
Denote the two sheets by D(1) and D(2).
Let 𝜔 = +

√
z2 − 1 on the first sheet D(1) and 𝜔 = −

√
z2 − 1 on D(2).

For points on R we use the notation z = (z , 𝜔), where 𝜔 = ±
√
z2 − 1,

z =

{︃
z(1) := (z ,

√
z2 − 1), z ∈ D(1)

z(2) := (z ,−
√
z2 − 1), z ∈ D(2).
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Nuttall’s psi-function

Let Φ(z) = z +
√
z2 − 1, z = z(1) ∈ D(1).

We extend Φ(z) ∈ C(z , 𝜔) on R as Φ(z) = z + 𝜔, with

Φ(z) =

{︃
z +

√
z2 − 1, z ∈ D(1)

z −
√
z2 − 1, z ∈ D(2).

We introduce the Nuttall’s psi-function Ψ = Ψn

Ψ(z) = Φ(z)neS(z), z = z(1) ∈ D(1),

where S(z) is the Szegö function

S(z) =

√
z2 − 1
2𝜋

∫︁
Δ

log 𝜌(x)
z − x

dx√
1 − x2

(the classical Szegö function is actually 1/S(z)).
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Remainder function

Recall that Δ = [−1, 1] and D = C ∖Δ.
Let f be a Markov function, f = ̂︀𝜌, with

̂︀𝜌(z) = 1
𝜋

∫︁
Δ

𝜌(x)

z − x

dx√
1 − x2

.

We remind that

Rn(z) := (Pn,0 + Pn,1f )(z) = O

(︂
1

zn+1

)︂
, z → ∞.

where Rn(z) is the remainder function of the Padé approximant.
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Limits

We define the following on different sheets, x ∈ Γ = R ∖ (D(1) ⊔ D(2)),
from the upper half-plane of the first sheet to x,

lim
z(1)→x

Ψ(1)(z(1)) = Ψ+(x),

from the lower half-plane of the second sheet to x,

lim
z(2)→x

Ψ(2)(z(2)) = Ψ−(x),
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Problem for Markov function

The function Ψ is unique (up to a normalization) and is the solution of a
Riemann boundary problem:

Riemann boundary problem
Given a n ∈ N, find a function Ψ = Ψn such that

1 Ψ is partially meromorphic on R ∖ Γ,
2 div (Ψ) = n∞(2) − n∞(1),
3 𝜌(x)Ψ+(x) = Ψ−(x), as x ∈ Γ,

where Γ is the cutting countour on R.
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Theorem for Markov function

Under the above conditions for the psi-function Ψ, the asymptotic behavior
of the denominators of the Pade approximant Pn,1 solve a Riemann
boundary problem:

Theorem (Gonchar, Suetin [GonSu 2004])
Let f = ̂︀𝜌 be a Markov function, where 𝜌(x) is holomorphic on Δ and with
no zeros on Δ. Let Ψ be Nuttall’s psi-function, associated with the two
sheeted Riemann surface R : 𝜔2 = z2 − 1.
Then, under suitable normalization of Pn,1(z), we have

1 Pn,1(z) = Ψ(z)(1 + o(1)), n → ∞, uniformly inside D ′,
2 Pn,1(x) = Ψ+(x) + Ψ−(x) + o(1), n → ∞, uniformly on Δ,

where o(1) = o(𝛿n), 𝛿 < 1.
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Problem for Markov-type function

The function Ψ is unique (up to a normalization) and is the solution of a
Riemann boundary problem:

Riemann boundary problem
Given a n ∈ N, find a function Ψ = Ψn such that

1 Ψ is partially meromorphic on R ∖ Γ,

2 div (Ψ) = n∞(2) +m1a
(1)
1 + . . .+mla

(1)
l

−m1a
(2)
1 − . . .−mla

(2)
l − n∞(1),

3 𝜌(x)Ψ+(x) = Ψ−(x), as x ∈ Γ.

where Γ is the cutting countour on R.
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Theorem for Markov-type function

Under the above conditions for the psi-function Ψ, the asymptotic behavior
of the denominators of the Pade approximant Pn,1 solve a Riemann
boundary problem:

Theorem (Gonchar, Suetin [GonSu 2004])
Let f = ̂︀𝜌+ r be a Markov-type function, where 𝜌(x) is holomorphic on Δ
and with no zeros on Δ, all poles of r are in D and r(∞) = 0.
Let a1, . . . , al be the poles of f in D, m1, . . . ,ml – their multiplicities,
Ψ – Nuttall’s psi-function, associated with the two sheeted Riemann
surface R : 𝜔2 = z2 − 1.
Then, under suitable normalization of Pn,1(z), we have

1 Pn,1(z) = Ψ(z)(1 + o(1)), n → ∞, uniformly inside D ′,
2 Pn,1(x) = Ψ+(x) + Ψ−(x) + o(1), n → ∞, uniformly on Δ,

where D ′ = D ∖ {a1, . . . , al}, and o(1) = o(𝛿n), 𝛿 < 1.
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Generic case

We present a conjecture on strong asymptotics for Padé polynomials in the
generic case under the conditions of Stahl Theorem. It is worth noting that
in general (except for the case of genus zero) such a representation is not
unique (see [DeKrMc 1999], [Pastur 2006], [KomSu 2014]).

The reason is that there might exist spurious zeros of the Padé polynomials,
with behavior, as n → ∞, that can be described in many ways.
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Problem for the generic case

Let R2 be the canonical hyperelliptic two-sheeted Riemann surface
associated with the Stahl compact set S . The compact set S is the
projection of S onto R2, denote by ΓS .
Let g = g(R2) be the genus of the Riemann surface.

The function Ψ is unique (up to a normalization) and is the solution of a
Riemann boundary problem:

Riemann boundary problem
Given a n ∈ N, find a function Ψ = Ψn such that

1 Ψ is partially meromorphic on R2 ∖ ΓS ,
2 div (Ψ) = (n − g)∞(2) + z1(n) + . . .+ zg (n)− n∞(1),
3 𝜌(𝜁)Ψ+(𝜁) = Ψ−(𝜁), when 𝜁 ∈ ΓS .
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Conjecture (Kovacheva, Suetin [KovSu 2014])

Let f ∈ H (∞) and f ∈ A 0(C ∖ Σ) for some finite set Σ ⊂ C. Let
D = D(f ) be Stahl’s maximal domain associated with f , S = S(f ) = 𝜕D –
the corresponding Stahl’s compact set for f , R2 – the canonical
hyperelliptic two-sheeted Riemann surface associated with the compact
set S , z = z(1,2) = (z ,±) ∈ R2 – an arbitrary point on the two-sheeted
R2, Ψn(z) = Ψn(z; f ) – Nuttall’s psi-function associated with f and R2.
Then, after a suitable normalization of the Padé polynomials
Pn,j(z) = Pn,j(z ; f ), j = 0, 1, and the remainder function Rn, the following
relations take place in capacity inside the domain D:

Pn,j(z)
cap
=

(−1)j

f j(z)
Ψn(z

(1))
(︀
1 + o(1)

)︀
, n → ∞,

Rn(z)
cap
=

Ψn(z
(2))

𝜔(z(2))

(︀
1 + o(1)

)︀
, n → ∞.
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Zeros and poles of the diagonal Padé approximant [266/266]f of the function
f (z) = 1/((z − (−4.3 − 1.0i))(z − (2.0 + 0.5i))(z − (−2.0 − 2.0i))
(z − (−1.0 + 3.0i))(z − (4.0 + 2.0i))(z − (3.0 + 5.0i)))1/6.

Ikonomov, Kovacheva, Suetin Limit zero distribution August 20, 2015 45 / 76



These zeros and poles are distributed in a plane, under fixed n = 266,
accordingly to the electrostatical model by Rakhmanov [Rakhmanov 2012].

Since the genus of the Riemann surface is 4, for each n there might be no
more than 4 Froissart doublets. Here are observed 3 Froissart doublets.

In full compliance with the Rakhmanov model, the Froissart doublets
“attract” the Stahl S-compact S266. In general, the zeros and poles of the
diagonal Padé approximants [n/n]f are distributed as n → ∞ accordingly
to Stahl Theorem [Stahl 1987b].
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Numerical results

We present our numerical results about the asymptotics of type I
Hermite-Padé polynomials.

First, we recall the Angelesco and Nikishin systems of functions, and then
we introduce a new type of system.

Further on, we shall only be considering functions of Markov-type
f = ̂︀𝜌+ r , where ̂︀𝜌(z) = 1

𝜋

∫︁
Δ

𝜌(x)

z − x

dx√
1 − x2

.

Ikonomov, Kovacheva, Suetin Limit zero distribution August 20, 2015 50 / 76



Angelesco system

(1) We consider the type I Hermite-Padé approximant for the collection of
three functions [1, f1, f2]. Let the functions f1 and f2 have the following
form:

f1(z) =
z√︀

(z − a1)(z − a2)
, f2(z) =

z√︀
(z − b1)(z − b2)

,

where a1, a2, b1, b2 ∈ C, a1 ̸= a2, b1 ̸= b2, and [a1, a2] ∩ [b1, b2] = ∅.
Therefore, the pair of functions f1, f2 forms an Angelesco system (see
[Kalyagin 1979]).

The sets of branch points 𝒜1 = 𝒜(f1) and 𝒜2 = 𝒜(f2) do not intersect
each other.
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Nikishin system

(2) Now we consider type I Hermite-Padé approximant for the collection of
three functions [1, f , f 2],

f (z) = (z2 − 1)1/4(z − a)−1/2, f (∞) = 1, a ̸∈ R,

and the pair of functions f1, f2 forms a (generalized) Nikishin system (see
[Nikishin 1980]).

The sets of branch points 𝒜1 and 𝒜2 of the functions f1 and f2 are
equivalent.
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New type of system

(3) Again, consider the type I Hermite-Padé approximant for the collection
of three functions [1, f1, f2]. Let E1 := [a1, a2] = [−1, a],
E2 := [b1, b2] = [−a, 1], where a ∈ (0, 1) is a real parameter.

Both segments E1 and E2 are overlapping, E1 ∩ E2 = [−a, a] ̸= ∅.
The sets of branch points do not intersect each other.

Therefore, the new type of system is neither an Angelesco, nor a Nikishin
system.
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Case 1

Let

f1(z) :=

∫︁ a

−1

dx

x − z
= log

z − a

z + 1
, z /∈ E1,

f2(z) :=

∫︁ 1

−a

dx

x − z
= log

z − 1
z + a

, z /∈ E2.

We take the main branch of the logarithmic function, in the sense that

log
z − a

z + 1
, log

z − 1
z + a

≈ log 1 = 0, as z → ∞.

Set Qn,0,Qn,1,Qn,2 ∈ Pn ∖ {0} for the collection [1, f1, f2],

(Qn,0 · 1 + Qn,1f1 + Qn,2f2)(z) = 𝒪
(︂

1
z2n+2

)︂
.
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Case 2

Let

g1(z) :=

(︂
z − a

z + 1

)︂1/2

=
1
𝜋

∫︁ a

−1

√︂
a− x

x + 1
dx

x − z
+ 1, z /∈ E1,

g2(z) :=

(︂
z − 1
z + a

)︂1/2

=
1
𝜋

∫︁ 1

−a

√︂
1 − x

x + a

dx

x − z
+ 1, z /∈ E2.

We take such a branch of the (·)1/2 function, that g1(z), g2(z) → 1 as
z → ∞, and under the square root function

√
· we mean the “arithmetic

square root function”, that is
√
x2 = x for x ∈ R+.

Set Pn,0,Pn,1,Pn,2 ∈ Pn ∖ {0} for the collection [1, g1, g2],

(Pn,0 · 1 + Pn,1g1 + Pn,2g2)(z) = 𝒪
(︂

1
z2n+2

)︂
.
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Case 3

Let

h1(z) :=

(︂
z − a

z + 1

)︂1/3

, z /∈ E1,

h2(z) :=

(︂
z − 1
z + a

)︂1/3

, z /∈ E2.

We take such a branch of the (·)1/3 function, that h1(z), h2(z) → 1 as
z → ∞, and, in what follows, under the cubic root function 3

√
· we mean

the “arithmetic cubic root function”, that is 3
√
x3 = x for x ∈ R+.

Set Un,0,Un,1,Un,2 ∈ Pn ∖ {0} for the collection [1, h1, h2],

(Un,0 · 1 + Un,1h1 + Un,2h2)(z) = 𝒪
(︂

1
z2n+2

)︂
.
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0.2–1 Numerical distribution of zeros of type I HP polynomials Q200,0 (blue
points), Q200,1 (red points), Q200,2 (black points), for the collection [1, f1, f2],
where f1 = log((0.2 − 1/z)/(1 + 1/z)), f2 = log((0.2 + 1/z)/(1 − 1/z)).

Ikonomov, Kovacheva, Suetin Limit zero distribution August 20, 2015 57 / 76



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2
-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

0.2–2 Numerical distribution of zeros of type I HP polynomials P200,0 (blue
points), P200,1 (red points), P200,2 (black points), for the collection [1, g1, g2],
where g1 = ((0.2 − 1/z)/(1 + 1/z))1/2, g2 = ((0.2 + 1/z)/(1 − 1/z))1/2.
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0.2–3 Numerical distribution of zeros of type I HP polynomials U200,0 (blue
points), U200,1 (red points), U200,2 (black points), for the collection [1, h1, h2],
where h1 = ((0.2 − 1/z)/(1 + 1/z))1/3, h2 = ((0.2 + 1/z)/(1 − 1/z))1/3.
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0.4–1 Numerical distribution of zeros of type I HP polynomials Q200,0 (blue
points), Q200,1 (red points), Q200,2 (black points), for the collection [1, f1, f2],
where f1 = log((0.4 − 1/z)/(1 + 1/z)), f2 = log((0.4 + 1/z)/(1 − 1/z)).
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0.4–2 Numerical distribution of zeros of type I HP polynomials P200,0 (blue
points), P200,1 (red points), P200,2 (black points), for the collection [1, g1, g2],
where g1 = ((0.4 − 1/z)/(1 + 1/z))1/2, g2 = ((0.4 + 1/z)/(1 − 1/z))1/2.
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0.4–3 Numerical distribution of zeros of type I HP polynomials U200,0 (blue
points), U200,1 (red points), U200,2 (black points), for the collection [1, h1, h2],
where h1 = ((0.4 − 1/z)/(1 + 1/z))1/3, h2 = ((0.4 + 1/z)/(1 − 1/z))1/3.
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0.625–1 Numerical distribution of zeros of type I HP polynomials Q200,0 (blue
points), Q200,1 (red points), Q200,2 (black points), for the collection [1, f1, f2],
where f1 = log((0.625 − 1/z)/(1 + 1/z)), f2 = log((0.625 + 1/z)/(1 − 1/z)).
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0.625–2 Numerical distribution of zeros of type I HP polynomials P200,0 (blue
points), P200,1 (red points), P200,2 (black points), for the collection [1, g1, g2],
where g1 = ((0.625 − 1/z)/(1 + 1/z))1/2, g2 = ((0.625 + 1/z)/(1 − 1/z))1/2.
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0.625–3 Numerical distribution of zeros of type I HP polynomials U200,0 (blue
points), U200,1 (red points), U200,2 (black points), for the collection [1, h1, h2],
where h1 = ((0.625 − 1/z)/(1 + 1/z))1/3, h2 = ((0.625 + 1/z)/(1 − 1/z))1/3.
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0.73–1 Numerical distribution of zeros of type I HP polynomials Q200,0 (blue
points), Q200,1 (red points), Q200,2 (black points), for the collection [1, f1, f2],
where f1 = log((0.73 − 1/z)/(1 + 1/z)), f2 = log((0.73 + 1/z)/(1 − 1/z)).
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0.73–2 Numerical distribution of zeros of type I HP polynomials P200,0 (blue
points), P200,1 (red points), P200,2 (black points), for the collection [1, g1, g2],
where g1 = ((0.73 − 1/z)/(1 + 1/z))1/2, g2 = ((0.73 + 1/z)/(1 − 1/z))1/2.
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0.73–3 Numerical distribution of zeros of type I HP polynomials U200,0 (blue
points), U200,1 (red points), U200,2 (black points), for the collection [1, h1, h2],
where h1 = ((0.73 − 1/z)/(1 + 1/z))1/3, h2 = ((0.73 + 1/z)/(1 − 1/z))1/3.
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0.8–1 Numerical distribution of zeros of type I HP polynomials Q200,0 (blue
points), Q200,1 (red points), Q200,2 (black points), for the collection [1, f1, f2],
where f1 = log((0.8 − 1/z)/(1 + 1/z)), f2 = log((0.8 + 1/z)/(1 − 1/z)).
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0.8–2 Numerical distribution of zeros of type I HP polynomials P200,0 (blue
points), P200,1 (red points), P200,2 (black points), for the collection [1, g1, g2],
where g1 = ((0.8 − 1/z)/(1 + 1/z))1/2, g2 = ((0.8 + 1/z)/(1 − 1/z))1/2.
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0.8–3 Numerical distribution of zeros of type I HP polynomials U200,0 (blue
points), U200,1 (red points), U200,2 (black points), for the collection [1, h1, h2],
where h1 = ((0.8 − 1/z)/(1 + 1/z))1/3, h2 = ((0.8 + 1/z)/(1 − 1/z))1/3.
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Thus from numerical experiments made by Kovacheva, Ikonomov, and
Suetin it folows that the distribution of zeros of HP polynomials and the
convergence of HP approximants itself are very sensitive to the type of
branching of multivalued analytic function.

By this reason it might be very difficult to construct a general theory of
limit zero distributin of HP polynomials of such type as Stahl’s and
Buslaev’s theories are.

But in addition this sensitivity makes HP approximants very powerful to
reconstruct the unknown properties of a multivalued analytic function given
by a germ.
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Thank You for the attention!
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