Cyclicity of polynomials in Dirichlet spaces in the bidisc

Łukasz Kosiński

August 21, 2015

▲□▶▲圖▶▲≣▶▲≣▶ = ● ● ●

Łukasz Kosiński

Cyclicity of polynomials in Dirichlet spaces in the bidisc

$\mathbb D$ – the unit disc, $\mathcal O(\mathbb D)$ - holomorphic functions on $\mathbb D.$

$$D_{\alpha}=\{f(z)=\sum a_k z^k\in \mathcal{O}(\mathbb{D}): \ \|f\|_{lpha}:=\sum (k+1)^{lpha}|a_k|^2<\infty\}.$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

$$D_{lpha}=\{f(z)=\sum a_k z^k\in \mathcal{O}(\mathbb{D}): \ \|f\|_{lpha}:=\sum (k+1)^{lpha}|a_k|^2<\infty\}.$$

If α = 0 then we obtain the Hardy space H² comprises f ∈ O(D) such that

$$\sup_{0< r<1}\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta <\infty.$$

$$D_{\alpha}=\{f(z)=\sum a_k z^k\in \mathcal{O}(\mathbb{D}): \ \|f\|_{lpha}:=\sum (k+1)^{lpha}|a_k|^2<\infty\}.$$

If α = 0 then we obtain the Hardy space H² comprises f ∈ O(D) such that

$$\sup_{0< r<1}\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty.$$

 For α = −1 the space D_{−1} is the Bergman space B comprises f ∈ O(D) such that

$$\int_{\mathbb{D}}|f(z)|^2dA(z)<\infty.$$

Łukasz Kosiński

Cyclicity of polynomials in Dirichlet spaces in the bidisc

$$D_{lpha}=\{f(z)=\sum \mathsf{a}_k z^k\in \mathcal{O}(\mathbb{D}): \ \|f\|_{lpha}:=\sum (k+1)^{lpha}|\mathsf{a}_k|^2<\infty\}.$$

If α = 0 then we obtain the Hardy space H² comprises f ∈ O(D) such that

$$\sup_{0< r<1}\int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty.$$

 For α = −1 the space D_{−1} is the Bergman space B comprises f ∈ O(D) such that

$$\int_{\mathbb{D}} |f(z)|^2 dA(z) < \infty.$$

• D_1 is the *Dirichlet space* \mathcal{D} composed of $f \in \mathcal{O}(\mathbb{D})$ such that

$$\int_{\mathbb{D}} |f'(z)|^2 dA(z) < \infty.$$

Łukasz Kosiński

Cyclicity of polynomials in Dirichlet spaces in the bidisc

• D_{α} is a Hilbert space,

- D_{α} is a Hilbert space,
- $D_{\alpha} \subset D_{\beta}$ if $\beta \leq \alpha$,

- D_{α} is a Hilbert space,
- $D_{\alpha} \subset D_{\beta}$ if $\beta \leq \alpha$,
- $f \mapsto f(z)$ is continuous, so D_{α} has a reproducing kernel,

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ のへで

- D_{α} is a Hilbert space,
- $D_{\alpha} \subset D_{\beta}$ if $\beta \leq \alpha$,
- $f \mapsto f(z)$ is continuous, so D_{α} has a reproducing kernel,
- D_{α} is an algebra iff $\alpha > 1$. This means that for $\alpha > 1$ the product $fg \in D_{\alpha}$ whenever $f, g \in D_{\alpha}$.

・ロト ・聞 ト ・目 ト ・目 ・ つんの

- D_{α} is a Hilbert space,
- $D_{\alpha} \subset D_{\beta}$ if $\beta \leq \alpha$,
- $f \mapsto f(z)$ is continuous, so D_{α} has a reproducing kernel,
- D_{α} is an algebra iff $\alpha > 1$. This means that for $\alpha > 1$ the product $fg \in D_{\alpha}$ whenever $f, g \in D_{\alpha}$.
- The shift operator in ℓ^2 is a multiplication by z in H^2 . To consider weighted shifts we take a multiplication by z in weighted Dirichlet spaces.

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → ���

Let X be a vector space and Φ an operator on X. An element $f \in X$ is cyclic if span $\{\Phi^n(f) : n \in \mathbb{N}\}$ is dense in X.

|▲□▶|▲□▶|▲三▶|▲三▶||三||のへ⊙

Let X be a vector space and Φ an operator on X. An element $f \in X$ is cyclic if span { $\Phi^n(f)$: $n \in \mathbb{N}$ } is dense in X.

Let $S: D_{\alpha} \rightarrow D_{\alpha}$ be given by

S(f)(z)=zf(z).

Let X be a vector space and Φ an operator on X. An element $f \in X$ is cyclic if span { $\Phi^n(f)$: $n \in \mathbb{N}$ } is dense in X.

Let $S: D_{\alpha} \rightarrow D_{\alpha}$ be given by

$$S(f)(z)=zf(z).$$

・ロト ・聞 ト ・目 ト ・目 ・ つんの

 $f \in D_{\alpha}$ is cyclic iff $\{pf : p \text{ is a polynomial}\}$ is dense in D_{α} .

Let X be a vector space and Φ an operator on X. An element $f \in X$ is cyclic if span { $\Phi^n(f)$: $n \in \mathbb{N}$ } is dense in X.

Let $S: D_{\alpha} \rightarrow D_{\alpha}$ be given by

$$S(f)(z)=zf(z).$$

 $f \in D_{\alpha}$ is cyclic iff $\{pf : p \text{ is a polynomial}\}$ is dense in D_{α} .

This is equivalent to the fact that there is a sequence of polynomial p_n such that $||1 - p_n f||_{\alpha} \rightarrow 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cyclicity of polynomials in Dirichlet spaces in the bidisc

• if $f \in \mathcal{O}(\overline{\mathbb{D}})$ and $f \neq 0$ on $\overline{\mathbb{D}}$, then f is cyclic in D_{α} for any α – Taylor polynomials $p_n := T_n(1/f)$ satisfy $p_n f \to 1$ in D_{α} ;

- if $f \in \mathcal{O}(\overline{\mathbb{D}})$ and $f \neq 0$ on $\overline{\mathbb{D}}$, then f is cyclic in D_{α} for any α Taylor polynomials $p_n := T_n(1/f)$ satisfy $p_n f \to 1$ in D_{α} ;
- if $\alpha > 1$, then $f \in D_{\alpha}$ is cyclic iff it does not vanish on $\overline{\mathbb{D}}$;

|▲□▶|▲□▶|▲臣▶|▲臣▶|||臣|||の�?

- if $f \in \mathcal{O}(\overline{\mathbb{D}})$ and $f \neq 0$ on $\overline{\mathbb{D}}$, then f is cyclic in D_{α} for any α Taylor polynomials $p_n := T_n(1/f)$ satisfy $p_n f \to 1$ in D_{α} ;
- if $\alpha > 1$, then $f \in D_{\alpha}$ is cyclic iff it does not vanish on $\overline{\mathbb{D}}$;
- f(z) = 1 z is cyclic in D_1 ; note that $p_n = T_n(1/f) = \sum_{k=0}^{n-1} z^k$, satisfy $||p_n f 1||_{\alpha} = ||z^n||_{\alpha} = (n+1)^{\alpha}$.

- if $f \in \mathcal{O}(\overline{\mathbb{D}})$ and $f \neq 0$ on $\overline{\mathbb{D}}$, then f is cyclic in D_{α} for any α Taylor polynomials $p_n := T_n(1/f)$ satisfy $p_n f \to 1$ in D_{α} ;
- if $\alpha > 1$, then $f \in D_{\alpha}$ is cyclic iff it does not vanish on $\overline{\mathbb{D}}$;
- f(z) = 1 z is cyclic in D_1 ; note that $p_n = T_n(1/f) = \sum_{k=0}^{n-1} z^k$, satisfy $||p_n f - 1||_{\alpha} = ||z^n||_{\alpha} = (n+1)^{\alpha}$. Generalized Riesz mean polynomials $p_n(z) = \sum_{k=0}^n (1 - \frac{H_k}{H_{n+1}}) z^k$, where $H_n = 1 + 1/2 + \ldots + 1/n$, satisfy $||p_n f - 1||_1 \rightarrow 0$.

- if $f \in \mathcal{O}(\overline{\mathbb{D}})$ and $f \neq 0$ on $\overline{\mathbb{D}}$, then f is cyclic in D_{α} for any α Taylor polynomials $p_n := T_n(1/f)$ satisfy $p_n f \to 1$ in D_{α} ;
- if $\alpha > 1$, then $f \in D_{\alpha}$ is cyclic iff it does not vanish on $\overline{\mathbb{D}}$;
- f(z) = 1 z is cyclic in D_1 ; note that $p_n = T_n(1/f) = \sum_{k=0}^{n-1} z^k$, satisfy $||p_n f - 1||_{\alpha} = ||z^n||_{\alpha} = (n+1)^{\alpha}$. Generalized Riesz mean polynomials $p_n(z) = \sum_{k=0}^n (1 - \frac{H_k}{H_{n+1}}) z^k$, where $H_n = 1 + 1/2 + \ldots + 1/n$, satisfy $||p_n f - 1||_1 \rightarrow 0$.

• f is cyclic in H^2 iff f is outer;

- if $f \in \mathcal{O}(\mathbb{\bar{D}})$ and $f \neq 0$ on $\mathbb{\bar{D}}$, then f is cyclic in D_{α} for any α Taylor polynomials $p_n := T_n(1/f)$ satisfy $p_n f \to 1$ in D_{α} ;
- if $\alpha > 1$, then $f \in D_{\alpha}$ is cyclic iff it does not vanish on $\overline{\mathbb{D}}$;
- f(z) = 1 z is cyclic in D_1 ; note that $p_n = T_n(1/f) = \sum_{k=0}^{n-1} z^k$, satisfy $||p_n f - 1||_{\alpha} = ||z^n||_{\alpha} = (n+1)^{\alpha}$. Generalized Riesz mean polynomials $p_n(z) = \sum_{k=0}^n (1 - \frac{H_k}{H_{n+1}}) z^k$, where $H_n = 1 + 1/2 + \ldots + 1/n$, satisfy $||p_n f - 1||_1 \rightarrow 0$.

- f is cyclic in H^2 iff f is outer;
- if f is cyclic in D_1 , then f is outer and $c({f^* = 0}) = 0$;

- if $f \in \mathcal{O}(\overline{\mathbb{D}})$ and $f \neq 0$ on $\overline{\mathbb{D}}$, then f is cyclic in D_{α} for any α Taylor polynomials $p_n := T_n(1/f)$ satisfy $p_n f \to 1$ in D_{α} ;
- if $\alpha > 1$, then $f \in D_{\alpha}$ is cyclic iff it does not vanish on $\overline{\mathbb{D}}$;
- f(z) = 1 z is cyclic in D_1 ; note that $p_n = T_n(1/f) = \sum_{k=0}^{n-1} z^k$, satisfy $||p_n f - 1||_{\alpha} = ||z^n||_{\alpha} = (n+1)^{\alpha}$. Generalized Riesz mean polynomials $p_n(z) = \sum_{k=0}^n (1 - \frac{H_k}{H_{n+1}}) z^k$, where $H_n = 1 + 1/2 + \ldots + 1/n$, satisfy $||p_n f - 1||_1 \rightarrow 0$.
- f is cyclic in H^2 iff f is outer;
- if f is cyclic in D_1 , then f is outer and $c({f^* = 0}) = 0$;
- (Brown-Shields conjecture): If f is an outer function such that $c({f^* = 0}) = 0$, then f cyclic in D_1 .

Dirichlet spaces in \mathbb{D}^2 .

Dirichlet spaces in \mathbb{D}^2 . A holomorphic function $f : \mathbb{D}^2 \to \mathbb{C}$, $f(z_1, z_2) = \sum_{k,l=0}^{\infty} a_{k,l} z_1^k z_2^l$ belongs to D_{α} if

$$||f||_{\alpha}^{2} := \sum_{k,l} (k+1)^{\alpha} (l+1)^{\alpha} |a_{k,l}|^{2} < \infty.$$

Dirichlet spaces in \mathbb{D}^2 . A holomorphic function $f : \mathbb{D}^2 \to \mathbb{C}$, $f(z_1, z_2) = \sum_{k,l=0}^{\infty} a_{k,l} z_1^k z_2^l$ belongs to D_{α} if

$$||f||_{\alpha}^{2} := \sum_{k,l} (k+1)^{\alpha} (l+1)^{\alpha} |a_{k,l}|^{2} < \infty.$$

Cyclicity with respect to *shift operators* $S_1(f)(z_1, z_2) = z_1 f(z_1, z_2)$, $S_2(f)(z_1, z_2) = z_2 f(z_1, z_2)$.

Dirichlet spaces in \mathbb{D}^2 . A holomorphic function $f : \mathbb{D}^2 \to \mathbb{C}$, $f(z_1, z_2) = \sum_{k,l=0}^{\infty} a_{k,l} z_1^k z_2^l$ belongs to D_{α} if

$$||f||_{\alpha}^{2} := \sum_{k,l} (k+1)^{\alpha} (l+1)^{\alpha} |a_{k,l}|^{2} < \infty.$$

Cyclicity with respect to *shift operators* $S_1(f)(z_1, z_2) = z_1 f(z_1, z_2)$, $S_2(f)(z_1, z_2) = z_2 f(z_1, z_2)$.

Definition

f is cyclic in D_{α} if and only if $span\{z_1f, z_2f\}$ is dense in D_{α}

Note that $f \in D_{\alpha}$ is cyclic in D_{α} iff there is a sequence $p_n \in \mathbb{C}[z_1, z_2]$ such that

$$||1-fp_n||_{\alpha} \rightarrow 0.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Łukasz Kosiński

Cyclicity of polynomials in Dirichlet spaces in the bidisc

There is a connection between Nyman's dilatation completeness problem (equivalent to the Riemann hypothesis) and cyclicity on the Hardy space of the infinite polydisc.

イロン 不聞と 不同と 不同とう

э.

There is a connection between Nyman's dilatation completeness problem (equivalent to the Riemann hypothesis) and cyclicity on the Hardy space of the infinite polydisc.

Let $\rho(x) = x - [x]$, $\varphi(x) = \rho(1/x)$, $x \in (0, 1)$. Nyman's (1950) proved that the following is equivalent:

• All zeroes of the Riemann- ζ function are on the line $\{Rez = 1/2\}$,

・ロト ・四ト ・ヨト ・ 王・三王

•
$$\chi_{(0,1)} \in \overline{span}_{L^2}(\varphi(nx), n \in \mathbb{N}).$$

There is a connection between Nyman's dilatation completeness problem (equivalent to the Riemann hypothesis) and cyclicity on the Hardy space of the infinite polydisc.

Let $\rho(x) = x - [x]$, $\varphi(x) = \rho(1/x)$, $x \in (0, 1)$. Nyman's (1950) proved that the following is equivalent:

• All zeroes of the Riemann- ζ function are on the line $\{Rez = 1/2\}$,

•
$$\chi_{(0,1)} \in \overline{span}_{L^2}(\varphi(nx), n \in \mathbb{N}).$$

Nikolski showed that the second condition above is related to cyclicity in $H^2(\mathbb{D}_2^\infty)$.

(日) (四) (王) (王) (王)

• D_{α} are algebras whenever $\alpha > 1$,

- D_{α} are algebras whenever $\alpha > 1$,
- cyclicty of $f \in H^2(\mathbb{D}^2) = D_0$ implies that f is an outer function i.e.

$$\log |f(z_1,z_2)| = \int_{\mathbb{T}^2} \log |f^*(\zeta,\eta)| P_{(z_1,z_2)}(\zeta,\eta)| d\zeta||d\eta|.$$

- D_{α} are algebras whenever $\alpha > 1$,
- cyclicty of $f \in H^2(\mathbb{D}^2) = D_0$ implies that f is an outer function i.e.

$$\log |f(z_1,z_2)| = \int_{\mathbb{T}^2} \log |f^*(\zeta,\eta)| P_{(z_1,z_2)}(\zeta,\eta)| d\zeta||d\eta|.$$

(Rudin) But there are outer functions which are not cyclic in $H^2(\mathbb{D}^2)$.

<ロ> <型> < 型> < 型> < 三> < 三 のへの

- D_{α} are algebras whenever $\alpha > 1$,
- cyclicty of $f \in H^2(\mathbb{D}^2) = D_0$ implies that f is an outer function i.e.

$$\log |f(z_1,z_2)| = \int_{\mathbb{T}^2} \log |f^*(\zeta,\eta)| P_{(z_1,z_2)}(\zeta,\eta)| d\zeta||d\eta|.$$

(Rudin) But there are outer functions which are not cyclic in $H^2(\mathbb{D}^2)$. If f is cyclic in D_{α} , then does f not vanish on \mathbb{D}^2 .

- D_{α} are algebras whenever $\alpha > 1$,
- cyclicty of $f \in H^2(\mathbb{D}^2) = D_0$ implies that f is an outer function i.e.

$$\log |f(z_1,z_2)| = \int_{\mathbb{T}^2} \log |f^*(\zeta,\eta)| P_{(z_1,z_2)}(\zeta,\eta)| d\zeta||d\eta|.$$

(Rudin) But there are outer functions which are not cyclic in $H^2(\mathbb{D}^2)$. If f is cyclic in D_{α} , then does f not vanish on \mathbb{D}^2 .

 (Neuwirth, Ginsberg, Newman) cyclicity of polynomials f ∈ C[z₁, z₂] in H²(D²).

Cyclicity of polynomials in Dirichlet spaces in the bidisc

- D_{α} are algebras whenever $\alpha > 1$,
- cyclicty of $f \in H^2(\mathbb{D}^2) = D_0$ implies that f is an outer function i.e.

$$\log |f(z_1,z_2)| = \int_{\mathbb{T}^2} \log |f^*(\zeta,\eta)| P_{(z_1,z_2)}(\zeta,\eta)| d\zeta||d\eta|.$$

(Rudin) But there are outer functions which are not cyclic in $H^2(\mathbb{D}^2)$.

If f is cyclic in D_{α} , then does f not vanish on \mathbb{D}^2 .

 (Neuwirth, Ginsberg, Newman) cyclicity of polynomials f ∈ C[z₁, z₂] in H²(D²).

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

• Which polynomials are cyclic in D_{α} ?

•
$$f(z_1, z_2) = 1 - z_1$$
. Then f is cyclic in D_{α} iff $\alpha \leq 1$,

◆□> ◆圖> ◆臣> ◆臣> 三臣 - のへで

- $f(z_1, z_2) = 1 z_1$. Then f is cyclic in D_{α} iff $\alpha \leq 1$,
- (Thomas Ransford) f(z, w) = 2 z w. Then {f = 0} ∩ T² = {(1,1)}. f is cyclic in D_α if and only if D_α is not an algebra, i.e. α ≤ 1.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎ ◆ ●

• $f(z_1, z_2) = 1 - z_1$. Then f is cyclic in D_{α} iff $\alpha \leq 1$,

• (Thomas Ransford)
$$f(z, w) = 2 - z - w$$
. Then
 $\{f = 0\} \cap \mathbb{T}^2 = \{(1, 1)\}.$
 f is cyclic in D_{α} if and only if D_{α} is not an algebra, i.e. $\alpha \leq 1$.

• (H. Hedenmalm) If $f \in \mathcal{O}(\mathbb{D}^2) \cap \mathcal{C}(\overline{\mathbb{D}}^2)$ is such that f vanishes only in (1,1) and $f(1,\cdot)$ and $f(\cdot,1)$ are outer functions, then f is cyclic in D_1 .

イロト イ押ト イヨト イヨトー

3

• $f(z_1, z_2) = 1 - z_1$. Then f is cyclic in D_{α} iff $\alpha \leq 1$,

• (Thomas Ransford)
$$f(z, w) = 2 - z - w$$
. Then
 $\{f = 0\} \cap \mathbb{T}^2 = \{(1, 1)\}.$
 f is cyclic in D_{α} if and only if D_{α} is not an algebra, i.e. $\alpha \leq 1$.

- (H. Hedenmalm) If $f \in \mathcal{O}(\mathbb{D}^2) \cap \mathcal{C}(\overline{\mathbb{D}}^2)$ is such that f vanishes only in (1,1) and $f(1,\cdot)$ and $f(\cdot,1)$ are outer functions, then f is cyclic in D_1 .
- Let f(z₁, z₂) = g(z₁)h(z₂). Then ||f||_α = ||g||_{D_α}||h||_{D_α}. Moreover, f is cyclic in D_α iff g and h are cyclic in D_α(D). Even more: if f = f(z₁, z₂) is cyclic in D_α, then slices f_{z₁} = f(z₁, ·) and f_{z₂} = f(·, z₂) are cyclic in D_α(D).

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

• Let
$$f(z, w) = 1 - zw$$
.
 $\{f = 0\} \cap \mathbb{T}^2 = \{(e^{i\theta}, e^{-i\theta}) : \theta \in \mathbb{R}\}.$
Then f is cyclic in D_{α} iff $\alpha \leq 1/2$ (so it is not cyclic in D_1).

• Let
$$f(z, w) = 1 - zw$$
.
 $\{f = 0\} \cap \mathbb{T}^2 = \{(e^{i\theta}, e^{-i\theta}) : \theta \in \mathbb{R}\}.$
Then f is cyclic in D_{α} iff $\alpha \leq 1/2$ (so it is not cyclic in D_1).

Let
$$p_n = \sum_{k,l} a_{k,l} z^k w^l$$
 be such that $p_n f \to 1$ in D_α . Let $\tilde{p}_n = \sum_k a_{k,k} z^k w^k = q_n(zw)$. Then $||p_n f - 1||_\alpha \ge ||\tilde{p}_n f - 1||_\alpha = ||(1-z)q_n - 1||_{D_{2\alpha}(\mathbb{D})}$, so $2\alpha \le 1$.

Łukasz Kosiński

• Let
$$f(z, w) = 1 - zw$$
.
 $\{f = 0\} \cap \mathbb{T}^2 = \{(e^{i\theta}, e^{-i\theta}) : \theta \in \mathbb{R}\}.$
Then f is cyclic in D_{α} iff $\alpha \leq 1/2$ (so it is not cyclic in D_1).

Let
$$p_n = \sum_{k,l} a_{k,l} z^k w^l$$
 be such that $p_n f \to 1$ in D_α . Let $\tilde{p}_n = \sum_k a_{k,k} z^k w^k = q_n(zw)$. Then $||p_n f - 1||_\alpha \ge ||\tilde{p}_n f - 1||_\alpha = ||(1-z)q_n - 1||_{D_{2\alpha}(\mathbb{D})}$, so $2\alpha \le 1$.

On the other hand, if $(1-z)p_n \to 1$ in $D_{\alpha}(\mathbb{D})$, then $(1-zw)p_n(zw) \to 1$ in $D_{2\alpha}$.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへの

Łukasz Kosiński

• Let
$$f(z, w) = 1 - zw$$
.
 $\{f = 0\} \cap \mathbb{T}^2 = \{(e^{i\theta}, e^{-i\theta}) : \theta \in \mathbb{R}\}.$
Then f is cyclic in D_α iff $\alpha \le 1/2$ (so it is not cyclic in D_1).
Let $p_n = \sum_{k,l} a_{k,l} z^k w^l$ be such that $p_n f \to 1$ in D_α . Let
 $\tilde{n}_n = \sum_{k,l} a_{k,l} z^k w^k = q_n(zw)$. Then

$$||p_nf-1||_{\alpha} \geq ||\tilde{p}_nf-1||_{\alpha} = ||(1-z)q_n-1||_{D_{2\alpha}(\mathbb{D})}, \text{ so } 2\alpha \leq 1.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

On the other hand, if $(1-z)p_n \to 1$ in $D_{\alpha}(\mathbb{D})$, then $(1-zw)p_n(zw) \to 1$ in $D_{2\alpha}$. f(z,w) = (1-z)(1-w) is cyclic if $\alpha \leq 1$.

•
$$f(z,w) = (1-z)(1-w)$$
 is cyclic if $\alpha \leq 1$.

Łukasz Kosiński

Suppose that $f \in \mathbb{C}[z_1, z_2]$ is not a polynomial of one variable, have no zeroes on \mathbb{D}^2 and $\{f = 0\}$ meets \mathbb{T}^2 along a curve. Then f is not cyclic in D_{α} for $\alpha > 1/2$.

・ロト・西ト・西ト・西ト・日下

Cyclicity of polynomials in Dirichlet spaces in the bidisc

Łukasz Kosiński

Definition

Let $E \subset \mathbb{T}^2$ be a Borel set, μ – a probability measure supported on E. We say that μ has finite (Riesz) α -energy if

$$I_lpha[\mu]=\int_{\mathbb{T}^2}\int_{\mathbb{T}^2}rac{1}{|e^{i heta_1}-e^{i\eta_1}|^{1-lpha}}rac{1}{|e^{i heta_2}-e^{i\eta_2}|^{1-lpha}}d\mu(\eta_1,\eta_2)d\mu(heta_1, heta_2)<\infty.$$

▲口▼ ▲圖▼ ▲国▼ ▲国▼ 三国 → のへ⊙

Łukasz Kosiński

Definition

Let $E \subset \mathbb{T}^2$ be a Borel set, μ – a probability measure supported on E. We say that μ has finite (Riesz) α -energy if

$$I_{\alpha}[\mu]=\int_{\mathbb{T}^2}\int_{\mathbb{T}^2}\frac{1}{|e^{i\theta_1}-e^{i\eta_1}|^{1-\alpha}}\frac{1}{|e^{i\theta_2}-e^{i\eta_2}|^{1-\alpha}}d\mu(\eta_1,\eta_2)d\mu(\theta_1,\theta_2)<\infty.$$

Moreover,

$$c_{\alpha}(E) := 1/\inf\{I_{\alpha}[\mu]\}, \quad (\mathsf{Riesz}) \ lpha - \mathsf{capacity}$$

defines (Riesz) α -capacity.

▲ロト ▲圖 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 □ のへ⊙

Łukasz Kosiński

Definition

Let $E \subset \mathbb{T}^2$ be a Borel set, μ – a probability measure supported on E. We say that μ has finite (Riesz) α -energy if

$$I_{\alpha}[\mu]=\int_{\mathbb{T}^2}\int_{\mathbb{T}^2}\frac{1}{|e^{i\theta_1}-e^{i\eta_1}|^{1-\alpha}}\frac{1}{|e^{i\theta_2}-e^{i\eta_2}|^{1-\alpha}}d\mu(\eta_1,\eta_2)d\mu(\theta_1,\theta_2)<\infty.$$

Moreover,

$$c_{\alpha}(E) := 1/\inf\{I_{\alpha}[\mu]\}, \quad (\mathsf{Riesz}) \ lpha - \mathsf{capacity}$$

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎ ◆ ●

defines (Riesz) α -capacity.

For $\alpha = 1$ we use kernel $\log(e/|e^{i\theta_1} - e^{i\eta_1}|)\log(e/|e^{i\theta_2} - e^{i\eta_2}|)$ in the definitions of energy and capacity.

Łukasz Kosiński

Viewing the integral defining the energy as a convolution with a kernel of positive type it is possible to express α -energy of μ in terms of its Fourier coefficients:

Viewing the integral defining the energy as a convolution with a kernel of positive type it is possible to express α -energy of μ in terms of its Fourier coefficients:

$$\begin{split} I_{\alpha}[\mu] &= 1 + \sum_{k=1}^{\infty} \frac{|\hat{\mu}(k,0)|^2}{k^{\alpha}} + \sum_{l=1}^{\infty} \frac{|\hat{\mu}(0,l)|^2}{l^{\alpha}} + \frac{1}{2} \sum_{k \in \mathbb{Z} \setminus \{0\}} \sum_{l=1}^{\infty} \frac{|\hat{\mu}(k,l)|^2}{|k|^{\alpha} l^{\alpha}}, \\ \text{here } \hat{\mu}(k,l) &= \int_{\mathbb{T}^2} e^{-i(k\theta_1 + l\theta_2)} d\mu(\theta_1,\theta_2). \end{split}$$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 ○ のへで

Łukasz Kosiński

w

Generalization of var der Corput's lemma.

S is a smooth curve in $\mathbb{T}^2 = [0, 2\pi) \times [0, 2\pi)$, $\varphi : I \to \mathbb{T}^2$ is its parametrization, I = (-1, 1).

- ▲ 日 ▶ ▲ 国 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Generalization of var der Corput's lemma.

S is a smooth curve in $\mathbb{T}^2 = [0, 2\pi) \times [0, 2\pi)$, $\varphi : I \to \mathbb{T}^2$ is its parametrization, I = (-1, 1).

The type of $\xi = \varphi(x) \in \varphi(I)$ is the smallest τ such that for all $\eta \in \mathbb{R}^2$, $||\eta|| = 1$ there exists $k \in \mathbb{Z}$, $k \leq \tau$, such that

$$\frac{d^k\varphi(x)}{dt^k}\cdot\eta\neq 0.$$

Note that $\tau \geq 2$.

Łukasz Kosiński

Generalization of var der Corput's lemma.

S is a smooth curve in $\mathbb{T}^2 = [0, 2\pi) \times [0, 2\pi)$, $\varphi : I \to \mathbb{T}^2$ is its parametrization, I = (-1, 1).

The type of $\xi = \varphi(x) \in \varphi(I)$ is the smallest τ such that for all $\eta \in \mathbb{R}^2$, $||\eta|| = 1$ there exists $k \in \mathbb{Z}$, $k \leq \tau$, such that

$$\frac{d^k\varphi(x)}{dt^k}\cdot\eta\neq 0.$$

イロト イ理ト イヨト イヨトー

Note that $\tau \ge 2$. Example: $\varphi(t) = (t, \psi(t))$. The curve is of type 2 at $\varphi(0)$ if for any $|\eta| = 1$ either $\eta_1 + \psi'(0)\eta_2 \ne 0$ or $\psi''(0)\eta_2 \ne 0$. This means that $\psi''(0) \ne 0$.

A curve is of type 2 is it has everywhere non-vanishing curvature.

 $S \subset \mathbb{T}^2$ - a curve of finite type. Let σ be a measure on S obtained by pulling back to Lebesgue measure on the line using parametrization of D. Let $d\mu(x) = \psi(x)d\sigma(x), x \in S \subset \mathbb{T}^2$, where $\psi \in \mathcal{C}_0^{\infty}(S), \psi \ge 0$.

 $S \subset \mathbb{T}^2$ - a curve of finite type. Let σ be a measure on S obtained by pulling back to Lebesgue measure on the line using parametrization of D. Let $d\mu(x) = \psi(x)d\sigma(x)$, $x \in S \subset \mathbb{T}^2$, where $\psi \in \mathcal{C}_0^{\infty}(S)$, $\psi \ge 0$.

Lemma (Decay of Fourier coefficients of measures on varieties)

If S of finite type $au \in \mathbb{N}$ and μ is as above, then there is C > 0 such that

 $|\hat{\mu}(k, l)| \leq C(k^2 + l^2)^{-1/(2\tau)},$

 $k, l \in \mathbb{Z}$.

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへ⊙

Łukasz Kosiński

Lemma

Assume that $f \in D_{\alpha}$ is such that $\{f^* = 0\} \cap \mathbb{T}^2$ contains a locally smooth curve S of type τ . Then f is not cyclic in D_{α} for any $\alpha > 1 - 1/\tau$.

It suffices to show that $c_{\alpha}(S) > 0$. Indeed, if $c_{\alpha}(S) > 0$, then $c_{\alpha}(\{f^* = 0\}) \cap \mathbb{T}^2) > 0$ and there is a probability measure μ on S such that $I_{\alpha}[\mu] < \infty$. Cauchy integral:

$$C[\mu](z_1, z_2) = \int_{\mathbb{T}^2} (1 - e^{i\theta_1} z_1)^{-1} (1 - e^{i\theta_2} z_2)^{-1} d\mu(\theta_1, \theta_2) = \int_{\mathbb{T}^2} \sum_k e^{ik\theta_1} z_1^k \sum_l e^{il\theta_2} z_2^l d\mu(\theta_1, \theta_2) = \sum_{k,l} \hat{\mu}(-k, -l) z_1^k z_2^l = \sum \bar{\mu}(k, l) z_1^k z_2^l.$$
(1)

<ロト < 団ト < 国ト < 国ト < 国ト = のへの</p>

Łukasz Kosiński

Lemma

Assume that $f \in D_{\alpha}$ is such that $\{f^* = 0\} \cap \mathbb{T}^2$ contains a locally smooth curve S of type τ . Then f is not cyclic in D_{α} for any $\alpha > 1 - 1/\tau$.

It suffices to show that $c_{\alpha}(S) > 0$. Indeed, if $c_{\alpha}(S) > 0$, then $c_{\alpha}(\{f^* = 0\}) \cap \mathbb{T}^2) > 0$ and there is a probability measure μ on S such that $I_{\alpha}[\mu] < \infty$. Cauchy integral:

$$C[\mu](z_1, z_2) = \int_{\mathbb{T}^2} (1 - e^{i\theta_1} z_1)^{-1} (1 - e^{i\theta_2} z_2)^{-1} d\mu(\theta_1, \theta_2) = \int_{\mathbb{T}^2} \sum_k e^{ik\theta_1} z_1^k \sum_l e^{il\theta_2} z_2^l d\mu(\theta_1, \theta_2) = \sum_{k,l} \hat{\mu}(-k, -l) z_1^k z_2^l = \sum_k \bar{\mu}(k, l) z_1^k z_2^l.$$
(1)

$$||C[\mu]||_{-lpha} = \sum_{k,l} rac{|\hat{\mu}(k,l)|^2}{(k+1)^{lpha}(l+1)^{lpha}} < \infty$$

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎ ◆ ●

as $I_{\alpha}[\mu] < \infty$.

Łukasz Kosiński

Note that $C[\mu] \neq 0$ ($\mu \neq 0$), so $C[\mu]$ is non-trivial element of $D_{-\alpha}$.

Note that $C[\mu] \neq 0$ ($\mu \neq 0$), so $C[\mu]$ is non-trivial element of $D_{-\alpha}$. $D_{-\alpha}$ may be identified with dual of D_{α} via the pairing $\langle f, g \rangle = \sum_{k,l} a_{k,l} b_{k,l} \sim \int f^*(e^{i\theta_1}, e^{i\theta_2}) g^*(e^{-i\theta_1}, e^{-i\theta_2}) d\theta_1 d\theta_2$, $f = \sum a_{k,l} z^k w^l$, $g = \sum b_{k,l} z^k w^l$.

|▲□▶|▲□▶|▲臣▶|▲臣▶|||臣|||の�?

Note that $C[\mu] \neq 0$ ($\mu \neq 0$), so $C[\mu]$ is non-trivial element of $D_{-\alpha}$. $D_{-\alpha}$ may be identified with dual of D_{α} via the pairing $\langle f, g \rangle = \sum_{k,l} a_{k,l} b_{k,l} \sim \int f^* (e^{i\theta_1}, e^{i\theta_2}) g^* (e^{-i\theta_1}, e^{-i\theta_2}) d\theta_1 d\theta_2$, $f = \sum a_{k,l} z^k w^l$, $g = \sum b_{k,l} z^k w^l$. Since μ is supported on $\{f^* = 0\}$ we get that $\langle pf, C[\mu] \rangle = 0$ for any polynomial p. In particular, f is non-cyclic.

We have to show that
$$c_{\alpha}(S) > 0$$
.
Let $d\mu = \psi(x)d\sigma(x)$.
 $I_{\alpha}[\mu] = 1 + \sum_{k=1}^{\infty} \frac{|\hat{\mu}(k,0)|^2}{k^{\alpha}} + \sum_{l=1}^{\infty} \frac{|\hat{\mu}(0,l)|^2}{l^{\alpha}} + \frac{1}{2} \sum_{k \in \mathbb{Z} \setminus \{0\}} \sum_{l=1}^{\infty} \frac{|\hat{\mu}(k,l)|^2}{|k|^{\alpha}l^{\alpha}}$
and $|\hat{\mu}(k,l)| \leq C(k^2 + l^2)^{-1/(2\tau)}$, $k, l \in \mathbb{Z}$.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎

Note that $C[\mu] \neq 0$ ($\mu \neq 0$), so $C[\mu]$ is non-trivial element of $D_{-\alpha}$. $D_{-\alpha}$ may be identified with dual of D_{α} via the pairing $\langle f, g \rangle = \sum_{k,l} a_{k,l} b_{k,l} \sim \int f^*(e^{i\theta_1}, e^{i\theta_2}) g^*(e^{-i\theta_1}, e^{-i\theta_2}) d\theta_1 d\theta_2$, $f = \sum a_{k,l} z^k w^l$, $g = \sum b_{k,l} z^k w^l$. Since μ is supported on $\{f^* = 0\}$ we get that $\langle pf, C[\mu] \rangle = 0$ for any polynomial p. In particular, f is non-cyclic.

We have to show that
$$c_{\alpha}(S) > 0$$
.
Let $d\mu = \psi(x)d\sigma(x)$.
 $I_{\alpha}[\mu] = 1 + \sum_{k=1}^{\infty} \frac{|\hat{\mu}(k,0)|^2}{k^{\alpha}} + \sum_{l=1}^{\infty} \frac{|\hat{\mu}(0,l)|^2}{l^{\alpha}} + \frac{1}{2} \sum_{k \in \mathbb{Z} \setminus \{0\}} \sum_{l=1}^{\infty} \frac{|\hat{\mu}(k,l)|^2}{|k|^{\alpha}l^{\alpha}}$
and $|\hat{\mu}(k,l)| \leq C(k^2 + l^2)^{-1/(2\tau)}, \ k, l \in \mathbb{Z}$.

$$\sum_{k=1}^{\infty} \sum_{l=1}^{\infty} \frac{|\hat{\mu}(k,l)|^2}{|k|^{\alpha}l^{\alpha}} \leq 2 \sum_{k=1}^{\infty} \frac{|\hat{\mu}(k,k)|^2}{(k+1)^{\alpha}(k+1)^{\alpha}} + \sum_{k=2}^{\infty} \sum_{l=1}^{k-1} \frac{|\hat{\mu}(k,l)|^2}{(k+1)^{\alpha}(l+1)^{\alpha}} + \sum_{l=2}^{\infty} \sum_{k=1}^{l-1} \frac{|\hat{\mu}(k,l)|^2}{(k+1)^{\alpha}(l+1)^{\alpha}} \leq C \sum_{k=1}^{\infty} (\frac{1}{k^{\alpha+1/\tau}} + \frac{1}{k^{2\alpha-1+2/\tau}}).$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 ― ���?

Łukasz Kosiński

Assume that $\varphi(t) = (t, \psi(t))$ parametrizes a piece of the zero set of f on \mathbb{T}^2 . Then $\tilde{\varphi}(t) = (\gamma(t), \psi(t))$, where $\gamma(t) = \arg m_a(e^{it})$, parametrizes a piece of the zero set of $f(m_a(z_1), z_2)$. $\tilde{\varphi}$ generically has type 2 at t = 0.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎

Assume that $\varphi(t) = (t, \psi(t))$ parametrizes a piece of the zero set of f on \mathbb{T}^2 . Then $\tilde{\varphi}(t) = (\gamma(t), \psi(t))$, where $\gamma(t) = \arg m_a(e^{it})$, parametrizes a piece of the zero set of $f(m_a(z_1), z_2)$. $\tilde{\varphi}$ generically has type 2 at t = 0. Actually, note that $\gamma'(0) > 0$ and $\gamma''(0) \neq 0$ as long as $\operatorname{Im}(a) \neq 0$. Thus if $\psi''(0) \neq 0$, then φ has type 2. If $\psi''(0) = 0$, then equations $\eta_1 \gamma'(0) + \eta_2 \eta'(0) = 0$ and $\eta_2 \gamma''(0) = 0$ cannot hold simultaneously, so $\tilde{\varphi}$ is of type 2 and then $f(m_a(z), w)$ is cyclic. Thus f is cyclic.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎

Let $f \in \mathbb{C}[z_1, z_2]$ have no zeros in \mathbb{D}^2 and finitely many zeroes on \mathbb{T}^2 . Then f is cyclic in D_{α} iff D_{α} is not an algebra i.e. $\alpha \leq 1$.

Let $f \in \mathbb{C}[z_1, z_2]$ have no zeros in \mathbb{D}^2 and finitely many zeroes on \mathbb{T}^2 . Then f is cyclic in D_{α} iff D_{α} is not an algebra i.e. $\alpha \leq 1$.

 $f(z, w) = 2 - z_1 - z_2$. Note that $\{f = 0\} \cap \mathbb{T}^2 = \{(1, 1)\}$. Then $|(z_1 - 1)(z_2 - 1)| \le 2|2 - z_1 - z_2|$, $(z_1, z_2) \in \mathbb{D}^2$. Thus for k big enough $Q(z_1, z_2) = \frac{(z_1 - 1)^k (z_2 - 1)^k}{2 - z_1 - z_2}$ is two times continuously differtiable on \mathbb{T}^2 .

Let $f \in \mathbb{C}[z_1, z_2]$ have no zeros in \mathbb{D}^2 and finitely many zeroes on \mathbb{T}^2 . Then f is cyclic in D_{α} iff D_{α} is not an algebra i.e. $\alpha \leq 1$.

 $f(z, w) = 2 - z_1 - z_2$. Note that $\{f = 0\} \cap \mathbb{T}^2 = \{(1, 1)\}$. Then $|(z_1 - 1)(z_2 - 1)| \le 2|2 - z_1 - z_2|, (z_1, z_2) \in \mathbb{D}^2$. Thus for k big enough $Q(z_1, z_2) = \frac{(z_1 - 1)^k (z_2 - 1)^k}{2 - z_1 - z_2}$ is two times continuously differtiable on \mathbb{T}^2 . Thus Fourier coefficients of Q satisfy

$$\sum_{k,l} |\hat{Q}(k,l)|^2 (k+1)^2 (l+1)^2 < \infty.$$

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎ ◆ ●

This puts $Q \in D_2$.

Łukasz Kosiński

Let $f \in \mathbb{C}[z_1, z_2]$ have no zeros in \mathbb{D}^2 and finitely many zeroes on \mathbb{T}^2 . Then f is cyclic in D_{α} iff D_{α} is not an algebra i.e. $\alpha \leq 1$.

 $f(z, w) = 2 - z_1 - z_2$. Note that $\{f = 0\} \cap \mathbb{T}^2 = \{(1, 1)\}$. Then $|(z_1 - 1)(z_2 - 1)| \le 2|2 - z_1 - z_2|, (z_1, z_2) \in \mathbb{D}^2$. Thus for *k* big enough $Q(z_1, z_2) = \frac{(z_1 - 1)^k (z_2 - 1)^k}{2 - z_1 - z_2}$ is two times continuously differtiable on \mathbb{T}^2 . Thus Fourier coefficients of *Q* satisfy

$$\sum_{k,l} |\hat{Q}(k,l)|^2 (k+1)^2 (l+1)^2 < \infty.$$

This puts $Q \in D_2$. $(z_1 - 1)^k (z_2 - 1)^k = Q(z_1, z_2)(2 - z_1 - z_2)$. But $(z_1 - 1)^k (z_2 - 1)^k$ is cyclic in D_1 , so there are $p_n \in \mathbb{C}[z_1, z_2]$ such that $fQp_n \to 1$ in D_1 . Since $Q \in D_1$, there are q_n such that $q_n \to Q$ in D_1 . Thus $||fq_np_n - 1||_1 \to 0$.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎ ◆ ●

Łojasiewicz's inequality

Let f be a nonzero real analytic function on an open set $U \subset \mathbb{R}^n$. Assume the zero set $\mathcal{Z}(f) = \{x \in U : f(x) = 0\}$ of f is nonempty. Let E be a compact subset of U. Then there are constants C > 0 and $q \in \mathbb{N}$, depending on E, such that

 $|f(x)| \ge C \cdot \operatorname{dist}(x, \mathcal{Z}(f))^q, \quad x \in E.$

Łojasiewicz's inequality

Let f be a nonzero real analytic function on an open set $U \subset \mathbb{R}^n$. Assume the zero set $\mathcal{Z}(f) = \{x \in U : f(x) = 0\}$ of f is nonempty. Let E be a compact subset of U. Then there are constants C > 0 and $q \in \mathbb{N}$, depending on E, such that

$$|f(x)| \ge C \cdot \operatorname{dist}(x, \mathcal{Z}(f))^q, \quad x \in E.$$

 $f \in \mathbb{C}[z_1, z_2]$ has no zeroes in \mathbb{D}^2 and finitely many zeroes on \mathbb{T}^2 . Let $r(x_1, x_2) = |f(e^{ix_1}, e^{ix_2})|^2$. Set $E = [0, 2\pi]^2$. By Łojasiewicz's inequality there is C > 0 and q so that

$$r(x) \geq C \operatorname{dist}(x, \mathcal{Z}(r))^q$$

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト … 臣

for $x \in E$.

Łojasiewicz's inequality

Let f be a nonzero real analytic function on an open set $U \subset \mathbb{R}^n$. Assume the zero set $\mathcal{Z}(f) = \{x \in U : f(x) = 0\}$ of f is nonempty. Let E be a compact subset of U. Then there are constants C > 0 and $q \in \mathbb{N}$, depending on E, such that

 $|f(x)| \ge C \cdot \operatorname{dist}(x, \mathcal{Z}(f))^q, \quad x \in E.$

 $f \in \mathbb{C}[z_1, z_2]$ has no zeroes in \mathbb{D}^2 and finitely many zeroes on \mathbb{T}^2 . Let $r(x_1, x_2) = |f(e^{ix_1}, e^{ix_2})|^2$. Set $E = [0, 2\pi]^2$. By Łojasiewicz's inequality there is C > 0 and q so that

 $r(x) \geq C \operatorname{dist}(x, \mathcal{Z}(r))^q$

for $x \in E$.

By assumption on f, $\mathcal{Z}(r) \cap E$ is finite and thus there is a constant c > 0 so that for $x \in E$

$$\operatorname{dist}(x,\mathcal{Z}(r))^2 \geq c \prod_{y\in\mathcal{Z}(r)\cap E} |x-y|^2.$$

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎ ◆ ●

Łukasz Kosiński

But
$$|x - y|^2 = |x_1 - y_1|^2 + |x_2 - y_2|^2 \ge |e^{ix_1} - e^{iy_1}|^2 + |e^{ix_2} - e^{iy_2}|^2 \ge 2|(e^{ix_1} - e^{iy_1})(e^{ix_2} - e^{iy_2})|.$$

But
$$|x - y|^2 = |x_1 - y_1|^2 + |x_2 - y_2|^2 \ge |e^{ix_1} - e^{iy_1}|^2 + |e^{ix_2} - e^{iy_2}|^2 \ge 2|(e^{ix_1} - e^{iy_1})(e^{ix_2} - e^{iy_2})|$$
. Replacing $z = (z_1, z_2) = (e^{ix_1}, e^{ix_2})$ we see
$$\frac{\prod_{\zeta \in \mathcal{Z}(f) \cap \mathbb{T}^2} |(z_1 - \zeta_1)(z_2 - \zeta_2)|^{q/2}}{|f(z)|^2}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 二臣 - のへ⊙

is bounded on $\mathbb{T}^2 \setminus \mathcal{Z}(f)$ where $\mathcal{Z}(f)$ denotes the zero set of f.

But
$$|x - y|^2 = |x_1 - y_1|^2 + |x_2 - y_2|^2 \ge |e^{ix_1} - e^{iy_1}|^2 + |e^{ix_2} - e^{iy_2}|^2 \ge 2|(e^{ix_1} - e^{iy_1})(e^{ix_2} - e^{iy_2})|$$
. Replacing $z = (z_1, z_2) = (e^{ix_1}, e^{ix_2})$ we see
$$\frac{\prod_{\zeta \in \mathcal{Z}(f) \cap \mathbb{T}^2} |(z_1 - \zeta_1)(z_2 - \zeta_2)|^{q/2}}{|f(z)|^2}$$

is bounded on $\mathbb{T}^2 \setminus \mathcal{Z}(f)$ where $\mathcal{Z}(f)$ denotes the zero set of f. If we increase the power in the numerator (say to 4q) we get a function which is continuous on \mathbb{T}^2 . Thus, for $Q_0(z) = \prod_{\zeta \in \mathcal{Z}(f) \cap \mathbb{T}^2} (z_1 - \zeta_1)^q (z_2 - \zeta_2)^q$ we have that Q_0/f is bounded and continuous on \mathbb{T}^2 . For a large enough power N, Q_0^N/f is 2-times differentiable on \mathbb{T}^2 . Clearly $Q_0^N(z_1, z_2) = g(z_1)h(z_2)$ for some one variable polynomials g, h which only vanish on the circle.

イロト イ押ト イヨト イヨト 二日

But
$$|x - y|^2 = |x_1 - y_1|^2 + |x_2 - y_2|^2 \ge |e^{ix_1} - e^{iy_1}|^2 + |e^{ix_2} - e^{iy_2}|^2 \ge 2|(e^{ix_1} - e^{iy_1})(e^{ix_2} - e^{iy_2})|$$
. Replacing $z = (z_1, z_2) = (e^{ix_1}, e^{ix_2})$ we see
$$\frac{\prod_{\zeta \in \mathcal{Z}(f) \cap \mathbb{T}^2} |(z_1 - \zeta_1)(z_2 - \zeta_2)|^{q/2}}{|f(z)|^2}$$

is bounded on $\mathbb{T}^2 \setminus \mathcal{Z}(f)$ where $\mathcal{Z}(f)$ denotes the zero set of f. If we increase the power in the numerator (say to 4q) we get a function which is continuous on \mathbb{T}^2 . Thus, for $Q_0(z) = \prod_{\zeta \in \mathcal{Z}(f) \cap \mathbb{T}^2} (z_1 - \zeta_1)^q (z_2 - \zeta_2)^q$ we have that Q_0/f is bounded and continuous on \mathbb{T}^2 . For a large enough power N, Q_0^N/f is 2-times differentiable on \mathbb{T}^2 . Clearly $Q_0^N(z_1, z_2) = g(z_1)h(z_2)$ for some one variable polynomials g, h which only vanish on the circle. Thus there are

$$Q(z_1, z_2) = rac{g(z_1)h(z_2)}{f(z_1, z_2)}$$

イロト イ押ト イヨト イヨトー

is 2-times continuously differentiable.

Theorem

Let $0 < \alpha \le 1/2$. Then any polynomial that does not vanish in \mathbb{D}^2 is cyclic in D_{α} .

What may be assumed about polynomial f non-vanishing on \mathbb{D}^2 (Agler and McCarthy, Knese): assume that f has bidegree (n, m); put $\tilde{f}(z_1, z_2) = z_1^n z_2^m \overline{f(1/\bar{z}_1, 1/\bar{z}_2)}$.

f does not divide f̃. Then f has finitely many zeros on T² (zeros of f are common zeros of f̃ and f) - by Bezout's theorem f and f̃ have infinitely many zeroes iff they have a common factor;

イロト イ押ト イヨト イヨトー

What may be assumed about polynomial f non-vanishing on \mathbb{D}^2 (Agler and McCarthy, Knese): assume that f has bidegree (n, m); put $\tilde{f}(z_1, z_2) = z_1^n z_2^m \overline{f(1/\bar{z}_1, 1/\bar{z}_2)}$.

- f does not divide f̃. Then f has finitely many zeros on T² (zeros of f are common zeros of f̃ and f) by Bezout's theorem f and f̃ have infinitely many zeroes iff they have a common factor;
- f divides \tilde{f} . Then $f = \omega \tilde{f}$ for some $\omega \in \mathbb{T}$. In particular, $|f| = |\tilde{f}|$ on \mathbb{T}^2 . Thus, $\{f = 0\} \subset (\mathbb{D} \times (\mathbb{C} \setminus \mathbb{D})) \cup \mathbb{T}^2 \cup ((\mathbb{C} \setminus \mathbb{D}) \times \mathbb{D})$.

イロト イ理ト イヨト イヨトー

What may be assumed about polynomial f non-vanishing on \mathbb{D}^2 (Agler and McCarthy, Knese): assume that f has bidegree (n, m); put $\tilde{f}(z_1, z_2) = z_1^n z_2^m \overline{f(1/\bar{z}_1, 1/\bar{z}_2)}$.

- f does not divide f. Then f has finitely many zeros on T² (zeros of f are common zeros of f and f) by Bezout's theorem f and f have infinitely many zeroes iff they have a common factor;
- f divides \tilde{f} . Then $f = \omega \tilde{f}$ for some $\omega \in \mathbb{T}$. In particular, $|f| = |\tilde{f}|$ on \mathbb{T}^2 . Thus, $\{f = 0\} \subset (\mathbb{D} \times (\mathbb{C} \setminus \mathbb{D})) \cup \mathbb{T}^2 \cup ((\mathbb{C} \setminus \mathbb{D}) \times \mathbb{D})$.

Additionally, *f* posses the following determinantal representation:

$$f(z) = c \det(I_{n+m} - U\begin{pmatrix} z_1I_n & 0\\ 0 & z_2I_m \end{pmatrix}),$$

イロン 不聞と 不同と 不同とう

where c is a constant and U is unitary.

Łukasz Kosiński

Equivalent norm on D_{α} . Put

$$\begin{split} f|_{\alpha}^2 &= \int_{\mathbb{D}} |\partial_{z_1} f(z_1,0)|^2 \left(1 - |z_1|^2\right)^{1-\alpha} dA(z_1) \\ &+ \int_{\mathbb{D}} |\partial_{z_1} f(0,z_2)|^2 \left(1 - |z_2|^2\right)^{1-\alpha} dA(z_2) \\ &+ \int_{\mathbb{D}^2} |\partial_{z_1} \partial_{z_2} f(z_1,z_2)|^2 \left(1 - |z_1|^2\right)^{1-\alpha} (1 - |z_2|^2)^{1-\alpha} dA(z_1) dA(z_2). \end{split}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Łukasz Kosiński

Equivalent norm on D_{α} . Put

$$\begin{split} |f|_{\alpha}^{2} &= \int_{\mathbb{D}} |\partial_{z_{1}} f(z_{1},0)|^{2} \left(1 - |z_{1}|^{2}\right)^{1-\alpha} dA(z_{1}) \\ &+ \int_{\mathbb{D}} |\partial_{z_{1}} f(0,z_{2})|^{2} \left(1 - |z_{2}|^{2}\right)^{1-\alpha} dA(z_{2}) \\ &+ \int_{\mathbb{D}^{2}} |\partial_{z_{1}} \partial_{z_{2}} f(z_{1},z_{2})|^{2} \left(1 - |z_{1}|^{2}\right)^{1-\alpha} (1 - |z_{2}|^{2})^{1-\alpha} dA(z_{1}) dA(z_{2}). \end{split}$$

Note that the above formula has sense for a function f holomorphic on $G \times \mathbb{D}$, where G is a domain in \mathbb{D} , $A(G) = A(\mathbb{D})$ and $0 \in G$. If $g \in \mathcal{O}(\mathbb{D}^2)$, then $|g(0)| + |g|_{\alpha}$ is a norm equivalent to Dirichlet norm in D_{α} .

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎ ◆ ●

Łukasz Kosiński

Let $f \in \mathbb{C}[z_1, z_2]$. We may assume that f is irreducible. We know that $g: (z_1, z_2) \mapsto 1 - z_1 z_2$ is cyclic in \mathfrak{D}_{α} iff $\alpha \leq 1/2$. This means that there exists a sequence of polynomials $(p_n)_{n\geq 1}$ such that $|p_ng - 1|_{\alpha} = |p_ng|_{\alpha} \to 0$. Factorize a general two-variable polynomial f by fixing z_1 , thus obtaining

$$f(z_1, z_2) = H(z_1) \cdot (1 - h_1(z_1)z_2) \cdots (1 - h_N(z_1)z_2),$$

with H non-vanishing in \mathbb{D} (so we may forget about H) and $z_1 \in \mathbb{C} \setminus A$, where points of A are isolated. Losing no generality we may assume that $0 \notin A$. So if we choose a simply connected set D such that $\overline{D} = \overline{\mathbb{D}}$ and

 $D \subset \mathbb{D} \setminus A$, then $h_i \in \mathcal{O}(D)$ and

$$|1 - h_1(z_1)z_2|_{lpha}$$

has sense.

Łukasz Kosiński

• Any $h_j \in \mathcal{O}(D)$ is of finite multiplicity (depending on the degree of f);

- Any $h_j \in \mathcal{O}(D)$ is of finite multiplicity (depending on the degree of f);
- if $\varphi \in \mathcal{O}(D, G)$ is of multiplicity less then K then $\int_D h \circ \phi |\phi'|^2 d\mathcal{L}^2 \leq K \int_G h d\mathcal{L}^2$ for $h \ge 0$;

- Any $h_j \in \mathcal{O}(D)$ is of finite multiplicity (depending on the degree of f);
- if $\varphi \in \mathcal{O}(D, G)$ is of multiplicity less then K then $\int_D h \circ \phi |\phi'|^2 d\mathcal{L}^2 \leq K \int_G h d\mathcal{L}^2$ for $h \ge 0$;
- $(1 |z_1|) \leq C(1 |h(z_1)|), z_1 \in D.$

- Any h_j ∈ O(D) is of finite multiplicity (depending on the degree of f);
- if $\varphi \in \mathcal{O}(D, G)$ is of multiplicity less then K then $\int_{D} h \circ \phi |\phi'|^2 d\mathcal{L}^2 \leq K \int_{G} h d\mathcal{L}^2 \text{ for } h \geq 0;$
- $(1 |z_1|) \le C(1 |h(z_1)|), z_1 \in D.$
- Let p_n be a polynomial such that $q_n(z) := (1-z)p_n(z) \to 1$. Then $|(1-h(z_1)z_2)p_n(h(z_1)z_2)|_{\alpha} \le C||(1-z_1z_2)p_n(z_1z_2)||_{\alpha};$

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎ ◆ ●

- Any h_j ∈ O(D) is of finite multiplicity (depending on the degree of f);
- if $\varphi \in \mathcal{O}(D, G)$ is of multiplicity less then K then $\int_{D} h \circ \phi |\phi'|^2 d\mathcal{L}^2 \leq K \int_{G} h d\mathcal{L}^2 \text{ for } h \geq 0;$
- $(1-|z_1|) \leq C(1-|h(z_1)|), z_1 \in D.$
- Let p_n be a polynomial such that $q_n(z) := (1-z)p_n(z) \to 1$. Then $|(1-h(z_1)z_2)p_n(h(z_1)z_2)|_{\alpha} \le C||(1-z_1z_2)p_n(z_1z_2)||_{\alpha};$
- We start by estimating the seminorm |q_{ν1}(h_jz₂)q_ν(h_iz₂)|_α, restricted to D × D. A computation shows that

 $\partial_{z_1}\partial_{z_2}(q_{\nu_1}(h_j(z_1)z_2)q_{\nu}(h_i(z_1)z_2))$

- $= h'_j(z_1)q_{\nu}(h_i(z_1)z_2)(q''_{\nu_1}(h_j(z_1)z_2)h_j(z_1)z_2 + q'_{\nu_1}(h_j(z_1)z_2))$ (2)
 - $+ h'_{j}(z_{1})q'_{\nu_{1}}(h_{j}(z_{1})z_{2})q'_{\nu}(h_{i}(z_{1})z_{2})h_{i}(z_{1})z_{2} \quad (3)$
 - $+ q'_{\nu_1}(h_j(z_1)z_2)h_j(z_1)q'_{\nu}(h_i(z_1)z_2)h'_i(z_1)z_2 \quad (4)$
- $+ q_{\nu_1}(h_j(z_1)z_2)(q_{\nu}''(h_i(z_1)z_2)h_i(z_1)z_2 + q_{\nu}'(h_i(z_1)z_2))h_i'(z_1).$ (5)

Suppose P(z₁, z₂) = z₂ⁿ + A₁(z₁)z₂ⁿ⁻¹ + ... + A_n(z₁) is holomorphic in a domain G × C ⊂ C². If h ∈ O(G') for a domain G' ⊂⊂ G and P(z₁, h(z₁)) = 1, then

$$|h'(z_1)| \leq O(rac{1}{|z_1 - w|^{1 - rac{1}{n}}})$$

as $z_1 \to w \in \partial G'$.

Suppose P(z₁, z₂) = z₂ⁿ + A₁(z₁)z₂ⁿ⁻¹ + ... + A_n(z₁) is holomorphic in a domain G × C ⊂ C². If h ∈ O(G') for a domain G' ⊂⊂ G and P(z₁, h(z₁)) = 1, then

$$|h'(z_1)| \leq O(rac{1}{|z_1 - w|^{1 - rac{1}{n}}})$$

as $z_1 \to w \in \partial G'$.

 Let a < 1 and 0 ≤ β ≤ 1. Then there is a constant C depending only on a and β such that for any g ∈ Hol(D),

$$\begin{split} \int_{\mathbb{D}} \left| \frac{g(z)}{(z-1)^{s}} \right|^{2} (1-|z|^{2})^{1-\beta} dA(z) \\ &\leq C \left(|g(0)|^{2} + \int_{\mathbb{D}} |g'(z)|^{2} (1-|z|^{2})^{1-\beta} dA(z) \right). \end{split}$$
(6)

▲ロ → ▲圖 → ▲ 圖 → ▲ 圖 → ▲ ◎ ◆ ④ ◆

Łukasz Kosiński

- Applying the procedure N-times we find that $|1 - (1 - h_{i_1}(z)w) \dots (1 - h_{i_N}(z)w)p_{\nu_1}(h_{i_1}(z)w) \dots p_{\nu_N}(h_{i_N}(z)w)|_{\alpha}$ may be arbitrary small for any $\{i_1, \dots, i_N\}$.
- For ν_1, \ldots, ν_N define a function $P = P_{\nu_1 \ldots \nu_N}$ as

$$P_{\nu_1...\nu_N}(z_1, z_2) := \frac{1}{N!} \sum_{\sigma \in \Sigma_N} p_{\nu_1}(h_{\sigma(1)}(z_1)z_2) \dots p_{\nu_N}(h_{\sigma(N)}(z_1)z_2),$$

where Σ_N is the group of all permutations of the set $\{1, \ldots, N\}$. Then $(1 - (1 - h_1(z)w) \dots (1 - h_N(z)w)P(z, w)|_{\alpha}$ may be arbitrarily small. This shows that f is cyclic.

 Finally, we observe that P extends holomorphically to a neighborhood of D², and hence it can be approximated in multiplier norm by polynomials.

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → ● ▲ ◎ ◆ ●

Theorem

Let f be an irreducible polynomial with no zeros in \mathbb{D}^2 .

- If $\alpha \leq 1/2$, then f is cyclic in D_{α} .
- Output: If 1/2 < α ≤ 1, then f is cyclic in D_α iff {f = 0} ∩ T² is finite or empty or f does depend only on one variable.

3 If $\alpha > 1$ then f is cyclic in D_{α} iff $\{f = 0\} \cap \mathbb{T}^2$ is empty.

The assumption about the irreducibility is harmless - any polynomial is a multiplier in D_{α} - for any $f \in D_{\alpha}$ and $p \in \mathbb{C}[z_1, z_2]$: $pf \in D_{\alpha}$. Thus $||pf||_{\alpha} \leq ||p||_{M(D_{\alpha})}||f||_{\alpha}$ for any $f \in D_{\alpha}$.

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣 ─ ����