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D – the unit disc, O(D) - holomorphic functions on D.

Dirichlet space of order α ∈ R for the unit disc, Dα:

Dα = {f (z) =
∑

akzk ∈ O(D) : ‖f ‖α :=
∑

(k + 1)α|ak |2 <∞}.

If α = 0 then we obtain the Hardy space H2 comprises f ∈ O(D)
such that

sup
0<r<1

∫ 2π

0

|f (re iθ)|2dθ <∞.

For α = −1 the space D−1 is the Bergman space B comprises
f ∈ O(D) such that ∫

D
|f (z)|2dA(z) <∞.

D1 is the Dirichlet space D composed of f ∈ O(D) such that∫
D
|f ′(z)|2dA(z) <∞.
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Cyclicity of polynomials in Dirichlet spaces in the bidisc



Cyclicity of polynomials in Dirichlet spaces in the bidisc

D – the unit disc, O(D) - holomorphic functions on D.
Dirichlet space of order α ∈ R for the unit disc, Dα:

Dα = {f (z) =
∑

akzk ∈ O(D) : ‖f ‖α :=
∑

(k + 1)α|ak |2 <∞}.

If α = 0 then we obtain the Hardy space H2 comprises f ∈ O(D)
such that

sup
0<r<1

∫ 2π

0

|f (re iθ)|2dθ <∞.

For α = −1 the space D−1 is the Bergman space B comprises
f ∈ O(D) such that ∫

D
|f (z)|2dA(z) <∞.

D1 is the Dirichlet space D composed of f ∈ O(D) such that∫
D
|f ′(z)|2dA(z) <∞.

 Lukasz Kosiński
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Dα is a Hilbert space,

Dα ⊂ Dβ if β ≤ α,

f 7→ f (z) is continuous, so Dα has a reproducing kernel,

Dα is an algebra iff α > 1. This means that for α > 1 the product
fg ∈ Dα whenever f , g ∈ Dα.

The shift operator in `2 is a multiplication by z in H2. To consider
weighted shifts we take a multiplication by z in weighted Dirichlet
spaces.
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Let X be a vector space and Φ an operator on X . An element f ∈ X is
cyclic if span {Φn(f ) : n ∈ N} is dense in X .

Let S : Dα → Dα be given by

S(f )(z) = zf (z).

f ∈ Dα is cyclic iff {pf : p is a polynomial} is dense in Dα.

This is equivalent to the fact that there is a sequence of polynomial pn

such that ||1− pnf ||α → 0.
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if f ∈ O(D̄) and f 6= 0 on D̄, then f is cyclic in Dα for any α –
Taylor polynomials pn := Tn(1/f ) satisfy pnf → 1 in Dα;

if α > 1, then f ∈ Dα is cyclic iff it does not vanish on D̄;

f (z) = 1− z is cyclic in D1; note that pn = Tn(1/f ) =
∑n−1

k=0 zk ,
satisfy ||pnf − 1||α = ||zn||α = (n + 1)α.
Generalized Riesz mean polynomials pn(z) =

∑n
k=0(1− Hk

Hn+1
)zk ,

where Hn = 1 + 1/2 + . . .+ 1/n, satisfy ||pnf − 1||1 → 0.

f is cyclic in H2 iff f is outer;

if f is cyclic in D1, then f is outer and c({f ∗ = 0}) = 0;

(Brown-Shields conjecture): If f is an outer function such that
c({f ∗ = 0}) = 0, then f cyclic in D1.
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Dirichlet spaces in D2.

A holomorphic function f : D2 → C, f (z1, z2) =
∑∞

k,l=0 ak,lz
k
1 z l

2 belongs
to Dα if

||f ||2α :=
∑
k,l

(k + 1)α(l + 1)α|ak,l |2 <∞.

Cyclicity with respect to shift operators S1(f )(z1, z2) = z1f (z1, z2),
S2(f )(z1, z2) = z2f (z1, z2).

Definition

f is cyclic in Dα if and only if span{z1f , z2f } is dense in Dα

Note that f ∈ Dα is cyclic in Dα iff there is a sequence pn ∈ C[z1, z2]
such that

||1− fpn||α → 0.
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There is a connection between Nyman’s dilatation completeness problem
(equivalent to the Riemann hypothesis) and cyclicity on the Hardy space
of the infinite polydisc.

Let ρ(x) = x − [x ], ϕ(x) = ρ(1/x), x ∈ (0, 1). Nyman’s (1950) proved
that the following is equivalent:

All zeroes of the Riemann-ζ function are on the line {Rez = 1/2},
χ(0,1) ∈ spanL2 (ϕ(nx), n ∈ N).

Nikolski showed that the second condition above is related to cyclicity in
H2(D∞2 ).
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Dα are algebras whenever α > 1,

cyclicty of f ∈ H2(D2) = D0 implies that f is an outer function i.e.

log |f (z1, z2)| =

∫
T2

log |f ∗(ζ, η)|P(z1,z2)(ζ, η)|dζ||dη|.

(Rudin) But there are outer functions which are not cyclic in
H2(D2).
If f is cyclic in Dα, then does f not vanish on D2.

(Neuwirth, Ginsberg, Newman) cyclicity of polynomials f ∈ C[z1, z2]
in H2(D2).

Which polynomials are cyclic in Dα?
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f (z1, z2) = 1− z1. Then f is cyclic in Dα iff α ≤ 1,

(Thomas Ransford) f (z ,w) = 2− z − w . Then
{f = 0} ∩ T2 = {(1, 1)}.
f is cyclic in Dα if and only if Dα is not an algebra, i.e. α ≤ 1.

(H. Hedenmalm) If f ∈ O(D2) ∩ C(D̄2) is such that f vanishes only
in (1, 1) and f (1, ·) and f (·, 1) are outer functions, then f is cyclic in
D1.

Let f (z1, z2) = g(z1)h(z2). Then ||f ||α = ||g ||Dα ||h||Dα .
Moreover, f is cyclic in Dα iff g and h are cyclic in Dα(D).
Even more: if f = f (z1, z2) is cyclic in Dα, then slices fz1 = f (z1, ·)
and fz2 = f (·, z2) are cyclic in Dα(D).
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Cyclicity of polynomials in Dirichlet spaces in the bidisc



Cyclicity of polynomials in Dirichlet spaces in the bidisc

f (z1, z2) = 1− z1. Then f is cyclic in Dα iff α ≤ 1,

(Thomas Ransford) f (z ,w) = 2− z − w . Then
{f = 0} ∩ T2 = {(1, 1)}.
f is cyclic in Dα if and only if Dα is not an algebra, i.e. α ≤ 1.

(H. Hedenmalm) If f ∈ O(D2) ∩ C(D̄2) is such that f vanishes only
in (1, 1) and f (1, ·) and f (·, 1) are outer functions, then f is cyclic in
D1.

Let f (z1, z2) = g(z1)h(z2). Then ||f ||α = ||g ||Dα ||h||Dα .
Moreover, f is cyclic in Dα iff g and h are cyclic in Dα(D).
Even more: if f = f (z1, z2) is cyclic in Dα, then slices fz1 = f (z1, ·)
and fz2 = f (·, z2) are cyclic in Dα(D).

 Lukasz Kosiński
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Let f (z ,w) = 1− zw .
{f = 0} ∩ T2 = {(e iθ, e−iθ) : θ ∈ R}.
Then f is cyclic in Dα iff α ≤ 1/2 (so it is not cyclic in D1).

Let pn =
∑

k,l ak,lz
kw l be such that pnf → 1 in Dα. Let

p̃n =
∑

k ak,kzkwk = qn(zw). Then
||pnf − 1||α ≥ ||p̃nf − 1||α = ||(1− z)qn − 1||D2α(D), so 2α ≤ 1.

On the other hand, if (1− z)pn → 1 in Dα(D), then
(1− zw)pn(zw)→ 1 in D2α.

f (z ,w) = (1− z)(1− w) is cyclic if α ≤ 1.
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Theorem

Suppose that f ∈ C[z1, z2] is not a polynomial of one variable, have no
zeroes on D2 and {f = 0} meets T2 along a curve. Then f is not cyclic
in Dα for α > 1/2.

 Lukasz Kosiński
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Definition

Let E ⊂ T2 be a Borel set, µ – a probability measure supported on E .
We say that µ has finite (Riesz) α-energy if

Iα[µ] =

∫
T2

∫
T2

1

|e iθ1 − e iη1 |1−α
1

|e iθ2 − e iη2 |1−α
dµ(η1, η2)dµ(θ1, θ2) <∞.

Moreover,

cα(E ) := 1/ inf{Iα[µ]}, (Riesz) α− capacity

defines (Riesz) α-capacity.

For α = 1 we use kernel log(e/|e iθ1 − e iη1 |) log(e/|e iθ2 − e iη2 |) in the
definitions of energy and capacity.
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Viewing the integral defining the energy as a convolution with a kernel of
positive type it is possible to express α-energy of µ in terms of its Fourier
coefficients:

Iα[µ] = 1 +
∞∑
k=1

|µ̂(k, 0)|2

kα
+
∞∑
l=1

|µ̂(0, l)|2

lα
+

1

2

∑
k∈Z\{0}

∞∑
l=1

|µ̂(k, l)|2

|k|αlα
,

where µ̂(k , l) =
∫
T2 e−i(kθ1+lθ2)dµ(θ1, θ2).
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Generalization of var der Corput’s lemma.

S is a smooth curve in T2 = [0, 2π)× [0, 2π), ϕ : I → T2 is its
parametrization, I = (−1, 1).

The type of ξ = ϕ(x) ∈ ϕ(I ) is the smallest τ such that for all η ∈ R2,
||η|| = 1 there exists k ∈ Z, k ≤ τ , such that

dkϕ(x)

dtk
· η 6= 0.

Note that τ ≥ 2.
Example: ϕ(t) = (t, ψ(t)). The curve is of type 2 at ϕ(0) if for any
|η| = 1 either η1 + ψ′(0)η2 6= 0 or ψ′′(0)η2 6= 0. This means that
ψ′′(0) 6= 0.

A curve is of type 2 is it has everywhere non-vanishing curvature.
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S ⊂ T2 - a curve of finite type. Let σ be a measure on S obtained by
pulling back to Lebesgue measure on the line using parametrization of D.
Let dµ(x) = ψ(x)dσ(x), x ∈ S ⊂ T2, where ψ ∈ C∞0 (S), ψ ≥ 0.

Lemma (Decay of Fourier coefficients of measures on varieties)

If S of finite type τ ∈ N and µ is as above, then there is C > 0 such that

|µ̂(k, l)| ≤ C (k2 + l2)−1/(2τ),

k, l ∈ Z.
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Lemma

Assume that f ∈ Dα is such that {f ∗ = 0}∩T2 contains a locally smooth
curve S of type τ . Then f is not cyclic in Dα for any α > 1− 1/τ .

It suffices to show that cα(S) > 0. Indeed, if cα(S) > 0, then
cα({f ∗ = 0}) ∩ T2) > 0 and there is a probability measure µ on S such
that Iα[µ] <∞. Cauchy integral:

C [µ](z1, z2) =

∫
T2

(1− e iθ1 z1)−1(1− e iθ2 z2)−1dµ(θ1, θ2) =∫
T2

∑
k

e ikθ1 zk
1

∑
l

e ilθ2 z l
2dµ(θ1, θ2) =∑

k,l

µ̂(−k ,−l)zk
1 z l

2 =
∑

¯̂µ(k, l)zk
1 z l

2. (1)

||C [µ]||−α =
∑
k,l

|µ̂(k, l)|2

(k + 1)α(l + 1)α
<∞

as Iα[µ] <∞.
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Note that C [µ] 6= 0 (µ 6= 0), so C [µ] is non-trivial element of D−α.

D−α may be identified with dual of Dα via the pairing
〈f , g〉 =

∑
k,l ak,lbk,l ∼

∫
f ∗(e iθ1 , e iθ2 )g∗(e−iθ1 , e−iθ2 )dθ1dθ2,

f =
∑

ak,lz
kw l , g =

∑
bk,lz

kw l .
Since µ is supported on {f ∗ = 0} we get that 〈pf ,C [µ]〉 = 0 for any
polynomial p. In particular, f is non-cyclic.

We have to show that cα(S) > 0.
Let dµ = ψ(x)dσ(x).

Iα[µ] = 1 +
∑∞

k=1
|µ̂(k,0)|2

kα +
∑∞

l=1
|µ̂(0,l)|2

lα + 1
2

∑
k∈Z\{0}

∑∞
l=1
|µ̂(k,l)|2
|k|αlα

and |µ̂(k , l)| ≤ C (k2 + l2)−1/(2τ), k, l ∈ Z.

∑
k=1

∑∞
l=1
|µ̂(k,l)|2
|k|αlα ≤ 2

∑ |µ̂(k,k)|2
(k+1)α(k+1)α +

∑∞
k=2

∑k−1
l=1

|µ̂(k,l)|2
(k+1)α(l+1)α +∑∞

l=2

∑l−1
k=1

|µ̂(k,l)|2
(k+1)α(l+1)α ≤ C

∑∞
k=1( 1

kα+1/τ + 1
k2α−1+2/τ ).
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Assume that ϕ(t) = (t, ψ(t)) parametrizes a piece of the zero set of f on
T2. Then ϕ̃(t) = (γ(t), ψ(t)), where γ(t) = arg ma(e it), parametrizes a
piece of the zero set of f (ma(z1), z2).
ϕ̃ generically has type 2 at t = 0.

Actually, note that γ′(0) > 0 and γ′′(0) 6= 0 as long as Im(a) 6= 0.
Thus if ψ′′(0) 6= 0, then ϕ has type 2. If ψ′′(0) = 0, then equations
η1γ
′(0) + η2η

′(0) = 0 and η2γ
′′(0) = 0 cannot hold simultaneously, so ϕ̃

is of type 2 and then f (ma(z),w) is cyclic. Thus f is cyclic.
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Theorem

Let f ∈ C[z1, z2] have no zeros in D2 and finitely many zeroes on T2.
Then f is cyclic in Dα iff Dα is not an algebra i.e. α ≤ 1.

f (z ,w) = 2− z1 − z2. Note that {f = 0} ∩ T2 = {(1, 1)}. Then
|(z1 − 1)(z2 − 1)| ≤ 2|2− z1 − z2|, (z1, z2) ∈ D2. Thus for k big enough

Q(z1, z2) = (z1−1)k (z2−1)k

2−z1−z2
is two times continuously differtiable on T2.

Thus Fourier coefficients of Q satisfy∑
k,l

|Q̂(k, l)|2(k + 1)2(l + 1)2 <∞.

This puts Q ∈ D2.
(z1 − 1)k(z2 − 1)k = Q(z1, z2)(2− z1 − z2). But (z1 − 1)k(z2 − 1)k is
cyclic in D1, so there are pn ∈ C[z1, z2] such that fQpn → 1 in D1. Since
Q ∈ D1, there are qn such that qn → Q in D1. Thus ||fqnpn − 1||1 → 0.
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 Lojasiewicz’s inequality

Let f be a nonzero real analytic function on an open set U ⊂ Rn.
Assume the zero set Z(f ) = {x ∈ U : f (x) = 0} of f is nonempty. Let E
be a compact subset of U. Then there are constants C > 0 and q ∈ N,
depending on E , such that

|f (x)| ≥ C · dist(x ,Z(f ))q, x ∈ E .

f ∈ C[z1, z2] has no zeroes in D2 and finitely many zeroes on T2.
Let r(x1, x2) = |f (e ix1 , e ix2 )|2. Set E = [0, 2π]2. By  Lojasiewicz’s
inequality there is C > 0 and q so that

r(x) ≥ C dist(x ,Z(r))q

for x ∈ E .
By assumption on f , Z(r)∩ E is finite and thus there is a constant c > 0
so that for x ∈ E

dist(x ,Z(r))2 ≥ c
∏

y∈Z(r)∩E

|x − y |2.
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But |x − y |2 = |x1 − y1|2 + |x2 − y2|2 ≥ |e ix1 − e iy1 |2 + |e ix2 − e iy2 |2 ≥
2|(e ix1 − e iy1 )(e ix2 − e iy2 )|.

Replacing z = (z1, z2) = (e ix1 , e ix2 ) we see∏
ζ∈Z(f )∩T2 |(z1 − ζ1)(z2 − ζ2)|q/2

|f (z)|2

is bounded on T2 \ Z(f ) where Z(f ) denotes the zero set of f . If we
increase the power in the numerator (say to 4q) we get a function which
is continuous on T2. Thus, for Q0(z) =

∏
ζ∈Z(f )∩T2 (z1 − ζ1)q(z2 − ζ2)q

we have that Q0/f is bounded and continuous on T2. For a large enough
power N, QN

0 /f is 2-times differentiable on T2. Clearly
QN

0 (z1, z2) = g(z1)h(z2) for some one variable polynomials g , h which
only vanish on the circle.
Thus there are

Q(z1, z2) =
g(z1)h(z2)

f (z1, z2)

is 2-times continuously differentiable.
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Theorem

Let 0 < α ≤ 1/2. Then any polynomial that does not vanish in D2 is
cyclic in Dα.
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What may be assumed about polynomial f non-vanishing on D2 (Agler
and McCarthy, Knese): assume that f has bidegree (n,m); put
f̃ (z1, z2) = zn

1 zm
2 f (1/z̄1, 1/z̄2).

f does not divide f̃ . Then f has finitely many zeros on T2 (zeros of
f are common zeros of f̃ and f ) - by Bezout’s theorem f and f̃ have
infinitely many zeroes iff they have a common factor;

f divides f̃ . Then f = ωf̃ for some ω ∈ T. In particular, |f | = |f̃ | on
T2. Thus, {f = 0} ⊂ (D× (C \ D)) ∪ T2 ∪ ((C \ D)× D).

Additionally, f posses the following determinantal representation:

f (z) = c det(In+m − U

(
z1In 0

0 z2Im

)
),

where c is a constant and U is unitary.
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Equivalent norm on Dα.
Put

|f |2α =

∫
D
|∂z1 f (z1, 0)|2 (1− |z1|2)1−αdA(z1)

+

∫
D
|∂z1 f (0, z2)|2 (1− |z2|2)1−αdA(z2)

+

∫
D2

|∂z1∂z2 f (z1, z2)|2 (1− |z1|2)1−α(1− |z2|2)1−αdA(z1)dA(z2).

Note that the above formula has sense for a function f holomorphic on
G × D, where G is a domain in D, A(G ) = A(D) and 0 ∈ G .
If g ∈ O(D2), then |g(0)|+ |g |α is a norm equivalent to Dirichlet norm
in Dα.
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Let f ∈ C[z1, z2]. We may assume that f is irreducible.
We know that g : (z1, z2) 7→ 1− z1z2 is cyclic in Dα iff α ≤ 1/2. This
means that there exists a sequence of polynomials (pn)n≥1 such that
|png − 1|α = |png |α → 0. Factorize a general two-variable polynomial f
by fixing z1, thus obtaining

f (z1, z2) = H(z1) · (1− h1(z1)z2) · · · (1− hN(z1)z2),

with H non-vanishing in D (so we may forget about H) and z1 ∈ C \ A,
where points of A are isolated. Losing no generality we may assume that
0 6∈ A.
So if we choose a simply connected set D such that D̄ = D̄ and
D ⊂ D \ A, then hj ∈ O(D) and

|1− h1(z1)z2|α

has sense.
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Any hj ∈ O(D) is of finite multiplicity (depending on the degree of
f );

if ϕ ∈ O(D,G ) is of multiplicity less then K then∫
D

h ◦ φ|φ′|2dL2 ≤ K
∫
G

hdL2 for h ≥ 0;

(1− |z1|) ≤ C (1− |h(z1)|), z1 ∈ D.

Let pn be a polynomial such that qn(z) := (1− z)pn(z)→ 1. Then
|(1− h(z1)z2)pn(h(z1)z2)|α ≤ C ||(1− z1z2)pn(z1z2)||α;

We start by estimating the seminorm |qν1 (hjz2)qν(hiz2)|α, restricted
to D × D. A computation shows that

∂z1∂z2 (qν1 (hj(z1)z2)qν(hi (z1)z2))

= h′j(z1)qν(hi (z1)z2)(q′′ν1
(hj(z1)z2)hj(z1)z2 + q′ν1

(hj(z1)z2)) (2)

+ h′j(z1)q′ν1
(hj(z1)z2)q′ν(hi (z1)z2)hi (z1)z2 (3)

+ q′ν1
(hj(z1)z2)hj(z1)q′ν(hi (z1)z2)h′i (z1)z2 (4)

+ qν1 (hj(z1)z2)(q′′ν (hi (z1)z2)hi (z1)z2 + q′ν(hi (z1)z2))h′i (z1). (5)
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if ϕ ∈ O(D,G ) is of multiplicity less then K then∫
D

h ◦ φ|φ′|2dL2 ≤ K
∫
G

hdL2 for h ≥ 0;

(1− |z1|) ≤ C (1− |h(z1)|), z1 ∈ D.

Let pn be a polynomial such that qn(z) := (1− z)pn(z)→ 1. Then
|(1− h(z1)z2)pn(h(z1)z2)|α ≤ C ||(1− z1z2)pn(z1z2)||α;

We start by estimating the seminorm |qν1 (hjz2)qν(hiz2)|α, restricted
to D × D. A computation shows that

∂z1∂z2 (qν1 (hj(z1)z2)qν(hi (z1)z2))

= h′j(z1)qν(hi (z1)z2)(q′′ν1
(hj(z1)z2)hj(z1)z2 + q′ν1

(hj(z1)z2)) (2)

+ h′j(z1)q′ν1
(hj(z1)z2)q′ν(hi (z1)z2)hi (z1)z2 (3)

+ q′ν1
(hj(z1)z2)hj(z1)q′ν(hi (z1)z2)h′i (z1)z2 (4)

+ qν1 (hj(z1)z2)(q′′ν (hi (z1)z2)hi (z1)z2 + q′ν(hi (z1)z2))h′i (z1). (5)
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Suppose P(z1, z2) = zn
2 + A1(z1)zn−1

2 + . . .+ An(z1) is holomorphic
in a domain G × C ⊂ C2. If h ∈ O(G ′) for a domain G ′ ⊂⊂ G and
P(z1, h(z1)) = 1, then

|h′(z1)| ≤ O(
1

|z1 − w |1− 1
n

)

as z1 → w ∈ ∂G ′.

Let a < 1 and 0 ≤ β ≤ 1. Then there is a constant C depending
only on a and β such that for any g ∈ Hol(D),

∫
D

∣∣∣∣ g(z)

(z − 1)a

∣∣∣∣2 (1− |z |2)1−βdA(z)

≤ C

(
|g(0)|2 +

∫
D
|g ′(z)|2(1− |z |2)1−βdA(z)

)
. (6)
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Applying the procedure N-times we find that
|1− (1− hi1 (z)w) . . . (1− hiN (z)w)pν1 (hi1 (z)w) . . . pνN (hiN (z)w)|α
may be arbitrary small for any {i1, . . . , iN}.
For ν1, . . . , νN define a function P = Pν1...νN as

Pν1...νN (z1, z2) :=
1

N!

∑
σ∈ΣN

pν1 (hσ(1)(z1)z2) . . . pνN (hσ(N)(z1)z2),

where ΣN is the group of all permutations of the set {1, . . . ,N}.
Then (1− (1− h1(z)w) . . . (1− hN(z)w)P(z ,w)|α may be arbirarily
small. This shows that f is cyclic.

Finally, we observe that P extends holomorphically to a
neighborhood of D2, and hence it can be approximated in multiplier
norm by polynomials.
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Cyclicity of polynomials in Dirichlet spaces in the bidisc



Cyclicity of polynomials in Dirichlet spaces in the bidisc

Theorem

Let f be an irreducible polynomial with no zeros in D2.

1 If α ≤ 1/2, then f is cyclic in Dα.

2 If 1/2 < α ≤ 1, then f is cyclic in Dα iff {f = 0} ∩ T2 is finite or
empty or f does depend only on one variable.

3 If α > 1 then f is cyclic in Dα iff {f = 0} ∩ T2 is empty.

The assumption about the irreducibility is harmless - any polynomial is a
multiplier in Dα - for any f ∈ Dα and p ∈ C[z1, z2]: pf ∈ Dα. Thus
||pf ||α ≤ ||p||M(Dα)||f ||α for any f ∈ Dα.
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