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1. Statement of Problem 1.1. Notations

Notations

Rd denotes the d-dimensional Euclidean space, d ≥ 2.
The unit open ball in Rd is given by Bd := {x : |x | < 1}.
The unit sphere in Rd is Sd−1 := {x : |x | = 1}.
Distance on the sphere is the geodesic distance, or the distance of x
and y on the largest circle on Sd−1 that passes through these points
on the sphere, ρ(x , y) := arccos(x · y).

By ∂k = ∂
∂ek

we denote differential operator in direction ek . Then

∂β := ∂β11 . . . ∂βdd is a differential operator of order |β|,
∇ := (∂1, . . . , ∂d) and ∆ := ∂21 + · · ·+ ∂2d stays for the Laplacian.
By ∆0 we denote the Laplace-Beltrami operator on Sd−1.
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1. Statement of Problem 1.1. Notations

Functional spaces

H(Bd) := {U : Bd → R : ∆U = 0} – the set of harmonic functions
in Bd .

Hardy spcees Hp, 0 < p <∞:

Hp = Hp(Bd) := {U ∈ H(Bd) : ‖U‖Hp := sup
0<r<1

‖U(r ·)‖p <∞},

‖U(r ·)‖p :=

(
ω−1d

∫
Sd−1

|U(rη)|pdσ(η)

)1/p

.

Harmonic Besov spaces Bsq
p = Bsq

p (Bd)

Harmonic Triebel-Lizorkin spaces F sq
p = F sq

p (Bd)
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1. Statement of Problem 1.2. Main theorem

Main theorem

Let d ≥ 2, 0 < p <∞, s > 0. There exists c = c(d , p, s) such that for
every U ∈ Bsτ

τ , 1/τ = s/(d − 1) + 1/p, and every n ∈ N there exists
ck ∈ R, ak ∈ Rd , |ak | > 1, k = 1, 2, . . . , n, such that

‖U − g‖Hp ≤ cn−s/(d−1)‖U‖Bsτ
τ
,

where

g(x) =
n∑

k=1

ck |ak − x |−d+2, d ≥ 3,

g(x) =
n∑

k=1

ck ln 1/|ak − x |, d = 2.

The theorem remains true if Bsτ
τ is replaced by F sτ

τ .
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1. Statement of Problem 1.3. Scheme of proof

Scheme of proof

The proof consists of the following steps:

1 Equivalence between Besov spaces Bsq
p (Bd) of harmonic functions on

the unit ball Bd and Besov spaces Bsqp (Sd−1) of distributions on the
unit spere Sd−1

2 Frame theory in quasi-Banach spaces

3 Construction of new frames by “small perturbation” of “nice” existing
frames in quasi-Banach spaces

4 Construction of combinations of a fixed number of Newtonian
potentials which are well localized on Sd−1.

5 Frame elements consisting of a fixed number of Newtonian potentials;

6 Construction of nonlinear n-term approximation of harmonic functions
by Newtonian potentials
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2. Function spaces on the ball and on the sphere 2.1. Besov and Triebel-Lizorkin spaces on the unit ball

Spherical harmonics

The restriction to Sd−1 of a harmonic homogenious polynomial in Rd

of degree k is called a spherical harmonic of order k .

Hk = Hd
k denotes the space of all spherical harmonics of order k on

Sd−1.

If f ∈ Hk and U(rξ) = rk f (ξ) for r ∈ [0,∞) and ξ ∈ Sd−1, then
∆U = 0.

The dimension of Hk is N(k, d) = 2k+d−2
k

(k+d−3
k−1

)
∼ kd−1.

Let {Ykj : j = 1, . . . ,N(k , d)} be any real valued orthonormal basis
for Hk . The kernel Pk(x · y) of the orthogonal projector onto Hk has
the representation

Pk(x · y) =

N(k,d)∑
j=1

Ykj(x)Ykj(y), x , y ∈ Sd−1.
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2. Function spaces on the ball and on the sphere 2.1. Besov and Triebel-Lizorkin spaces on the unit ball

Coefficients of harmonic functions

The coefficients ckj(U) of U ∈ H(Bd) are defined by

ckj(U) :=
1

ρk

∫
Sd−1

U(ρη)Ykj(η)dσ(η)

for some 0 < ρ < 1.

ckj(U) are independent of the choice of ρ ∈ (0, 1).

U ∈ H(Bd) has the representation

U(rξ) =
∞∑
k=0

rk
N(k,d)∑
j=1

ckj(U)Ykj(ξ), 0 ≤ r < 1, ξ ∈ Sd−1.

We shall be interested in harmonic functions U ∈ H(Bd) such that

|ckj(U)| ≤ c(k + 1)µ, j = 1, . . . ,N(k , d), k = 0, 1, . . . , (1)

for some constants µ ∈ R and c > 0 depending on U.
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2. Function spaces on the ball and on the sphere 2.1. Besov and Triebel-Lizorkin spaces on the unit ball

For any U ∈ H(Bd), obeying (1), and β ∈ R we define

JβU(rξ) =
∞∑
k=0

rk(k + 1)β
N(k,d)∑
j=1

ckj(U)Ykj(ξ), 0 ≤ r < 1, ξ ∈ Sd−1.

The above series converges absolutely and uniformly on every compact
subset of Bd and hence JβU is a well defined harmonic function on Bd .
For β > 0, Jβ is called the Weyl derivative of f of order β.

Definition

Let s ∈ R, 0 < p, q ≤ ∞, and β := s + 1. The harmonic Besov space Bsq
p

is defined as the set of all U ∈ H(Bd) such that

‖U‖Bsq
p

:=
(∫ 1

0
(1− r)(β−s)q−1‖JβU(r ·)‖q

Lp(Sd−1)
dr
)1/q

<∞ if q 6=∞

and
‖U‖Bs∞

p
:= sup

0<r<1
(1− r)β−s‖JβU(r ·)‖Lp(Sd−1) <∞.
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2. Function spaces on the ball and on the sphere 2.1. Besov and Triebel-Lizorkin spaces on the unit ball

Definition

Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞, and β := s + 1. The harmonic
Triebel-Lizorkin space F sq

p is defined as the set of all U ∈ H(Bd) such that

‖U‖F sq
p

:=
∥∥∥(∫ 1

0
(1−r)(β−s)q−1|JβU(r ·)|qdr

)1/q∥∥∥
Lp(Sd−1)

<∞ if q 6=∞

and
‖U‖F s∞

p
:=
∥∥∥ sup
0<r<1

(1− r)β−s |JβU(r ·)|
∥∥∥
Lp(Sd−1)

<∞.

The quasi-norms for Bsq
p or F sq

p are independent of the choice of
{Ykj : j = 1, . . . ,N(k , d)} – the real valued orthonormal basis for Hk .

Choosing an arbitrary β > s in the above quantities will give
equivalent quasi-norms for Bsq

p or F sq
p .

Bsq
p or F sq

p are quasi-Banach spaces (Banach spaces if p, q ≥ 1)

The real interpolation methods preserve the system of spaces Bsq
p or

F sq
p for fixed p.
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2. Function spaces on the ball and on the sphere 2.2. Besov and Triebel-Lizorkin spaces on the unit sphere

Zonal functions on Sd−1: f (x) = F (ξ · x) for some ξ ∈ Sd−1 and
F : R→ R.
Similar functions in Rd : radial or ridge functions.

A strange convolution on Sd−1:

(F ∗ g)(x) =

∫
Sd−1

F (x · y)g(y)dσ(y) ∀x ∈ Sd−1

For d ≥ 3 a convolution f ∗ g on Sd−1 with the usual properties is
possible only if one of f and g is zonal. Reason: the group of
rotations on Sd−1, i.e. in Rd , is not comutative.
The class of test functions: S := C∞(Sd−1) consisting of all
functions φ on Sd−1 such that

‖Pk ∗ φ‖2 ≤ c(φ,m)(1 + k)−m ∀k ,m ≥ 0.

The topology in S is defined by the sequence of norms

Qm(φ) :=
∑
k≥0

(k + 1)m‖Pk ∗φ‖2 =
∑
k≥0

(k + 1)m
( N(k,d)∑

j=1

|〈φ,Ykj〉|2
)1/2

.
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2. Function spaces on the ball and on the sphere 2.2. Besov and Triebel-Lizorkin spaces on the unit sphere

Distributions on Sd−1

The space S ′ := S ′(Sd−1) of distributions on Sd−1 is defined as the
space of all continuous linear functionals on S.
The pairing of f ∈ S ′ and φ ∈ S will be denoted by 〈f , φ〉 := f (φ),
which is consistent with the inner product 〈f , g〉 :=

∫
Sd−1 fgdσ on

L2(Sd−1).
More precisely, S ′ consists of all linear functionals f on S for which
there exist constants c > 0 and m ∈ N0 such that

|〈f , φ〉| ≤ cQm(φ) ∀φ ∈ S.

For any f ∈ S ′ we define Pk ∗ f by

Pk ∗ f (x) := 〈f ,Pk(x · •)〉.

Hence Pk ∗ f ∈ Hk and for some c > 0 and m ∈ N0 we have

‖Pk ∗ f ‖2 ≤ c(k + 1)m ∀k ≥ 0,

|〈f ,Ykj〉| ≤ c(k + 1)m ∀k ≥ 0, j = 1, . . . ,N(k , d).
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2. Function spaces on the ball and on the sphere 2.2. Besov and Triebel-Lizorkin spaces on the unit sphere

Theorem

(a) To any U ∈ H(Bd) with coefficients satisfying (1) there corresponds a
distribution f ∈ S ′ (the boundary value function) defined by

f :=
∑
k≥0

N(k,d)∑
j=1

ckj(U)Ykj (convergence in S ′)

with coefficients 〈f ,Ykj〉 = ckj(U).

(b) To any distribution f ∈ S ′ with coefficients ckj(f ) := 〈f ,Ykj〉 there
corresponds a harmonic function U ∈ H(Bd) (the extension of f to Bd)
defined by

U(x) =
∞∑
k=0

N(k,d)∑
j=1

ckj(f )|x |kYkj

( x

|x |

)
, |x | < 1,

with coefficients ckj(U) = ckj(f ) obeying (1), where the series converges
uniformly on every compact subset of Bd .
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2. Function spaces on the ball and on the sphere 2.2. Besov and Triebel-Lizorkin spaces on the unit sphere

Littlewood-Paley decomposition of distributions

Let the cut-off function ϕ ∈ C∞[0,∞) be such that supp ϕ ⊂ [1/2, 2],
ϕ(t) > 0 for t ∈ [3/5, 5/3], and

∞∑
j=1

ϕ
(
2−j t

)
= 1 for t ∈ [1,∞).

Set

Φ0 := P0 and Φj :=
∞∑
k=0

ϕ
( k

2j−1

)
Pk , j = 1, 2, . . . .

Littlewood-Paley decomposition of distributions∑
j≥0

Φj ∗ f = f for all f ∈ S ′ (convergence in S ′).
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2. Function spaces on the ball and on the sphere 2.2. Besov and Triebel-Lizorkin spaces on the unit sphere

Let s ∈ R and 0 < q ≤ ∞.

Besov spaces on Sd−1

The Besov space Bsqp := Bsqp (Sd−1), 0 < p ≤ ∞, is defined as the set of all
distributions f ∈ S ′ such that

‖f ‖Bsqp :=
( ∞∑

j=0

(
2sj‖Φj ∗ f ‖Lp(Sd−1)

)q)1/q
<∞,

where the `q-norm is replaced by the sup-norm if q =∞.

Triebel-Lizorkin spaces on Sd−1

The Triebel-Lizorkin space F sq
p := F sq

p (Sd−1), 0 < p <∞, is defined as
the set of all distributions f ∈ S ′ such that

‖f ‖F sq
p

:=
∥∥∥( ∞∑

j=0

(
2sj |Φj ∗ f (·)|

)q)1/q∥∥∥
Lp(Sd−1)

<∞,

where the `q-norm is replaced by the sup-norm if q =∞.
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2. Function spaces on the ball and on the sphere 2.2. Besov and Triebel-Lizorkin spaces on the unit sphere

All cut-off functions ϕ in the above quantities will give equivalent
quasi-norms for Bsqp or F sq

p .

Bsqp and F sq
p are quasi-Banach spaces (Banach spaces if p, q ≥ 1)

Bsqp and F sq
p are continuously embedded in S ′, i.e. for any s ∈ R and

0 < p, q ≤ ∞ there exist constants c > 0 and m ∈ N0 such that

|〈f , φ〉| ≤ c‖f ‖Bsqp Qm(φ), ∀f ∈ Bsqp ∀φ ∈ S,

and similarly for the Triebel-Lizorkin spaces F sq
p .

Theorem

(a) Let s ∈ R, 0 < p, q ≤ ∞. A harmonic function U ∈ Bsq
p if and only if

its boundary value distribution f = fU belongs to Bsqp , moreover
‖U‖Bsq

p
∼ ‖f ‖Bsqp .

(b) Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞. A harmonic function U ∈ F sq
p if

and only if its boundary value distribution f = fU belongs to F sq
p ,

moreover ‖U‖F sq
p
∼ ‖f ‖F sq

p
.
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0 < p, q ≤ ∞ there exist constants c > 0 and m ∈ N0 such that

|〈f , φ〉| ≤ c‖f ‖Bsqp Qm(φ), ∀f ∈ Bsqp ∀φ ∈ S,

and similarly for the Triebel-Lizorkin spaces F sq
p .

Theorem

(a) Let s ∈ R, 0 < p, q ≤ ∞. A harmonic function U ∈ Bsq
p if and only if

its boundary value distribution f = fU belongs to Bsqp , moreover
‖U‖Bsq

p
∼ ‖f ‖Bsqp .

(b) Let s ∈ R, 0 < p <∞, 0 < q ≤ ∞. A harmonic function U ∈ F sq
p if

and only if its boundary value distribution f = fU belongs to F sq
p ,

moreover ‖U‖F sq
p
∼ ‖f ‖F sq

p
.
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2. Function spaces on the ball and on the sphere 2.2. Besov and Triebel-Lizorkin spaces on the unit sphere

Embeddings for Besov and Triebel-Lizorkin spaces;

Classical spaces on Sd−1:

F02
p ≈ Lp if 1 < p <∞,

F02
p ≈ Hp if 0 < p ≤ 1,

F s2
p ≈W s

p Sobolev spaces for integer s,

F s2
p ≈ Bessel potential spaces;

Bsqp coincide with approximation spaces

Besov and Triebel-Lizorkin spaces on Bd and Sd−1:

Greenwald 1974, 1977, Besov spaces termed “Lipschitz spaces” on
Sd−1, 1 ≤ p, q ≤ ∞;

Oswald 1983, d = 2, “On Besov-Hardy-Sobolev spaces of analytic
functions in the unit disc”
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3. Construction of new frames by “small perturbation” 3.1. Frames in quasi-Banach spaces

Quasi-Banach spaces

Denote by S := C∞(Sd−1) and let S ′ be its dual. Let B = B(Sd−1) ⊂ S ′
be a quasi-Banach space of distributions on Sd−1 with quasi-norm ‖ · ‖B,
which is continuously embedded in S ′. Further, we assume that S is a
dense subset of B.

We also assume that b = b(X ) with quasi-norm ‖ · ‖b is an associated to
B quasi-Banach space of real-valued sequences with domain a countable
index set X . Coupled with a frame Ψ the sequence space b will be utilized
for characterization of the space B.
The triangle inequalities in B and b are (κ∗ ≥ 1)

‖f1 + f2‖B ≤ κ∗(‖f1‖B + ‖f2‖B), ∀f1, f2 ∈ B,

‖h1 + h2‖b ≤ κ∗(‖h1‖b + ‖h2‖b), ∀h1, h2 ∈ b.

Examples: B = Bsqp (Sd−1), b = bsqp (X ); B = F sq
p (Sd−1), b = f sqp (X )
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3. Construction of new frames by “small perturbation” 3.1. Frames in quasi-Banach spaces

Old frame

Ψ := {ψξ : ξ ∈ X} ⊂ S is a tight normalized frame in L2:

‖f ‖L2 = ‖ 〈f , ψξ〉 ‖`2 ∀f ∈ L2.

Hence, for every f ∈ L2 we have the representation

f =
∑
ξ∈X
〈f , ψξ〉ψξ in L2.

We also assume that Ψ is a frame for B in the following sense:

A1. For any f ∈ B

f =
∑
ξ∈X
〈f , ψξ〉ψξ in B;

A2. For any f ∈ B the sequence {〈f , ψξ〉} ∈ b(X ) and there exist
constants A∗,B∗ > 0 such that

A∗‖f ‖B ≤ ‖ 〈f , ψξ〉 ‖b(X ) ≤ B∗‖f ‖B.

We call Ψ the “old frame”. Examples for Ψ: needlet systems.
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3. Construction of new frames by “small perturbation” 3.1. Frames in quasi-Banach spaces

Frames in Hilbert spaces

Our aim is by using the idea of “small perturbation argument” to construct
a new system Θ := {θξ : ξ ∈ X} ⊂ S called a “new frame” with some
prescribed features and which is: (i) a frame for L2 and (ii) a frame for B.

Θ is a frame for L2 if there exist constants A,B > 0 such that

A‖f ‖L2 ≤ ‖ 〈f , θξ〉 ‖`2(X ) ≤ B‖f ‖L2 ∀f ∈ L2.

If A = B – tight frame
If A = B = 1 – tight normalized frame (tight Parseval frame)

basis and frame; every basis is a frame

if a frame is not a basis, then it is redundant (overdetermined);
frame disadvantage: there is no unique representation

frame advantage: frame elements may have additional properties,
which basis elements could not posses.

Frames: Duffin, Schaeffer 1952; Daubechies 1985–1993; Meyer
1985–1990; Mallat 1989–1992.
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3. Construction of new frames by “small perturbation” 3.1. Frames in quasi-Banach spaces

Definition. Θ := {θξ : ξ ∈ X} ⊂ L2 is a frame for the quasi-Banach space
B with associated sequence space b if:

B1. There exist constants A∗1,B
∗
1 > 0 such that

A∗1‖f ‖B ≤ ‖ 〈f , θξ〉 ‖b ≤ B∗1‖f ‖B ∀f ∈ B,

where 〈f , θξ〉 is defined by 〈f , θξ〉 :=
∑

η∈X 〈f , ψη〉 〈ψη, θξ〉.

B2. The frame operator S : B 7→ B defined by Sf =
∑

ξ∈X 〈f , θξ〉 θξ is

bounded and invertible on B; S−1 is also bounded on B and

S−1f =
∑
ξ∈X

〈
f ,S−1θξ

〉
S−1θξ in B.

B3. There exist constants A∗2,B
∗
2 > 0 such that

A∗2‖f ‖B ≤ ‖
〈
f , S−1θξ

〉
‖b ≤ B∗2‖f ‖B ∀ f ∈ B,

where as above
〈
f ,S−1θξ

〉
:=
∑

η∈X 〈f , ψη〉
〈
ψη, S

−1θξ
〉
.

B4. For any f ∈ B we have

f =
∑
ξ∈X

〈
f ,S−1θξ

〉
θξ =

∑
ξ∈X
〈f , θξ〉S−1θξ in B.

Remark. If B = L2, then B2, B3 and B4 follow from B1.
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3. Construction of new frames by “small perturbation” 3.2. Construction of new frames by “small perturbation”

Given the old frame Ψ and a new frame Θ we set

A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη, ψξ〉 ,
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη, ψξ〉 ,
C := (cξ,η)ξ,η∈X , cξ,η := 〈ψη, θξ〉 ,
D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη, ψξ − θξ〉 ,
E := (eξ,η)ξ,η∈X , eξ,η := 〈ψη − θη, ψξ〉 .

Let the operators with matrices A, D, E be bounded on `2(X ) and on b:

‖A‖`2→`2 ≤ C1, ‖D‖`2→`2 ≤ γ, ‖E‖`2→`2 ≤ γ;

‖A‖b→b ≤ C ∗1 , ‖D‖b→b ≤ γ∗, ‖E‖b→b ≤ γ∗.

In view of C = A−D,B = A− E we get

‖B‖`2→`2 ≤ C1 + γ, ‖C‖`2→`2 ≤ C1 + γ;

‖B‖b→b ≤ κ∗(C ∗1 + γ∗), ‖C‖b→b ≤ κ∗(C ∗1 + γ∗),

i.e. the operators with matrices B, C are also bounded on `2(X ) and on b.
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3. Construction of new frames by “small perturbation” 3.2. Construction of new frames by “small perturbation”

Theorem

If
γ < 1

then Θ is a frame for L2.

Theorem

If

γ∗ <
A∗

κ∗B∗(C ∗1 + κ∗C ∗1 + κ∗)

then Θ is a frame for B.

Conclusion. Operators D = {〈ψη, ψξ − θξ〉} and E = {〈ψη − θη, ψξ〉}
must have small norms in L2 and in B.
Hence, the name “small perturbation”.

Problem. How to compute or bounded the operator norm?
Localized functions and frames.
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3. Construction of new frames by “small perturbation” 3.3. Localized functions and frames

Localized functions

Definition. The function f defined on Sd−1 is localized around x0 ∈ Sd−1
with dilation factor N ≥ 1 and decay rate M > 0 if the estimate

|f (x)| ≤ cNd−1(1 + Nρ(x0, x))−M , x ∈ Sd−1,

holds for some number c depending only on d and M.

The multiplier Nd−1 is used as part of the decay function in order to
normalize it in L(Sd−1). Namely, for M > d − 1 we have∫

Sd−1

|f (y)|dσ(y) ≤
∫
Sd−1

Nd−1

(1 + Nρ(x0, y))M
dσ(y) ≤ c0, ∀x0 ∈ Sd−1,

where c0 depends only on d and M.
We shall also require from the localized functions∫

Sd−1

f (y)dσ(y) = 1,

which infers that they may have only moderate osculation.
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The multiplier Nd−1 is used as part of the decay function in order to
normalize it in L(Sd−1). Namely, for M > d − 1 we have∫

Sd−1

|f (y)|dσ(y) ≤
∫
Sd−1

Nd−1

(1 + Nρ(x0, y))M
dσ(y) ≤ c0, ∀x0 ∈ Sd−1,

where c0 depends only on d and M.

We shall also require from the localized functions∫
Sd−1

f (y)dσ(y) = 1,

which infers that they may have only moderate osculation.
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3. Construction of new frames by “small perturbation” 3.3. Localized functions and frames

Needlet kernels

Let ϕ ∈ C∞[0,∞) be supported in [1/2, 2] and

ϕ2(t/2) + ϕ2(t) = 1, t ∈ [1, 2].

The needlet kernel ΨN is defined by

ΨN(u) :=
∞∑
ν=0

ϕ
( ν
N

)
Pν(u) =

2N∑
ν=N/2

ϕ
( ν
N

)
Pν(u),

where Pν is an algebraic polynomial of degree ν, such that Pν(x · y) is the
kernel of the orthogonal projector onto Hd

ν .

Pν(u) =
2ν + d − 2

(d − 2)σ(Sd−1)
C (d/2−1)
ν (u),

where σ(Sd−1) = 2πd/2/Γ(d/2) is the hypersurface area of Sd−1 and C
(λ)
ν

is the Gegenbauer (ultraspherical) polynomial of degree ν normalized with

C
(λ)
ν (1) =

(
ν+2λ−1

ν

)
.
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3. Construction of new frames by “small perturbation” 3.3. Localized functions and frames

Localization of needlet kernels

Given ξ ∈ Sd−1 we extend ΨN(ξ · x) for x ∈ Rd\{0} by

Ψ̃N(ξ; x) = ΨN(ξ · (x/|x |)).

Theorem

For M > 0, K ∈ N0, multiindex β, 0 ≤ |β| ≤ K , ξ ∈ Sd−1 we have∣∣∣∂βΨ̃N(ξ; x)
∣∣∣ ≤ c(d ,K ,M)

N |β|+d−1

(1 + Nρ(ξ, x))M
, x ∈ Sd−1.
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3. Construction of new frames by “small perturbation” 3.3. Localized functions and frames

Localized frames of needlets

For j = 0, 1, 2, . . . let Xj denote a set of O(2j(d−1)) points on Sd−1, which
are nodes of a cubature with positive weights of high degree of exactness.
The index set is X = ∪∞j=0Xj . For every ξ ∈ X set Nξ = 2j .

Using kernels ΨN we define the needlet frame Ψ = {ψξ(x) : ξ ∈ X} ∪ {1}
by

ψ�ξ (x) = ΨNξ
(ξ · x), ψξ(x) = C �ξ ψ

�
ξ (x), x ∈ Sd−1, ξ ∈ X ,

where coefficients C �ξ satisfy

C �ξ ≤ c(d)N
−(d−1)/2
ξ , ξ ∈ X .

ψ�ξ is normalized in L1(Sd−1).

ψξ is normalized in L2(Sd−1).
Needlet frames on Sd−1: Narcowich, Petrushev, Wards 2006
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3. Construction of new frames by “small perturbation” 3.3. Localized functions and frames

Function and sequence Besov spaces

Let s ∈ R and 0 < q ≤ ∞.

Function Besov space Bsq
p (Sd−1), 0 < p ≤ ∞

‖f ‖Bsqp (Sd−1) :=
( ∞∑

j=0

(
2sj‖Φj ∗ f ‖Lp(Sd−1)

)q)1/q
<∞.

Sequence Besov space bsqp (X ), 0 < p ≤ ∞

‖{hξ}‖bsqp (X ) :=
( ∞∑

j=0

2j(s+(d−1)/2−(d−1)/p)q
(∑
ξ∈Xj

|hξ|p
)q/p)1/q

<∞.
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3. Construction of new frames by “small perturbation” 3.4. Sufficient condition for a new frame

Almost diagonal matrix

Definition. The matrix ΩK ,M := {ωξ,η}ξ,η∈X with entries

ωξ,η :=

(
min{Nξ,Nη}
max{Nξ,Nη}

)K+(d−1)/2 1

(1 + min{Nξ,Nη}ρ(ξ, η))M
.

is called almost diagonal.

Theorem

Suppose s ∈ R, 0 < q ≤ ∞, 0 < p <∞. Set J = (d − 1)/min{1, p, q}.
For a fixed δ > 0 assume that K ,M ∈ N, K ≥ max{s,J − s − d + 1}+ δ
and M ≥ J + δ. Then ΩK ,M is a bounded operator on f sqp .

Theorem

Suppose s ∈ R, 0 < q ≤ ∞, 0 < p ≤ ∞. Set J = (d − 1)/min{1, p}. For
a fixed δ > 0 assume that K ,M ∈ N, K ≥ max{s,J − s − d + 1}+ δ and
M ≥ J + δ. Then ΩK ,M is a bounded operator on bsqp .
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3. Construction of new frames by “small perturbation” 3.4. Sufficient condition for a new frame

Sufficient condition for a new frame

Theorem

Under the above conditions if b is one of the spaces f sqp or bsqp and

| 〈ψη, ψξ − θξ〉 | ≤ γ0ωξ,η, ∀ξ, η ∈ X ,

then Θ is a frame for B provided γ0 ≤ γ∗/‖ΩK ,M‖b→b.

Similar theory for Rd : the ϕ-transform of Frazier, Jawerth, 1985, 1990.
Theory for Sd−1: Kyriazis, Petrushev, 2014.

Reformulated sufficient condition

|
〈
ψ�η, ψ

�
ξ − θ�ξ

〉
| ≤ γ0ω�ξ,η, ∀ξ, η ∈ X ,

ω�ξ,η :=

(
min{Nξ,Nη}
max{Nξ,Nη}

)K min{Nξ,Nη}d−1

(1 + min{Nξ,Nη}ρ(ξ, η))M
.
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4. Localized combinations of Newtonian potentials on sphere

Poisson kernel

ε > 0, a = 1 + ε, η ∈ Sd−1.
Newtonian potential with pole at aη:

F (aη, x) = |aη − x |−d+2

Localization of F on Sd−1:

|ε−1F (aη, x)| ≤ c(d)
ε−d+1

(1 + ε−1ρ(η, x))d−2
∀x ∈ Sd−1.

Poisson kernel with pole at aη:

ad−1σ(Sd−1)P(aη, x) =
a2 − |x |2

|aη − x |d
=

2a

d − 2
(η·∇)

1

|aη − x |d−2
− 1

|aη − x |d−2

Localization of P on Sd−1:

|P(aη, x)| ≤ c(d)
ε−d+1

(1 + ε−1ρ(η, x))d
∀x ∈ Sd−1.
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4. Localized combinations of Newtonian potentials on sphere

Theorem

Let d ≥ 3, ε > 0, a = 1 + ε, δ = (a2 − 1)/a2∼ ε, η ∈ Sd−1,
K ,m ∈ N0.There exist coefficients q` = q`(d ,m, δ) =

∑m−`
k=0 α`,k(d ,m)δk

such that the harmonic function

Fm(aη, x) := −q−1|aη − x |2−d +
m∑
`=0

q`δ
`a`+1

d − 2
(η · ∇)`+1|aη − x |2−d

satisfies
∫
Sd−1

Fm(aη, x)dσ(x) = 1,∣∣∣∂βF̃m(aη; x)
∣∣∣ ≤ c(d ,K ,m)

ε1−d−|β|

(1 + ε−1ρ(ξ, x))d+2m
, ∀x ∈ Sd−1,

for every multiindex β, 0 ≤ |β| ≤ K , where

F̃m(aη; y) := Fm(aη, (y/|y |)), y ∈ Rd\{0}.

Fm(aη, x) := −q−1 +
m∑
`=0

q`δ
`a`+1(η · ∇)`+1 ln 1/|aη − x |, for d = 2.
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4. Localized combinations of Newtonian potentials on sphere

d = 2, ε > 0, a = eε, η ∈ Sd−1, m ∈ N0.

Fm(aη, x)

= −1 +
m∑
`=0

(
m∑

k=`

β(m, k)α(k , `)εk

)
2a`+1

`!
(η · ∇)`+1 ln 1/|aη − x |,

β(m, k) :=
2k(2m − k)!m!

k!(m − k)!(2m)!
, α(k , `) :=

k∑
ν=`

(−1)ν−`
(
ν

`

)
S(k , ν)ν!,

where S(k , ν) are Stirling numbers of the second kind.

F1(aη, x)

= −1 + (2− 2ε)a(η · ∇) ln 1/|aη − x |+ 2εa2(η · ∇)2 ln 1/|aη − x |

F2(aη, x) = −1 + (2− 2ε+
2

3
ε2)a(η · ∇) ln 1/|aη − x |

+ (2ε− 2ε2)a2(η · ∇)2 ln 1/|aη − x |+ 2

3
ε2a3(η · ∇)3 ln 1/|aη − x |
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5. Frame of Newtonian potentials

Frame of Newtonian potentials

We start the construction of frame elements {θξ : ξ ∈ X} of the form

θξ =

n0∑
ν=1

cν
|x − yν |d−2

if d > 2; θξ =

n0∑
ν=1

cν ln 1/|x − yν | if d = 2.

Here yν ∈ Rd with |yν | > 1, cν ∈ R, and {yν}n0ν=1 and {cν}n0ν=1 vary with
ξ ∈ X , but n0 is fixed.
Recall that {ψξ : ξ ∈ X} with X = ∪j≥0Xj is the existing old frame.

Sufficient condition (repeated)

If for a sufficiently small γ0 we have

|
〈
ψ�η, ψ

�
ξ − θ�ξ

〉
| ≤ γ0ω�ξ,η, ∀ξ, η ∈ X ,

ω�ξ,η :=

(
min{Nξ,Nη}
max{Nξ,Nη}

)K min{Nξ,Nη}d−1

(1 + min{Nξ,Nη}ρ(ξ, η))M
,

then Θ is a frame for F sq
p or Bsq

p .
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5. Frame of Newtonian potentials

Technical theorem

Let K ∈ N, M > K + d − 1, N1,N2 ∈ R, N2 ≥ N1 ≥ 1, κ1, κ2 > 0.
Assume f ∈ L∞(Sd−1), g ∈WK

∞(Sd−1), and g̃(x) := g(x/|x |) for
x ∈ Rd\{0}. Furthermore, assume that for some x1, x2 ∈ Sd−1

∣∣∣∂β g̃(x)
∣∣∣ ≤ κ1N

|β|+d−1
1

(1 + N1ρ(x1, x))M
, ∀x ∈ Sd−1, 0 ≤ |β| ≤ K ,

|f (x)| ≤
κ2N

d−1
2

(1 + N2ρ(x2, x))M
, ∀x ∈ Sd−1, and

∣∣∣∣∫
Sd−1

xβf (x) dσ(x)

∣∣∣∣ ≤ κ2N−K2 , 0 ≤ |β| ≤ K − 1.

Then

| 〈g , f 〉 | =

∣∣∣∣∫
Sd−1

g(x)f (x) dσ(x)

∣∣∣∣ ≤ c
κ1κ2(N1/N2)KNd−1

1

(1 + N1ρ(x1, x2))M
,

where c depends only on d , K , and M.
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5. Frame of Newtonian potentials

Construction scheme

It will be convenient to approximate the L1 normalized frame elements
ψ�ξ (x) := ΨNξ

(ξ · x), by L1 normalized new frame elements {θ�ξ}. The
constructions of the new frame elements {θ�ξ} will be carried out in four
steps:
(a) Approximation of ΨNξ

(ξ · x), ξ ∈ X , by convolving with the potential
Fε for appropriate values of ε.
(b) Discretization of the convolutions by using simple cubature weights.
(c) Truncation of the resulting sums.
(d) Approximation of the truncated sums by discrete versions of the
operators involved.
These approximation steps will be governed by four small parameters: γ1,
γ2, γ3, γ4.
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5. Frame of Newtonian potentials

For N = 2j and K ∈ 2N, we set

ΨN(u) :=
∞∑
k=0

ϕ

(
k

N

)
Pk(u) =

2N∑
k=N/2

ϕ

(
k

N

)
Pk(u),

and

ΦN(u) := (−1)K/2
2N∑

k=N/2

ϕ
( k
N

)
[k(k + d − 1)]−K/2Pk(u),

where Pk(x · y) is the kernel of the orthogonal projector onto Hd
k . Hence

−∆0Pk(ξ · x) = k(k + d − 1)Pk(ξ · x)

implying

∆
K/2
0 ΦN(ξ · x) = ΨN(ξ · x), ξ, x ∈ Sd−1.

Here ∆0 is the Laplace-Beltrami operator on Sd−1.
For any ξ ∈ Sd−1 and M > 0 we have∣∣∣∂βΦ̃N(ξ; x)

∣∣∣ ≤ c
N−K+|β|+d−1

(1 + Nρ(x0, x))M
, x ∈ Sd−1, 0 ≤ |β| ≤ K ,
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5. Frame of Newtonian potentials

For 0 < γ1 ≤ 1, set ε := γ1/Nξ and define

g1(ξ; x) :=

∫
Sd−1

ΦNξ
(ξ · y)Fε(y · x) dσ(y), x ∈ Sd−1.

For 0 < γ2 ≤ γ1, let Zj ⊂ Sd−1 be a fixed maximal γ22−j -net. Applying
the cubature formula with nodes ζ ∈ Zj and weights wζ we obtain

g2(ξ; x) :=
∑
ζ∈Zj

wζΦNξ
(ξ · ζ)Fε(ζ · x), x ∈ Sd−1.

For 0 < γ3 ≤ 1, truncating the above sum to the nodes within distance
δj := (γ3Nξ)

−1 from ξ we get

g3(ξ; x) :=
∑
ζ∈Zj

ρ(ζ,ξ)≤δj

wζΦNξ
(ξ · ζ)Fε(ζ · x), x ∈ Sd−1.

The functions g1(ξ; x), g2(ξ; x) and g3(ξ; x) should be viewed as
consecutive approximations of ΦNξ

(ξ · x).
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5. Frame of Newtonian potentials

We obtain consecutive approximations of ΨNξ
(ξ · x) by applying ∆

K/2
0 in

the definitions of g1, g2, g3. We set

h1(ξ; x) := ∆
K/2
0 g1(ξ; x) =

∫
Sd−1

ΦNξ
(ξ · y)∆

K/2
0 Fε(y · x) dσ(y)

=

∫
Sd−1

ΨNξ
(ξ · y)Fε(y · x) dσ(y) =

∫
Sd−1

ΨNξ
(x · y)Fε(y · ξ) dσ(y),

h2(ξ; x) := ∆
K/2
0 g2(ξ; x) =

∑
ζ∈Zj

wζΦNξ
(ξ · ζ)∆

K/2
0 Fε(ζ · x),

h3(ξ; x) := ∆
K/2
0 g3(ξ; x) =

∑
ζ∈Zj

ρ(ζ,ξ)≤δj

wζΦNξ
(ξ · ζ)∆

K/2
0 Fε(ζ · x).

We used that the operator ∆0 is self-adjoined and the commutativity of
the scalar product of zonal functions.
Observe that h1 is a zonal function, while, in general, h2 and h3 are not
zonal functions. Furthermore, h3(ξ; x) is a linear combination of finitely

many (independent of ξ) terms of type ∆
K/2
0 (ζ · ∇)` |(1 + ε)ζ − x |−d+2.
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5. Frame of Newtonian potentials

Approximation of the Laplace-Beltrami operator

The rotation Q1,2,t ∈ SO(d) is given by

Q1,2,tζ = Q1,2,t(ζ1, ζ2, . . . , ζd)

:= (ζ1 cos t + ζ2 sin t,−ζ1 sin t + ζ2 cos t, ζ3, . . . , ζd), ζ ∈ Sd−1,

and Qi ,`,tζ is defined similarly for every 1 ≤ i < ` ≤ d . The translation
operator corresponding to the rotation Qi ,`,t , 1 ≤ i < ` ≤ d , is given by

T (Qi ,`,t)f (ζ) := f (Q−1i ,`,tζ) = f (Qi ,`,−tζ).

Define the operator Lt by

Lt f (ζ) := t−2
∑

1≤i<`≤d
(T (Qi ,`,t)f (ζ) + T (Qi ,`,−t)f (ζ)− 2f (ζ)).

Then Lt approximates ∆0f (ζ) for small t.
The powers of Lt are defined iteratively by Lk

t := Lt(L
k−1
t ).
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5. Frame of Newtonian potentials

Definition of a new frame element

The finite difference operator Dm
t (ζ) := t−m

∑m
k=0(−1)m−k

(m
k

)
T (ζ, kt) is

defined by the translation operator (in Rd) in direction ζ ∈ Sd−1 with step
t given by T (ζ, t)f (x) = f (x + tζ) for x ∈ Rd .

Definition of a new frame element

θ�ξ (x) := κ
∑
ζ∈Zj

ρ(ζ,ξ)≤δj

wζΦNξ
(ξ · ζ)L

K/2
t

m∑
`=0

q`D
`
t(ζ)|(1 + ε)ζ − x |−d+2.

Theorem

Let K ∈ N, M > K + d − 1, d ≥ 2. Then for any γ0 > 0 there exist
constants γ1, γ2, γ3, γ4 > 0 depending only on d ,K ,M, γ0, such that for
every ξ ∈ X there exists t > 0 depending only on d ,K ,M, γ0,Nξ such
that the element θ�ξ obeys

|〈ψ�η, ψ�ξ − θ�ξ 〉| ≤ γ0ω�ξ,η, ∀η ∈ X .
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6. Nonlinear n-term approximation by Newtonian potentials

Construction

Every element θξ of the new frame Θ is a linear combination of n0
Newtonian potentials.
Denote by S the frame operator, Sf =

∑
ξ∈X 〈f , θξ〉 θξ. Then

f =
∑
ξ∈X

〈
f , S−1θξ

〉
θξ.

Let U ∈ Bsτ
τ (Bd) have the boundary distribution fU ∈ Bsττ (Sd−1).

The function norm of fU in Bsττ (Sd−1) is equivalent to the norm of
{
〈
fU ,S

−1θξ
〉
} in the sequence Besov space bsττ (X ) given by

‖{
〈
fU , S

−1θξ
〉
}‖bsττ (X ) =( ∞∑

j=0

∑
ξ∈Xj

(
N

(s+(d−1)/2−(d−1)/τ)
ξ |

〈
fU , S

−1θξ
〉
|
)τ)1/τ

with Nξ = 2j for ξ ∈ Xj .
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6. Nonlinear n-term approximation by Newtonian potentials

Construction

Denote by Zn the indices ξ of the largest n/n0 numbers among

{N(s+(d−1)/2−(d−1)/τ)
ξ |

〈
fU , S

−1θξ
〉
|}ξ∈X

and set
g =

∑
ξ∈Zn

〈
fU , S

−1θξ
〉
θξ.

If 1/τ = s/(d − 1) + 1/p, then

‖U − g‖Hp(Bd ) ≤ cn−s/(d−1)‖U‖Bsτ
τ (Bd ).

The poles of g are located around the points

(1 + γ1Nξ)ξ, ξ ∈ Zn.
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6. Nonlinear n-term approximation by Newtonian potentials

Thank you!
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