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Szegő class for the finite gap case

For a probability measure µ on C with compact support Sµ, |Sµ| =∞, we
consider the orthonormal polynomials pn(z , µ) = κnz

n + · · · with κn > 0.
Then qn = κ−1n pn minimizes || · ||2 in Mn = {zn + · · · }.
We write µ ∈ Reg (regular in the Stahl-Totik sense) if κ

1/n
n → Cap(Sµ)−1.

Here Sµ may be polar.
Let K = ∪Nk=1[ak , bk ] and dµ = ω(x)dx on K . By def., µ ∈ Sz(K ) if
I (ω) =

∫
log(ω(x)) dµK (x) > −∞. For µ ∈ Sz(K ), the polynomials

pn(·, µ) enjoy nice limit behaviour, stronger than for only regular µ.
Widom’s characterization: µ ∈ Sz(K ) ⇐⇒ lim supn W

2
n (µ) > 0, where

W 2
n (µ) := ||qn||2 Cap−n(K ) = κ−1n Cap−n(K ) are Widom factors.

There are similar results about Sz(K ) for the case µ = µa + µp (here a
condition of Blaschke-type is added) and when K is a finite union of
disjoint smooth Jordan curves or arcs. But, in general, µ = µa + µp + µsc .

PROBLEM: How to characterize Sz(Sµ) if µsc 6= 0, for example µ = µsc?
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OP for Cantor-type sets. The known results

M. Barnsley et al (1983, 85): OP on Julia polynomial sets;
G. Mantica (1996-15): numerical computing of Jacobi parameters for IFS;
S. Heilman, P. Owrutsky, R. Strichardz (2014): OP wrt self-similar
measures (numerically);
J. Christiansen (2012): Parreau-Widom sets (they have positive Lebesgue
measure);
H. Kruger & B. Simon (2015): some conjectures (based on numerical
computing) about OP on the Cantor ternary set;
B. Simon et al. (80th-90th): almost periodic Schrödinger operators
(discrete Schrödinger’s operator is a particular case of Jacobi operator.
Cantor-type sets appear as the spectral measures in some cases, e.g. in
the one-dimensional quasi-crystal model or for the almost Mathieu
operator with an irrational parameter).
Remark: in theoretical results orthogonal polynomials are taken mainly
with respect to the equilibrium measure µK .
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Weakly equilibrium Cantor sets

AG(2014): For γ = (γs)∞s=1 with 0 < γs <
1
4 let r0 = 1 and rs = γsr

2
s−1.

Take P2(x) = x(x − 1) and P2s+1 = P2s · (P2s + rs) for s ≥ 1. Then

K (γ) :=
⋂∞

s=0Ds =
⋂∞

s=0 Es =
⋂∞

s=0

(
2
rs
P2s + 1

)−1
([−1, 1]) , where

Ds = {z ∈ C : |P2s (z) + rs/2| < rs/2} ↘, so we can apply the Harnack
Principle, and Es = {x ∈ R : |P2s (x) + rs/2| ≤ rs/2} = ∪2sj=1Ij ,s is the
inverse polynomial image. Here, P2s + rs/2 is the 2s−th Chebyshev
polynomial on K (γ).
The set K (γ) has positive Lebesgue measure if γs are rather closed to 1

4 .
Moreover, in the limit case γs = 1

4 for all s we have K (γ) = [0, 1].

At least for small γ, the set K (γ) is weakly equilibrium in the following
sense. Let us distribute uniformly the mass 2−s on each Ij ,s for j ≤ 2−s .
Let λs be the normalized in this sense Lebesgue measure on Es , so
dλs = (2s lj ,s)−1dt on Ij ,s . Then λs

∗→ µK(γ) provided K (γ) is not polar.
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Some results for K (γ)

The representation gC\K(γ)(z) = lims→∞ 2−s log |P2s (z)/rs | for z /∈ K (γ)
allows to construct Green’s functions with diverse moduli of continuity and
sets with preassigned growth of subsequence of Markov’s factors.
AG 2014: ∃ K ⊂ R : the Markov inequality with the best Markov’s
exponent is not valid on K (a question posed by M. Baran et al.);
∃ K : the best exponents in the local and the global versions of Markov’s
inequalities are essentially different (a question posed by L.Frerick et al.)
G. Alpan & AG(2015): µK(γ) and the corresponding Hausdorff measure
are mutually absolutely continuous. This is not valid for symmetric
Cantor-type sets, where these measures are mutually singular. (N.
Makarov & A. Volberg (1986) for the classical Cantor set).
AG and B. Hatinoğlu (2015): a set with any subexponential growth of
Widom-Chebyshev factors and a set K for which (Wn(K ))∞n=1 have highly
irregular behaviour.
G. Alpan & AG, ”OP on WECS”: OP with respect to µK(γ).
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Orthogonal polynomials on K (γ). Main theorem

Theorem (1)

q2s (·, µK(γ)) coincides with 2s−th Chebyshev polynomial for all s.

Sketch of the proof: Let νs = 2−s
∑2s

k=1 δxk , where (xk)2
s

k=1 are the zeros
of P2s + rs/2 (they are simple and real). Then for s > m we can
decompose all zeros (xk)2

s

k=1 into 2s−m−1 groups, on which the values of
P2m + rm/2 are controllable. This gives

∫ (
P2m + rm

2

)
dνs = 0. Since

νs
∗→ µK(γ) we have

∫ (
P2m + rm

2

)
dµK(γ). Similarly it was shown that∫ (

P2i1 +
ri1
2

)(
P2i2 +

ri2
2

)
. . .
(
P2in +

rin
2

)
dνs = 0 for any indices

0 ≤ i1 < · · · < in < s. Each P of degree < 2s is a linear combination of
polynomials of the type

(
P2s−1 + rs−1

2

)ns−1 . . .
(
P2 + r1

2

)n1 (x − 1
2

)n0 .
Therefore, q2s coincides with P2s + rs/2.
In addition, we have a simple representation ||q2s ||2 = (1− 2 γs+1) r2s /4.
Application of Newton’s identities is a crucial point of the proof.
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Orthogonal polynomials on K (γ). Other values of n
In the next step, A−type and B−type polynomials were introduced. In
particular, for 2m ≤ n < 2m+1 with n = im 2m + · · ·+ i0 with i ∈ {0, 1} we
take Bn = (q2m)im(q2m−1)im−1 . . . (q1)i1 . The polynomials B(2k+1)·2s and
B(2j+1)·2m are orthogonal for all j , k,m, s ∈ Z+ with s 6= m. They can be
considered as a basis in the set of polynomials: for each n ∈ N with
n = 2s(2k + 1), the polynomial qn has a unique representation as a linear
combination of B2s ,B3·2s ,B5·2s . . . ,B(2k−1)·2s ,B(2k+1)·2s . This allows to
present formulas to express coefficients of each qn.

For example, B3·2s = q2sq2s+1 , so q3·2s = q2s+1q2s −
‖q2s+1‖2
‖q2s ‖2

q2s .

Similarly, B5·2s = q2sq2s+2 and q5·2s = c0q2s + c1q2s+1q2s + q2sq2s+2 with

c0 =
||q2s+2 ||2

||q2s ||4 − ||q2s+1 ||2
, c1 = −c0

||q2s ||2

‖q2s+1‖2
.

All coefficient can be expressed only in terms of (γk)∞k=1. As k gets bigger,
the complexity of calculations increases.
In general, the polynomial qn is not Chebyshev.
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Orthogonal polynomials on K (γ). Jacobi parameters

Jacobi parameters also can be calculated recursively: a1 = ||q1|| and
a2 = ||q2||/||q1||. Suppose ai are given for i ≤ n. If n + 1 = 2s > 2 then

an+1 =
||q2s ||

||q2s−1 || · a2s−1+1 · a2s−1+2 · · · a2s−1
.

Otherwise, n + 1 = 2s(2k + 1) for some s ∈ Z+ and k ∈ N. Here,

a2n+1 = a22s(2k+1) =
‖q2s‖2 − a22s+1k · · · a

2
2s+1k−2s+1

a22s(2k+1)−1 · · · a
2
2s+1k+1

.

If γs ≤ 1/6 for all s hen lim
s→∞

aj ·2s+n = an for j ∈ N and n ∈ Z+. Here,

a0 := 0. In particular, lim inf an = 0.
The formulas can be applied as well for the case γn < 1/4 for 1 ≤ n ≤ s
and γn = 1/4 for n > s. Then K (γ) = Es is a finite union of intervals. If
γn = 1/4 for all n then K (γ) = [0, 1] and all an = 1/4, which corresponds
to the case of the Chebyshev polynomials on this set.
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Orthogonal polynomials on K (γ). Widom factors

Let Wn := W 2
n (µK(γ)) = ‖qn‖ / (Cap(K ))n.

We have W2s ≥
√

2 for each γ. If γn ≤ 1/6 for all s then
lim infn→∞Wn = lim infs→∞W2s ≥

√
6 and lim supn→∞Wn =∞.

Next examples illustrate the behaviour of Widom factors:
1) If γn → 0 then W2s →∞. Therefore Wn →∞.
2) There exists γn 9 0 with Wn →∞. One can take
γ2k = 1/6, γ2k−1 = 1/k .
3) If γn ≥ c > 0 for all n then lim infn→∞Wn ≤ 1/2c .
4) There exists γ with inf γn = 0 and lim infn→∞Wn <∞. Here we can
take γn = 1/6 for n 6= nk and γnk = 1/k for a sparse sequence (nk)∞k=1.
Then (W2nk )∞k=1 is bounded.
Later it was shown that K (γ) is a Parreau-Widom set if and only if∑∞

n=1

√
1
4 − γn <∞.
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Orthogonal polynomials on generalized Julia sets

Let (fn(z))∞n=1 be a sequence of rational functions with deg fn ≥ 2. in C.
Let us define Fn(z) := fn ◦ Fn−1(z) recursively for n ≥ 1 and F0(z) = z .
Then the Fatou set F(fn) is defined as the domain of normality for (Fn)∞n=1

in the sense of Montel, its complement J(fn) is the Julia set. If fn = f for
some fixed rational f for all n then we have autonomous F (f ) and J(f ).

M. F. Barnsley,J. S. Geronimo, A. N. Harrington (1982, 83) presented
qk·n(·, µJ(f )), k ∈ N for f = zn + · · · .

We (with G. Alpan) extend this result to J(fn) for a regular in the Brück -
Büger sense polynomial sequence (fn). Also this is a generalization of the
”OP on WECS”: if we take fn(z) = 1

2γn
(z2 − 1) + 1 for all n, then

K1(γ) := J(fn) is a stretched version of the set K (γ).
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Towards the Szegő class

In the finite gap case (some additional mass points fast converging to the
essential support are allowed) we have∫

log[dµ/dx ] dµK (x) > −∞ ⇐⇒ lim sup
n→∞

W 2
n (µ) > 0.

The Szegő condition on the left means that the corresponding integral
converges. This condition cannot be applied to singular continuous
measures, whereas the Widom condition (W 2

n (µ) 9 0 ) is applicable to
any measure, even with a polar support. The Widom condition is the main
candidate to characterize the Szegő class in the general case. Therefore
the analysis of Widom factors for small sets, especially for µ 6= µK , is
rather interesting.
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Conjectures

1) If a compact set K is regular with respect to the Dirichlet problem then
µK always belongs to the Szegő class (in its Widom’s description).
Remark: µK ∈ Reg; in known cases W 2

n (µK ) > a > 0 for all n.
2) In the case of measures with non-polar support K , the Szegő condition
should be done as I (µ) :=

∫
log(dµ/dµK )dµK > −∞.

Arguments in favour:
µK is the most natural measure in the theory of general OP;
this condition coincides with the Szegő condition in known cases;
by Jensen’s inequality, the value I (µ) is nonpositive and it attains its
maximum 0 just in the case µ = µK ;
I (µ) is exactly the relative entropy of µK with respect to µ.

Objections (based on the numerical evidence from H. Krüger & B. Simon):
(an) were calculated for n ≤ 200.000 in the case µCL on the classical
Cantor set K0. For these values W 2

n (µCL) behave as a bounded below (by
a positive number) sequence. But µCL ⊥ µK0 and I (µ) = −∞.
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K Ö S Z Ö N Ö M !
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