Orthogonal polynomials on Cantor-type sets

Alexander Goncharov

Bilkent University Ankara

10th Summer School in Potential Theory Budapest, August 18-23, 2015

通 ト イヨ ト イヨト

- Szegő class for the finite gap case
- OP for Cantor-type sets. The known results
- 3 Weakly equilibrium Cantor sets
- 4 Some results for weCs
- Orthogonal polynomials on weCs. Main theorem
- 6 Orthogonal polynomials on weCs. Other values of *n*
- Orthogonal polynomials on weCs. Jacobi parameters
- 8 Orthogonal polynomials on weCs. Widom factors
- Orthogonal polynomials on generalized Julia sets
- 10 Towards the Szegő class
- Conjectures

くほと くほと くほと

Szegő class for the finite gap case

For a probability measure μ on \mathbb{C} with compact support $S_{\mu}, |S_{\mu}| = \infty$, we consider the orthonormal polynomials $p_n(z, \mu) = \kappa_n z^n + \cdots$ with $\kappa_n > 0$. Then $q_n = \kappa_n^{-1} p_n$ minimizes $|| \cdot ||_2$ in $\mathcal{M}_n = \{z^n + \cdots \}$. We write $\mu \in \operatorname{Reg}$ (regular in the Stahl-Totik sense) if $\kappa_n^{1/n} \to \operatorname{Cap}(S_n)^{-1}$. Here S_{μ} may be polar. Let $K = \bigcup_{k=1}^{N} [a_k, b_k]$ and $d\mu = \omega(x) dx$ on K. By def., $\mu \in Sz(K)$ if $I(\omega) = \int \log(\omega(x)) d\mu_K(x) > -\infty$. For $\mu \in Sz(K)$, the polynomials $p_n(\cdot, \mu)$ enjoy nice limit behaviour, stronger than for only regular μ . Widom's characterization: $\mu \in Sz(K) \iff \limsup_n W_n^2(\mu) > 0$, where $W_n^2(\mu) := ||q_n||_2 \operatorname{Cap}^{-n}(K) = \kappa_n^{-1} \operatorname{Cap}^{-n}(K)$ are Widom factors. There are similar results about Sz(K) for the case $\mu = \mu_a + \mu_p$ (here a condition of Blaschke-type is added) and when K is a finite union of disjoint smooth Jordan curves or arcs. But, in general, $\mu = \mu_a + \mu_p + \mu_{sc}$.

PROBLEM: How to characterize $Sz(S_{\mu})$ if $\mu_{sc} \neq 0$, for example $\mu = \mu_{sc}$?

◆□> ◆圖> ◆注> ◆注> □ 注

OP for Cantor-type sets. The known results

M. Barnsley et al (1983, 85): OP on Julia polynomial sets;

G. Mantica (1996-15): numerical computing of Jacobi parameters for IFS;

S. Heilman, P. Owrutsky, R. Strichardz (2014): OP wrt self-similar measures (numerically);

J. Christiansen (2012): Parreau-Widom sets (they have positive Lebesgue measure);

H. Kruger & B. Simon (2015): some conjectures (based on numerical computing) about OP on the Cantor ternary set;

B. Simon et al. (80th-90th): almost periodic Schrödinger operators (discrete Schrödinger's operator is a particular case of Jacobi operator. Cantor-type sets appear as the spectral measures in some cases, e.g. in the one-dimensional quasi-crystal model or for the almost Mathieu operator with an irrational parameter).

Remark: in theoretical results orthogonal polynomials are taken mainly with respect to the equilibrium measure μ_{K} .

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Weakly equilibrium Cantor sets

AG(2014): For $\gamma = (\gamma_s)_{s=1}^{\infty}$ with $0 < \gamma_s < \frac{1}{4}$ let $r_0 = 1$ and $r_s = \gamma_s r_{s-1}^2$. Take $P_2(x) = x(x-1)$ and $P_{2^{s+1}} = P_{2^s} \cdot (P_{2^s} + r_s)$ for $s \ge 1$. Then $K(\gamma) := \bigcap_{s=0}^{\infty} \overline{D}_s = \bigcap_{s=0}^{\infty} E_s = \bigcap_{s=0}^{\infty} \left(\frac{2}{r_s} P_{2^s} + 1\right)^{-1} ([-1, 1])$, where $D_s = \{z \in \mathbb{C} : |P_{2^s}(z) + r_s/2| < r_s/2\} \searrow$, so we can apply the Harnack Principle, and $E_s = \{x \in \mathbb{R} : |P_{2^s}(x) + r_s/2| \le r_s/2\} = \bigcup_{j=1}^{2^s} I_{j,s}$ is the inverse polynomial image. Here, $P_{2^s} + r_s/2$ is the 2^s -th Chebyshev polynomial on $K(\gamma)$. The set $K(\gamma)$ has positive Lebesgue measure if γ_s are rather closed to $\frac{1}{4}$.

The set $K(\gamma)$ has positive Lebesgue measure if γ_s are rather closed to $\frac{1}{4}$. Moreover, in the limit case $\gamma_s = \frac{1}{4}$ for all s we have $K(\gamma) = [0, 1]$. At least for small γ , the set $K(\gamma)$ is weakly equilibrium in the following sense. Let us distribute uniformly the mass 2^{-s} on each $I_{j,s}$ for $j \leq 2^{-s}$. Let λ_s be the normalized in this sense Lebesgue measure on E_s , so $d\lambda_s = (2^{s}I_{i,s})^{-1}dt$ on $I_{i,s}$. Then $\lambda_s \stackrel{*}{\to} \mu_{K(\gamma)}$ provided $K(\gamma)$ is not polar.

Some results for $K(\gamma)$

The representation $g_{\mathbb{C}\setminus K(\gamma)}(z) = \lim_{s\to\infty} 2^{-s} \log |P_{2^s}(z)/r_s|$ for $z \notin K(\gamma)$ allows to construct Green's functions with diverse moduli of continuity and sets with preassigned growth of subsequence of Markov's factors. AG 2014: $\exists K \subset \mathbb{R}$: the Markov inequality with the best Markov's exponent is not valid on K (a question posed by M. Baran et al.); $\exists K$: the best exponents in the local and the global versions of Markov's inequalities are essentially different (a question posed by L.Frerick et al.) G. Alpan & AG(2015): $\mu_{K(\gamma)}$ and the corresponding Hausdorff measure are mutually absolutely continuous. This is not valid for symmetric Cantor-type sets, where these measures are mutually singular. (N. Makarov & A. Volberg (1986) for the classical Cantor set). AG and B. Hatinoğlu (2015): a set with any subexponential growth of Widom-Chebyshev factors and a set K for which $(W_n(K))_{n=1}^{\infty}$ have highly irregular behaviour.

G. Alpan & AG, "OP on WECS": OP with respect to $\mu_{K(\gamma)}$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Orthogonal polynomials on $K(\gamma)$. Main theorem

Theorem (1)

 $q_{2^{s}}(\cdot, \mu_{K(\gamma)})$ coincides with 2^{s} -th Chebyshev polynomial for all s.

Sketch of the proof: Let $\nu_s = 2^{-s} \sum_{k=1}^{2^s} \delta_{x_k}$, where $(x_k)_{k=1}^{2^s}$ are the zeros of $P_{2^s} + r_s/2$ (they are simple and real). Then for s > m we can decompose all zeros $(x_k)_{k=1}^{2^s}$ into 2^{s-m-1} groups, on which the values of $P_{2^m} + r_m/2$ are controllable. This gives $\int \left(P_{2^m} + \frac{r_m}{2}\right) d\nu_s = 0$. Since $\nu_s \stackrel{*}{\to} \mu_{K(\gamma)}$ we have $\int \left(P_{2^m} + \frac{r_m}{2}\right) d\mu_{K(\gamma)}$. Similarly it was shown that $\int \left(P_{2^{i_1}} + \frac{r_{i_1}}{2} \right) \left(P_{2^{i_2}} + \frac{r_{i_2}}{2} \right) \dots \left(P_{2^{i_n}} + \frac{r_{i_n}}{2} \right) d\nu_s = 0 \text{ for any indices}$ $0 \leq i_1 < \cdots < i_n < s$. Each P of degree $< 2^s$ is a linear combination of polynomials of the type $(P_{2^{s-1}} + \frac{r_{s-1}}{2})^{n_{s-1}} \dots (P_2 + \frac{r_1}{2})^{n_1} (x - \frac{1}{2})^{n_0}$. Therefore, q_{2^s} coincides with $P_{2^s} + r_s/2$. In addition, we have a simple representation $||q_{2^s}||^2 = (1 - 2\gamma_{s+1}) r_s^2/4$. Application of Newton's identities is a crucial point of the proof.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Orthogonal polynomials on $K(\gamma)$. Other values of n

In the next step, A-type and B-type polynomials were introduced. In particular, for $2^m \leq n < 2^{m+1}$ with $n = i_m 2^m + \cdots + i_0$ with $i \in \{0, 1\}$ we take $B_n = (q_{2^m})^{i_m} (q_{2^{m-1}})^{i_{m-1}} \dots (q_1)^{i_1}$. The polynomials $B_{(2k+1)\cdot 2^s}$ and $B_{(2i+1)\cdot 2^m}$ are orthogonal for all $j, k, m, s \in \mathbb{Z}_+$ with $s \neq m$. They can be considered as a basis in the set of polynomials: for each $n \in \mathbb{N}$ with $n = 2^{s}(2k + 1)$, the polynomial q_n has a unique representation as a linear combination of $B_{2^s}, B_{3\cdot 2^s}, B_{5\cdot 2^s}, \dots, B_{(2k-1)\cdot 2^s}, B_{(2k+1)\cdot 2^s}$. This allows to present formulas to express coefficients of each q_n .

For example, $B_{3\cdot 2^s} = q_{2^s}q_{2^{s+1}}$, so $q_{3\cdot 2^s} = q_{2^{s+1}}q_{2^s} - \frac{\|q_{2^{s+1}}\|^2}{\|q_{2^s}\|^2}q_{2^s}$. Similarly, $B_{5\cdot 2^s} = q_{2^s}q_{2^{s+2}}$ and $q_{5\cdot 2^s} = c_0q_{2^s} + c_1q_{2^{s+1}}q_{2^s} + q_{2^s}q_{2^{s+2}}$ with

$$c_0 = \frac{||q_{2^{s+2}}||^2}{||q_{2^s}||^4 - ||q_{2^{s+1}}||^2}, \ c_1 = -c_0 \ \frac{||q_{2^s}||^2}{||q_{2^{s+1}}||^2}.$$

All coefficient can be expressed only in terms of $(\gamma_k)_{k=1}^{\infty}$. As k gets bigger, the complexity of calculations increases. In general, the polynomial q_n is not Chebyshev. (ロト・日本・日本・日本・日本・今日)

Orthogonal polynomials on $K(\gamma)$. Jacobi parameters

Jacobi parameters also can be calculated recursively: $a_1 = ||q_1||$ and $a_2 = ||q_2||/||q_1||$. Suppose a_i are given for $i \le n$. If $n + 1 = 2^s > 2$ then

$$a_{n+1} = \frac{||q_{2^s}||}{||q_{2^{s-1}}|| \cdot a_{2^{s-1}+1} \cdot a_{2^{s-1}+2} \cdots a_{2^s-1}}.$$

Otherwise, $n+1=2^{s}(2k+1)$ for some $s\in\mathbb{Z}_{+}$ and $k\in\mathbb{N}.$ Here,

$$a_{n+1}^2 = a_{2^s(2k+1)}^2 = \frac{\|q_{2^s}\|^2 - a_{2^{s+1}k}^2 \cdots a_{2^{s+1}k-2^s+1}^2}{a_{2^s(2k+1)-1}^2 \cdots a_{2^{s+1}k+1}^2}$$

If $\gamma_s \leq 1/6$ for all s hen $\lim_{s \to \infty} a_{j \cdot 2^s + n} = a_n$ for $j \in \mathbb{N}$ and $n \in \mathbb{Z}_+$. Here, $a_0 := 0$. In particular, $\liminf_{n \to \infty} a_n = 0$. The formulas can be applied as well for the case $\gamma_n < 1/4$ for $1 \leq n \leq s$ and $\gamma_n = 1/4$ for n > s. Then $K(\gamma) = E_s$ is a finite union of intervals. If

 $\gamma_n = 1/4$ for all *n* then $K(\gamma) = [0, 1]$ and all $a_n = 1/4$, which corresponds to the case of the Chebyshev polynomials on this set.

Orthogonal polynomials on $K(\gamma)$. Widom factors

Let $W_n := W_n^2(\mu_{K(\gamma)}) = ||q_n|| / (Cap(K))^n$. We have $W_{2^s} > \sqrt{2}$ for each γ . If $\gamma_n < 1/6$ for all s then $\liminf_{n\to\infty} W_n = \liminf_{s\to\infty} W_{2^s} \ge \sqrt{6} \text{ and } \limsup_{n\to\infty} W_n = \infty.$ Next examples illustrate the behaviour of Widom factors: 1) If $\gamma_n \to 0$ then $W_{2^s} \to \infty$. Therefore $W_n \to \infty$. 2) There exists $\gamma_n \not\rightarrow 0$ with $W_n \rightarrow \infty$. One can take $\gamma_{2k} = 1/6, \ \gamma_{2k-1} = 1/k.$ 3) If $\gamma_n \ge c > 0$ for all *n* then $\liminf_{n \to \infty} W_n \le 1/2c$. 4) There exists γ with $\inf \gamma_n = 0$ and $\liminf_{n \to \infty} W_n < \infty$. Here we can take $\gamma_n = 1/6$ for $n \neq n_k$ and $\gamma_{n_k} = 1/k$ for a sparse sequence $(n_k)_{k=1}^{\infty}$. Then $(W_{2^{n_k}})_{k=1}^{\infty}$ is bounded. Later it was shown that $K(\gamma)$ is a Parreau-Widom set if and only if $\sum_{n=1}^{\infty} \sqrt{\frac{1}{4} - \gamma_n} < \infty.$

비사 소문사 소문사 소문사 가격

Orthogonal polynomials on generalized Julia sets

Let $(f_n(z))_{n=1}^{\infty}$ be a sequence of rational functions with deg $f_n \ge 2$. in $\overline{\mathbb{C}}$. Let us define $F_n(z) := f_n \circ F_{n-1}(z)$ recursively for $n \ge 1$ and $F_0(z) = z$. Then the Fatou set $F_{(f_n)}$ is defined as the domain of normality for $(F_n)_{n=1}^{\infty}$ in the sense of Montel, its complement $J_{(f_n)}$ is the Julia set. If $f_n = f$ for some fixed rational f for all n then we have autonomous F(f) and J(f).

M. F. Barnsley, J. S. Geronimo, A. N. Harrington (1982, 83) presented $q_{k\cdot n}(\cdot, \mu_{J(f)}), k \in \mathbb{N}$ for $f = z^n + \cdots$.

We (with G. Alpan) extend this result to $J_{(f_n)}$ for a regular in the Brück -Büger sense polynomial sequence (f_n) . Also this is a generalization of the "OP on WECS": if we take $f_n(z) = \frac{1}{2\gamma_n}(z^2 - 1) + 1$ for all n, then $K_1(\gamma) := J_{(f_n)}$ is a stretched version of the set $K(\gamma)$.

◆□> ◆圖> ◆臣> ◆臣> □臣

Towards the Szegő class

In the finite gap case (some additional mass points fast converging to the essential support are allowed) we have

$$\int \log[d\mu/dx] \, d\mu_{\mathcal{K}}(x) > -\infty \iff \limsup_{n \to \infty} W_n^2(\mu) > 0.$$

The Szegő condition on the left means that the corresponding integral converges. This condition cannot be applied to singular continuous measures, whereas the Widom condition $(W_n^2(\mu) \nrightarrow 0)$ is applicable to any measure, even with a polar support. The Widom condition is the main candidate to characterize the Szegő class in the general case. Therefore the analysis of Widom factors for small sets, especially for $\mu \neq \mu_K$, is rather interesting.

・ロン ・四と ・日と ・日

Conjectures

1) If a compact set K is regular with respect to the Dirichlet problem then μ_K always belongs to the Szegő class (in its Widom's description). Remark: $\mu_K \in \mathbf{Reg}$; in known cases $W_n^2(\mu_K) > a > 0$ for all n. 2) In the case of measures with non-polar support K, the Szegő condition should be done as $I(\mu) := \int \log(d\mu/d\mu_K) d\mu_K > -\infty$. Arguments in favour:

 μ_K is the most natural measure in the theory of general OP; this condition coincides with the Szegő condition in known cases; by Jensen's inequality, the value $I(\mu)$ is nonpositive and it attains its maximum 0 just in the case $\mu = \mu_K$;

 $I(\mu)$ is exactly the relative entropy of $\mu_{\mathcal{K}}$ with respect to μ .

Objections (based on the numerical evidence from H. Krüger & B. Simon): (*a_n*) were calculated for $n \le 200.000$ in the case μ_{CL} on the classical Cantor set K_0 . For these values $W_n^2(\mu_{CL})$ behave as a bounded below (by a positive number) sequence. But $\mu_{CL} \perp \mu_{K_0}$ and $I(\mu) = -\infty$.

KÖSZÖNÖM!

・ロト ・聞 ト ・ ヨト ・ ヨト …