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Codes in H(n, q)

Let H(n, q) = {(x1, x2, . . . , xn) : xi ∈ {0, 1, . . . , q − 1}}, with distance

d(x , y) = |{i : xi 6= yi}| ,

x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ H(n, q), and �inner�
product

〈x , y〉 = 1− 2d(x , y)

n
.

nonempty C ⊂ H(n, q) � code

Three main parameters of codes: length n, cardinality M = |C | and
minimum distance

d = d(C ) = min{d(x , y) : x , y ∈ C , x 6= y}.
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Energy of codes in H(n, q)

For a code C ⊂ H(n, q) and a given function
h(t) : [−1, 1)→ [0,+∞), we de�ne the h-energy (or potential energy)
of C by

W (n,C ; h) :=
1

|C |
∑

x ,y∈C ,x 6=y

h(〈x , y〉).

At times we require h to be absolutely monotone on [-1,1); i.e., the
k-th derivative (continuous or discrete) of h satis�es h(k)(t) ≥ 0 for all
k ≥ 0 and t ∈ [−1, 1).
A commonly arising problem is to minimize the potential energy
provided the cardinality |C | of C is �xed; that is, to determine

W(n,M; h) := min{W (n,C ; h) : |C | = M}

the minimum possible h-energy of a code of cardinality M.
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Some interesting potentials

h(t) =
(

2
n(1−t)

)α
, for α→∞ the optimal codes maximize the

minimum distance d for �xed cardinality M.

hs(t) =

{
0, if t ∈ [−1, s],

+∞, if t ∈ (s, 1].
, the optimal codes maximize the

cardinality for �xed length and minimum distance (maximal inner
product); i.e. attain the LP bound.

h(t) = γ2/n(1−t), where γ is Bhattacharyya parameter, the optimal
codes minimize the union (upper) bound for the decoding error.

hj(t) =
(n−t(n−1)/2

j

)
, j = 0, 1, 2, . . . , n, span the cone of absolute

monotone discrete (on Tn � the set of inner products) functions.
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Designs in H(n, q)

De�nition Let τ and λ be positive integers. A τ -design C ⊂ H(n, q)
of strength τ and index λ is a code such that the M × n matrix
obtained from the codewords of C as rows has the following property:
every M × τ submatrix contains all ordered τ -tuples of H(τ, q), each
one exactly λ = M

qτ times as rows.

τ = d ′ − 1 (d ′ is the dual distance of C ).

Example of (3, 4, 8) BOA:

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
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Energy of τ -designs

Let C ⊂ H(n, q) be a τ -design in H(n, q);

Denote by

L(n,M, τ ; h) = min{W (n,C ; h) : |C | = M,C ⊂ H(n, q),C is τ -design}

the minimum possible h-energy of τ -designs in H(n, q) of M points,

U(n,M, τ ; h) = max{W (n,C ; h) : |C | = M,C ⊂ H(n, q),C is τ -design}

the maximum possible h-energy of τ -designs in H(n, q) of M points.
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Energy of codes of minimum distance d

Denote by

F(n, d ; h) = min{W (n,C ; h) : |C ⊂ H(n, q), d(C ) = d}

the minimum possible h-energy of codes in H(n, q) of minimum
distance d ,

G(n, d ; h) = max{W (n,C ; h) : |C ⊂ H(n, q), d(C ) = d}

the maximum possible h-energy of codes in H(n, q) of minimum
distance d .

Allows involving the function Aq(n, d).
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Rao's bound

(Rao, 1947) For �xed strength τ and dimension n denote by

B(n, τ) = min{|C | : ∃ τ -design C ⊂ H(n, q)}.

B(n, τ) ≥ R(n, τ) =


q
∑k−1

i=0

(n
i

)
(q − 1)i , if τ = 2k − 1,∑k

i=0

(n−1
i

)
(q − 1)i , if τ = 2k .

Can be derived by LP with h(t) = 0.
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Krawtchouk polynomials (1)

For �xed n and q, the (normalized) Krawtchouk polynomials are
de�ned by

Q
(n,q)
i (t) =

1

ri
K

(n,q)
i (n(1− t)/2),

where ri = (q − 1)i
(n
i

)
, t = 1− 2d

n
⇐⇒ d =

n(1− t)

2
,

K
(n,q)
i (d) =

i∑
j=0

(−1)j(q − 1)i−j
(
d

j

)(
n − d

i − j

)
, i = 0, 1, . . . , n,

be the (usual) Krawtchouk polynomials corresponding to H(n, q).
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Krawtchouk polynomials (2)

Adjacent polynomials

Q
(1,0,n,q)
i (t) =

K
(n−1,q)
i (d − 1)∑i
j=0

(n
j

)
(q − 1)j

, (1)

Q
(1,1,n,q)
i (t) =

K
(n−2,q)
i (d − 1)∑i

j=0

(n−1
j

)
(q − 1)j

, (2)

Q
(0,1,n,q)
i (t) =

K
(n−1,q)
i (d − 1)(n

i

)
(q − 1)i

, (3)

where d = n(1− t)/2.
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Krawtchouk polynomials (3)

If f (t) ∈ R[t] is a real polynomial of degree m ≤ n then f (t) can be
uniquely expanded in terms of the Krawtchouk polynomials as

f (t) =
n∑

i=0

fiQ
(n,q)
i (t).

Coe�cients fi can be found in (at least) two di�erent ways � by direct
comparison of the coe�cients; by using the orthogonality relations for
the Krawtchouk polynomials.

f0 � the most important coe�cient.
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Useful quadrature (1)

V. I. Levenshtein, Designs as maximum codes in polynomial metric
spaces, Acta Appl. Math. 25, 1992, 1-82.

(odd case τ = 2k − 1) For every �xed (cardinality) M > R(n, 2k − 1)
there exist uniquely determined real numbers

−1 < α0 < α1 < · · · < αk−1 < 1

and ρ0, ρ1, . . . , ρk−1, ρi > 0 for i = 0, 1, . . . , k − 1, such that the
equality

f0 =
f (1)

M
+

k−1∑
i=0

ρi f (αi )

holds for every real polynomial f (t) of degree at most 2k − 1.
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Useful quadrature (2)

The numbers αi , i = 0, 1, . . . , k − 1, are the roots of the equation

Pk(t)Pk−1(s)− Pk(s)Pk−1(t) = 0,

where s = αk−1, Pi (t) = Q1,0,n,q
i (t).

In fact, αi , i = 0, 1, . . . , k − 1, are the roots of the Levenshtein's

polynomial f
(n,αk−1)
2k−1 (t).

Similarly, nodes βi and weights are de�ned in the even case τ = 2k .
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Levenshtein bound

Levenshtein bound on
Aq(n, s) := max{|C | : C ⊂ H(n, q), 〈x , y〉 ≤ s, x 6= y ∈ C}

Aq(n, s) ≤



L2k−1(n, s) =

(
1− Q

(1,0,n,q)
k−1 (s)

Q
(n,q)
k (s)

)
k−1∑
j=0

(n
j

)
(q − 1)j ,

if s ∈ I2k−1,

L2k(n, s) = q

(
1− Q

(1,1,n,q)
k−1 (s)

Q
(0,1,n,q)
k (s)

)
k−1∑
j=0

(n−1
j

)
(q − 1)j ,

if s ∈ I2k ,

where [−1, 1] = I1 ∪ I2 ∪ · · · ∪ I2n, the intervals Iτ are determined by
largest roots of adjacent polynomials.
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Connection between Rao and Levenshtein bounds

The connection between the Rao bound and the Levenshtein bound is
given by the equalities

L2k−2(n, t
1,1
k−1) = L2k−1(n, t

1,1
k−1) = R(n, 2k − 1),

L2k−1(n, t
1,0
k ) = L2k(n, t

1,0
k ) = R(n, 2k)

and the ends of the intervals Iτ .
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Location of the cardinality M

In what follows we always take care where the cardinality M is located
with respect to the Rao bound. If

M ∈ (R(n, τ),R(n, τ + 1)] ,

then we consider the equation

M = Lτ (n, s)

as source to the necessary parameters, i.e. we can always associate M
with the corresponding (unique) numbers:

α0, α1, . . . , αk−1, ρ0, ρ1, . . . , ρk−1 when M ∈ (R(n, 2k − 1),R(n, 2k)]

or

β0, β1, . . . , βk , γ0, γ1, . . . , γk when M ∈ (R(n, 2k),R(n, 2k + 1)] .
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General bounds � lower bounds for W(n,M ; h) and
L(n,M , τ ; h)

Theorem 1. Let n, M, h (and τ) be �xed and f (t) be a real
polynomial such that

(A1) f (t) ≤ h(t) for every t ∈ Tn = {−1+ 2i/n |i = 0, 1, . . . , n};

(A2) the coe�cients in the Krawtchouk expansion

f (t) =
∑deg(f )

i=0 fiQ
(n,q)
i (t) satisfy fi ≥ 0 for i ≥ 1 (for i ≥ τ + 1,

respectively).

Then W(n,M; h) ≥ f0M − f (1) (L(n,M, τ ; h) ≥ f0M − f (1),
respectively).

An,M;h (An,M,τ ;h) � the set of good polynomials
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General bounds � upper bounds for U(n,M , τ ; h)

Theorem 2. Let n, M, τ and h be �xed and g(t) be a real
polynomial such that

(B1) g(t) ≥ h(t) for t ∈ Tn ∩ [−1, t0]; where t0 is such that no
τ -design in H(n, q) of M points can have inner products in the
interval (t0, 1).

(B2) the coe�cients in the Krawtchouk expansion

g(t) =
∑deg(g)

i=0 giQ
(n,q)
i (t) satisfy gi ≤ 0 for i ≥ τ + 1.

Then U(n,M, τ ; h) ≤ g0M − g(1).

Bn,M,τ ;h � the set of good polynomials
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General bounds � bounds for F(n, d ; h) and G(n, d ; h)

Theorem 3. Let n, d and h be �xed and f (t) be a real polynomial
that satis�es (A2) and
(A1′) f (t) ≤ h(t) for every t ∈ Tn ∩ [−1, 1− 2d/n]};
Then F(n, d ; h) ≥ f0M − f (1), where M is a feasible size of a code of
minimum distance d . In particular,

F(n, d ; h) ≥ f0Aq(n, d)− f (1).

Theorem 4. Let n, d and h be �xed and g(t) be a real polynomial
such that:
(B1′) g(t) ≥ h(t) for every t ∈ Tn ∩ [−1, 1− 2d/n]};
(B2′) the coe�cients in the expansion g(t) =

∑n
i=0 giQ

(n,q)
i (t) satisfy

gi ≤ 0 for every i ≥ 1.
Then G(n, d ; h) ≥ g0M − g(1), where M is a feasible size of a code of
minimum distance d . In particular,

G(n, d ; h) ≤ g0Aq(n, d)− g(1).
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Interpolation (1)

We use Hermite's interpolation to h(t) as follows. De�ne

(i) the polynomial f (t) of degree τ = 2k − 1 by

f (αi ) = h(αi ), f
′(αi ) = h′(αi ), i = 0, 1, . . . , k − 1.

(ii) the polynomial f (t) of degree τ = 2k by

f (β0) = h(β0), f (βi ) = h(βi ), f
′(βi ) = h′(βi ), i = 1, . . . , k .

These conditions de�ne a Hermite's interpolation problem for f (t) to
intersect and touch the graph of the potential function h(t).

This implies that the conditions of LP bounds are satis�ed.
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Interpolation (2)

Some Hermite interpolants at the universal nodes for n = 9, M = 128
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Lower bounds � universal bound (1)

Theorem. Let n, τ , M ∈ (R(n, τ),R(n, τ + 1)] and h be �xed.
Then the polynomials from the interpolations (i) and (ii) belong to
An,M,τ ;h and give the bounds

L(n,M, 2k − 1; h) ≥ M
k−1∑
i=0

ρih(αi ),

L(n,M, 2k ; h) ≥ M
k∑

i=0

γih(βi ),

respectively.
These bounds can not be improved by using admissible polynomials
f (t) ≤ h(t) for t ∈ [−1, 1) of degree at most 2k − 1 (at most 2k ,
respectively).
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Lower bounds � universal bound (2)

Theorem. Let n, M ∈ (R(n, τ),R(n, τ + 1)] and h be �xed.
Then the polynomials from the interpolations (i) and (ii) belong to
An,M;h and give the bounds

W(n,M; h) ≥ M
k−1∑
i=0

ρih(αi ),

W(n,M; h) ≥ M
k∑

i=0

γih(βi ),

respectively.
These bounds can not be improved by using admissible polynomials
f (t) ≤ h(t) for t ∈ [−1, 1) of degree at most 2k − 1 (at most 2k ,
respectively).
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Lower bounds � universal bound (3)

Some remarks

The bounds do not depend (in certain sense) from the potential
function h. The same nodes work for every potential.

The bounds are attained by all maximal codes which attain the
Levenshtein bound (universally optimal in the sense of Cohn-Zhao's
paper).

However, the bounds can be improved in other cases. For example, if
one takes care for the discrete nature of the possible inner products
(i.e. the notion of admissibility can be widened).

There are necessary and su�cient conditions for the global optimality
of our bounds (with f (t) ≤ h(t) in the whole interval [−1, 1)).
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Interpolation (3)

For every i = 0, 1, . . . , k − 1 (recall that tj = 1− 2j/n) let

tj(i) ≤ αi < tj(i)+1.

If necessary, adjust tj(i), tj(i)+1, etc.

Use Lagrange interpolation of h(t) in tj(i) and tj(i)+1 instead of
Hermite interpolation in αi (i.e. the double "zero" in αi will be
replaced by two intersections � in tj(i) and tj(i)+1). The degree of the
interpolating polynomial remains the same.

Cohn-Zhao's paper � pair covering (the set of interpolation nodes).
Therefore, the αi 's just say which pairs must be covered.

This approach gives better bounds in many cases. However, it is
di�cult to express the bounds by formulas.
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Higher degrees (1)

Let n, M, τ = τ(n,M) be �xed and the equation Lτ (n, s) = M,
s = αk−1, de�ne all necessary parameters. Let j be a positive integer.
We consider the following test-functions in n and s:

Pj(n, s) :=
1

M
+

k−1∑
i=0

ρiQ
(n,q)
j (αi ) for s ∈ I2k−1,

introduced in 1998 for the so-called polynomial metric spaces (include
H(n, q)) by B.-Danev (the binary case q = 2 considered in detail).
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Higher degrees (2)

Theorem. Let h be strictly absolutely monotone function. The ULB
can be improved by a polynomial f ∈ An,h (or An,τ,h) satisfying
f (t) ≤ h(t) in the whole interval [−1, 1) of degree at least τ + 1 if
and only if Pj(n, s) < 0 for some j ≥ τ + 1. Furthermore, if
Pj(n, s) < 0 for some j ≥ τ + 1, then ULB can be improved by a
polynomial as above of degree exactly j .

We develop algorithms for deriving better bounds by higher degree
polynomials.

PB, PD, DH, ES, MS Universal bounds on energy of codes and designs in Hamming spacesApril 16, 2015 28 / 38



Higher degrees bounds (3)

LP-universally optimal codes � codes which universal optimality can be
proved by suitable polynomial in the LP bound.

Corollary. If Pj(n, s) ≥ 0 for every j ∈ {τ, τ + 1, . . . , n} then ULB can
not be improved by linear programming (with f (t) ≤ h(t) in [−1, 1)).

Corollary. If C ⊂ H(n, q) has energy W (n,C , h) > ULB and
Pj(n, s) ≥ 0 for every j ∈ {τ + 1, . . . , n} then C is can not be proved
to be LP-universally optimal with f (t) ≤ h(t) in [−1, 1).

Proof. There are �nitely many, n − τ , namely, test functions to be
checked.

Cohn-Zhao (2012) note that proof of LP-universal optimality can be
given by brute force by solving n linear programs (one per degree).
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Higher degrees bounds (4)

Following the analogy with the upper LP bounds on Aq(n, s) we have
to target:
(1) zero coe�cients in the Krawtchouk expansion of the optimal
polynomials f (t);
(2) touching points of the graphs of the optimal polynomials f (t) and
the potential function h(t).

We assume that n and M are such that Pj(n, s) < 0 for some
j ∈ {τ + 3, τ + 4}.
q = 2 � we know that for Pτ+1(n, s) > 0 and Pτ+2(n, s) > 0 in the
open interval Iτ .
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Higher degrees bounds (5)

Theorem. (for τ = 2k − 1) If an optimal polynomial of degree τ + 4
has fi > 0 for i = 1, 2, . . . , τ = 2k − 1 then the graph of f (t) touches
the graph of h(t) at k + 1 =

[
τ+3
2

]
points.

For particular potentials � lemmas that show that fi = 0 is necessary
for some indexes i .

Algorithm for �nding optimal improving polynomials of degrees τ + 3
and τ + 4.
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Examples (1)

q = 2, n = 19, M = 20, τ = 2 � there are two non-isomorphic binary
2-designs of 20 points in H(19, 2). They have the same unique
distance distribution

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0).

All bounds (the universal, with Lagrange interpolations, the
combinatorial) coincide with the actual energy � these designs are
optimal.
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Examples (2)

The Best code � optimal (nonlinear) binary code of length 10 with 40
codewords and minimum distance 4; q = 2, n = 10, M = 40, τ = 3 �
unique distance distribution (1, 0, 0, 0, 22, 0, 12, 0, 5, 0, 0). Therefore
the combinatorial bound gives the actual energy, i.e. the Best code is
optimal.

The other bounds are very close, for example if h =
1

2(1− t)
then the

actual energy is 812.5, the universal bound is ≈ 807.222, the
pair-covering bound is ≈ 808.571, obtained by

f (t) =
125

448
t3 +

225

448
t2 +

115

224
t +

1

2

=
45

224
Q10,2
0 (t) +

405

896
Q10,2
1 (t) +

265

448
Q10,2
2 (t) +

493

896
Q10,2
3 (t)
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Examples (3)

Moreover, better bound of ≈ 809.167 can be obtained by a polynomial of
degree 7

f (t) = 0.27680344120t7 − 0.3875248178t5 + 0.4402281803t3

+0.52083333375t2 + 0.5038265303t + 0.5

= 0.552083333375Q10,2
0 (t) + 0.598958333500Q10,2

1 (t)

+0.468750000375Q10,2
2 (t) + 0.217633928625Q10,2

3 (t)

+0.016741072125Q10,2
7 (t).
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Examples (4)

q = 2, n = 9, M = 128, τ = 5 � there is a unique binary 5-design of
128 points in H(9, 2). It has a unique distance distribution
(1, 0, 9, 27, 27, 27, 27, 9, 0, 1).

For h =
1

2(1− t)
the actual energy is 9085.49, the universal bound is

≈ 9054.82, the pair-covering bound is ≈ 9073.03, obtained by

f (t) = 0.4118931362t5 + 0.7780203683t4 + 0.6407226562t3

+0.4870396205t2 + 0.4862234933t + 0.4987792969

= 0.1054687500Q9,2
0 (t) + 0.3585937500Q9,2

1 (t)

+0.6890625000Q9,2
2 (t) + 0.8256696429Q9,2

3 (t)

+0.7443080357Q9,2
4 (t) + 0.5795758929Q9,2

5 (t)
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Examples (5)

Here, the best lower bound is equal to the actual energy 9085.49 can be
obtained by a polynomial of degree 9

f (t) = 3.202285254t9 + 1.824557875t8 − 5.538491637t7

−3.153556821t6 + 2.745477514t5 + 1.917797959t4

+0.302460339t3 + 0.373690142t2 + 0.502107814t

+0.501350130

= 0.575453404Q9,2
0 (t) + 0.708272879Q9,2

1 (t)

+0.708649553Q9,2
2 (t) + 0.478710937Q9,2

3 (t)

+0.164355468Q9,2
4 (t) + 0.023856026Q9,2

7 (t)

+0.015380859Q9,2
8 (t) + 0.002999441Q9,2

9 (t)

Therefore this code is optimal.
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Future work

Formulas for higher degree bounds

Bounds for inner products in [`, u] ⊂ [1−, 1]

Upper bounds (for codes and design separately)

List of optimal codes

Asymptotic bounds � the asymptotic of the universal bounds must be
studied.
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THANK YOU FOR YOUR ATTENTION !
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