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Spherical codes and designs (1)

Let Sn−1 denote the unit sphere in Rn.

We work with the the usual distance

d(x , y) =
(
(x1 − y1)

2 + · · ·+ (xn − yn)
2
)1/2

,

where x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Sn−1, and the usual inner
product

〈x , y〉 = x1y1 + · · ·+ xnyn.

On Sn−1, we have

〈x , y〉 = 1− d2(x , y)

2
, d(x , y) =

√
2(1− 〈x , y〉)

and we prefer to work with the inner products.
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Spherical codes and designs (2)

We refer to a �nite set C ⊂ Sn−1 as a spherical code.

A spherical τ -design is a spherical code such that

1

µ(Sn−1)

∫
Sn−1

f (x)dµ(x) =
1

|C |
∑
x∈C

f (x)

(µ(x) is the Lebesgue measure) holds for all polynomials
f (x) = f (x1, x2, . . . , xn) of total degree at most τ . The maximal
number τ = τ(C ) such that C is a spherical τ -design is called the
strength of C .
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Spherical codes and designs (3)

Parameters of spherical designs: the dimension n, the strength τ , the
cardinality |C | = M, the minimum distance

d(C ) = min{d(x , y) : x , y ∈ C , x 6= y},

the maximal inner product (or maximal cosine)

s(C ) = max{〈x , y〉 : x , y ∈ C , x 6= y},

the covering radius

ρ(C ) = min
y∈Sn−1

max
x∈C
〈x , y〉,

the mesh ratio

MR(C ) = 2

√
1− ρ(C )

1− s(C )
.
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Energy of spherical codes/designs

Let h(t) : [−1, 1)→ (0,+∞) be given function. The h-energy (or
potential energy) of C is de�ned by

E (n,C ; h) :=
∑

x ,y∈C ,x 6=y

h(〈x , y〉).

A commonly arising problem is to minimize the potential energy
provided the cardinality |C | of C is �xed; that is, to determine

E(n,N; h) := inf{E (n,C ; h) : |C | = N}

the minimum possible h-energy of a spherical design (or code) of
cardinality N.

For our main results we require h to be (strictly) absolutely monotone

on [-1,1); i.e., the k-th derivative of h satis�es h(k)(t) ≥ 0
(h(k)(t) > 0) for all k ≥ 0 and t ∈ [−1, 1).
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Energy of spherical τ -designs

Let C ⊂ Sn−1 be a spherical τ -design and E (n,C ; h) be the h-energy
of C .

Denote by

L(n,N, τ ; h) = inf{E (n,C ; h) : |C | = N,C ⊂ Sn−1,C is τ -design}

the minimum possible h-energy of spherical τ -designs on Sn−1 of N
points,

Similarly,

U(n,N, τ ; h) = sup{E (n,C ; h) : |C | = N,C ⊂ Sn−1,C is τ -design}

the maximum possible h-energy of spherical τ -designs on Sn−1 of N
points.
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Preliminaries � Delsarte-Goethals-Seidel bounds

For �xed strength τ and dimension n denote by

B(n, τ) = min{|C | : ∃ τ -design C ⊂ Sn−1}

the minimum possible cardinality of spherical τ -designs C ⊂ Sn−1.
Then Delsarte-Goethals-Seidel bound is

B(n, τ) ≥ D(n, τ) =

 2
(n+k−2

n−1
)
, if τ = 2k − 1,(n+k−1

n−1
)
+
(n+k−2

n−1
)
, if τ = 2k .
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Preliminaries � Gegenbauer polynomials

For �xed dimension n, the Gegenbauer polynomials are de�ned by

P
(n)
0 = 1, P

(n)
1 = t

and the three-term recurrence relation (for k ≥ 1)

(i + n − 2)P
(n)
i+1(t) = (2i + n − 2)tP

(n)
i (t)− iP

(n)
i−1(t).

If f (t) ∈ R[t] is a real polynomial of degree m then f (t) can be
uniquely expanded in terms of the Gegenbauer polynomials as

f (t) =
m∑
i=0

fiP
(n)
i (t).
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Preliminaries � main identity

The identity

|C |f (1) +
∑

x ,y∈C ,x 6=y

f (〈x , y〉) = |C |2f0 +
m∑
i=1

fi
ri

ri∑
j=1

(∑
x∈C

vij(x)

)2

.

holds true for: any C ⊂ Sn−1 � a spherical code, any

f (t) =
∑m

i=0 fiP
(n)
i (t), where {vij(x) : j = 1, 2, . . . , ri} is an

orthonormal basis of the space Harm(i) of homogeneous harmonic
polynomials of degree i and ri = dim Harm(i).

An equivalent de�nition of spherical designs says that∑
x∈C

vij(x) = 0

for every i ≤ τ and every j ≤ ri .
This suggests that polynomials of degree at most τ could be useful �
the right hand side of main identity is then reduced to |C |2f0.
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Preliminaries � Levenshtein bounds for spherical codes (1)

For every positive integer m we consider the intervals

Im =


[
t1,1k−1, t

1,0
k

]
, if m = 2k − 1,[

t1,0k , t1,1k

]
, if m = 2k .

Here t1,10 = −1, ta,bi , a, b ∈ {0, 1}, i ≥ 1, is the greatest zero of the

Jacobi polynomial P
(a+ n−3

2
,b+ n−3

2
)

i (t).

The intervals Im de�ne partition of I = [−1, 1) to countably many
non-overlapping closed subintervals.
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Preliminaries � Levenshtein bounds for spherical codes (2)

For every s ∈ Im, Levenshtein used a polynomial f
(n,s)
m (t) of degree m

which satisfy all conditions of the linear programming bounds for
spherical codes. This yields the bound

A(n, s) ≤



L2k−1(n, s) =
(k+n−3

k−1
)[

2k+n−3
n−1 − P

(n)
k−1(s)−P

(n)
k (s)

(1−s)P(n)
k (s)

]
for s ∈ I2k−1,

L2k(n, s) =
(k+n−2

k

)[
2k+n−1
n−1 − (1+s)(P

(n)
k (s)−P(n)

k+1(s))

(1−s)(P(n)
k (s)+P

(n)
k+1(s))

]
for s ∈ I2k .

For every �xed dimension n each bound Lm(n, s) is smooth and
strictly increasing with respect to s. The function

L(n, s) =

{
L2k−1(n, s), if s ∈ I2k−1,
L2k(n, s), if s ∈ I2k ,

is continuous in s.
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Preliminaries � connections between DGS- and L-bounds (1)

The connection between the Delsarte-Goethals-Seidel bound and the
Levenshtein bounds are given by the equalities

L2k−2(n, t
1,1
k−1) = L2k−1(n, t

1,1
k−1) = D(n, 2k − 1),

L2k−1(n, t
1,0
k ) = L2k(n, t

1,0
k ) = D(n, 2k)

and the ends of the intervals Im.
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Preliminaries � connections between DGS- and L-bounds (2)

For every �xed (cardinality) N > D(n, 2k − 1) there exist uniquely
determined real numbers −1 < α0 < α1 < · · · < αk−1 < 1 and
ρ0, ρ1, . . . , ρk−1, ρi > 0 for i = 0, 1, . . . , k − 1, such that the equality

f0 =
f (1)

N
+

k−1∑
i=0

ρi f (αi )

holds for every real polynomial f (t) of degree at most 2k − 1.

The numbers αi , i = 0, 1, . . . , k − 1, are the roots of the equation

Pk(t)Pk−1(s)− Pk(s)Pk−1(t) = 0,

where s = αk−1, Pi (t) = P
(n−1)/2,(n−3)/2
i (t) is a Jacobi polynomial.

In fact, αi , i = 0, 1, . . . , k − 1, are the roots of the Levenshtein's

polynomial f
(n,αk−1)
2k−1 (t).

Peter Boyvalenkov Linear programming method, Levenshtein bounds on maximal codes and Delsarte-Goethals-Seidel bounds on minimal designs18-24 August 2015 15 / 46



Preliminaries � connections between DGS- and L-bounds (3)

Similarly, for every �xed (cardinality) N > D(n, 2k) there exist
uniquely determined real numbers −1 = β0 < β1 < · · · < βk < 1 and
γ0, γ1, . . . , γk , γi > 0 for i = 0, 1, . . . , k , such that the equality

f0 =
f (1)

N
+

k∑
i=0

γi f (βi ) (1)

is true for every real polynomial f (t) of degree at most 2k .

The numbers βi , i = 0, 1, . . . , k , are the roots of the Levenshtein's

polynomial f
(n,βk )
2e (t).

V. I. Levenshtein, Designs as maximum codes in polynomial metric
spaces, Acta Appl. Math. 25, 1992, 1-82.
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Preliminaries � connections between DGS- and L-bounds (4)

In what follows we always take care where the cardinality N is located
with respect to the Delsarte-Goethals-Seidel bound. It follows from
the properties of the bounds D(n, τ) and Lm(n, s) that

N ∈ [D(n, τ),D(n, τ + 1)] ⇐⇒ s ∈ Im,

where s and N are connected by the equality

N = Lτ (n, s).

Therefore we can always associate N with the corresponding numbers:

α0, α1, . . . , αk−1, ρ0, ρ1, . . . , ρk−1 when N ∈ [D(n, 2k − 1),D(n, 2k))

or with

β0, β1, . . . , βk , γ0, γ1, . . . , γk when N ∈ [D(n, 2k),D(n, 2k + 1)).
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LP bounds � lower bounds for L(n,N , τ ; h)

Theorem 1.

Let N, n, τ and h be �xed and f (t) be a real polynomial such that

(A1) f (t) ≤ h(t) for −1 ≤ t ≤ 1.

(A2) the coe�cients in the Gegenbauer expansion

f (t) =
∑deg(f )

i=0 fiP
(n)
i (t) satisfy fi ≥ 0 for i ≥ τ + 1.

Then L(n,N, τ ; h) ≥ N(f0N − f (1)).

An,N,τ ;h � the set of good polynomials
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LP bounds � upper bounds for U(n,N , τ ; h)

Theorem 2.

Let N, n, τ and h be �xed. Suppose that there exists t0 ∈ [−1, 1]
such that no τ -design on Sn−1 of N points can have inner products in
the interval (t0, 1). Let g(t) be a real polynomial such that

(B1) g(t) ≥ h(t) for every t ∈ [−1, t0],

(B2) the coe�cients in the Gegenbauer expansion

g(t) =
∑deg(g)

i=0 giP
(n)
i (t) satisfy gi ≤ 0 for i ≥ τ + 1.

Then U(n,N, τ ; h) ≤ N(g0N − g(1)).

Bn,N,τ ;h � the set of good polynomials
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Why spherical designs? (1)

Spherical designs allow nontrivial upper bounds on their energy.

In general, a spherical code can have close points (inner products close
to 1) and for h tending to in�nity as t tends to 1 from below we
obtain energies tending to in�nity.
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Lower bounds (ULB) (1)

We need Hermite's interpolation to h(t) as follows. De�ne

(i) the polynomial f (t) of degree τ = 2k − 1 by

f (αi ) = h(αi ), f
′(αi ) = h′(αi ), i = 0, 1, . . . , k − 1.

(ii) the polynomial f (t) of degree τ = 2k by

f (β0) = h(β0), f (βi ) = h(βi ), f
′(βi ) = h′(βi ), i = 1, . . . , k .

These conditions de�ne a Hermite's interpolation problem for f (t) to
intersect and touch the graph of the potential function h(t).
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Lower bounds (ULB) (2)

Theorem 3. Let n, τ , N ∈ (D(n, τ),D(n, τ + 1)] and h be �xed.
Then the polynomials from (i) and (ii) give the bounds

L(n,N, 2k − 1; h) ≥ N2
k−1∑
i=0

ρih(αi ),

L(n,N, 2k ; h) ≥ N2
k∑

i=0

γih(βi ),

respectively.
These bounds can not be improved by using polynomials from
An,N,2k−1;h of degree at most 2k − 1 and An,N,2k;h of degree at most
2k , respectively.
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Lower bounds (ULB) (3)

Proof of Theorem 3 (case τ = 2k − 1).

� The condition (A2) is trivially satis�ed since deg(f ) = 2k − 1 = τ .

� The condition (A1) follows from the Hermite interpolation and the
Role theorem.

� The calculation of the bound: we have f0 =
f (1)

N
+

k−1∑
i=0

ρi f (αi )

whence N(f0N − f (1)) = N2
k−1∑
i=0

ρi f (αi ) = N2
k−1∑
i=0

ρih(αi ). Therefore

L(n,N, 2k − 1; h) ≥ N(f0N − f (1)) = N2
k−1∑
i=0

ρih(αi ).

� The optimality of the bound: s can not be improved by using
polynomials from An,N,2k−1;h of degree at most 2k − 1 and An,N,2k;h

of degree at most 2k , respectively.
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Lower bounds (ULB) (4)

� The optimality of the bound: if g(t) ∈ An,N,2k−1;h is another polynomial
of degree at most 2k − 1, then

N(g0N − g(1) = N2
k−1∑
i=0

ρig(αi ) ≤ N2
k−1∑
i=0

ρih(αi ) = N2
k−1∑
i=0

ρi f (αi )

= N(f0N − f (1)).

i.e. the bound by g is not better than the bound by f .
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Why spherical designs? (2)

Spherical designs allow very easy proof of our bound.

For spherical codes we need to prove in addition the positive
Gegenbauer expansion.
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Two ways for improving ULB � Shorter intervals and Higher
degrees

The ULB bounds are optimal in some sense � they can not be
improved by polynomials from An,M,τ ;h of degree τ or lower.

First way for obtaining better bounds � making better LP by
subintervals of [−1, 1) based on preliminary (nontrivial) information on
inner products (of τ -designs of N points on Sn−1). This is exactly the
case when τ is even.

Second way for obtaining better bounds � using LP with higher degree
polynomials. There are necessary and su�cient conditions for the
global optimality of ULB, and we can do better when the ULB in not
globally optimal.
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Why spherical designs? (3)

Spherical designs allow nontrivial subintervals of [−1, 1] to be used.
Indeed, in all cases (n, τ = 2k ,N ∈ (D(n, 2k),D(n, 2k + 1))) it can be
proved that all inner products belong to some subinterval [`, u] of
[−1, 1], −1 < ` < s < 1.

For spherical codes any shrinking of the interval [−1, 1] means that we
do not consider all possible codes (of that dimension and cardinality).
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Improving ULB � Shorter interval (1)

Denote

u(n,N, τ) = sup{s(C ) : C ⊂ Sn−1 is a τ -design, |C | = N},

and

`(n,N, τ) = inf{`(C ) : C ⊂ Sn−1 is a τ -design, |C | = N},

where `(C ) = min{〈x , y〉 : x , y ∈ C , x 6= y}.
For every n, τ and cardinality N ∈ [D(n, τ),D(n, τ + 1)] non-trivial
upper bounds on u(n,N, τ) can be obtained. Similarly, for even
τ = 2k and cardinality N ∈ [D(n, 2k),D(n, 2k + 1)) non-trivial lower
bounds on `(n,N, 2k) are possible. We describe here explicitly the
cases τ = 2 and τ = 4.
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Improving ULB � Shorter interval (2)

Further equivalent de�nition: A spherical τ -design C ⊂ Sn−1 is a
spherical code such that∑

y∈C
f (〈x , y〉) = f0|C |.

holds for any point x ∈ Sn−1 and any real polynomial

f (t) =
∑r

i=0 fiP
(n)
i (t) of degree at most τ .

Lemma. a) For every n ≥ 3 and every
N ∈ [D(n, 2),D(n, 3)] = [n + 1, 2n] we have

u(n,N, 2) ≤ N − 2

n
− 1.

b) For every n ≥ 3 and every
N ∈ [D(n, 4),D(n, 5)] = [n(n + 3)/2, n(n + 1)] we have

u(n,N, 4) ≤
2(3+

√
(n − 1)[(n + 2)N − 3(n + 3)])

n(n + 2)
− 1.
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Improving ULB � Shorter interval (3)

Lemma. a) For every n ≥ 3 and every
N ∈ [D(n, 2),D(n, 3)] = [n + 1, 2n] we have

`(n,N, 2) ≥ 1− N

n
.

b) For every n ≥ 3 and for every
N ∈ [D(n, 4),D(n, 5)] = [n(n + 3)/2, n(n + 1)] we have

`(n,N, 4) ≥ 1− 2

n

(
1+

√
(n − 1)(N − 2)

n + 2

)
.

Further bounds on u(n,N, τ) and `(n,N, τ) can be obtained by a
technique from B.-Boumova-Danev, Necessary conditions for existence
of some designs in polynomial metric spaces, Europ. J. Combin., 20
213-225, 1999. For τ ≥ 4 such bounds are better in higher dimensions
than these from the Lemmas.
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Improving ULB � Shorter interval (4)

Theorem. Let n, N ∈ [D(n, 2k),D(n, 2k + 1)], τ = 2k and h be
�xed. Let f (t) be a real polynomial which satis�es (A2) and
(A1′) f (t) ≤ h(t) for `(n,N, 2k) ≤ t ≤ u(n,N, 2k).
Then L(n,N, 2k; h) ≥ N(f0N − f (1)).

Theorem. (degree two) For every n, N ∈ [n + 1, 2n] and h:

L(n,N, 2; h) ≥ N[h(0)N(N − n − 1) + nh(1− N/n)]

N − n
.

Sketch of proof. Use f (t): f (`) = h(`), f (a) = h(a) and f ′(a) = h′(a)
for some a ∈ (`, 1). The optimization of a to maximize f0N − f (1)

gives best value at a0 =
n(1−`)−N
n(1−`)+`Nn which turns to a0 = 0 for

` = 1− N/n. Plug in f0N − f (1) to get the desired bound. �
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Improving ULB � Shorter interval (5)

Corollary. If n and N = ξn, ξ ∈ (1, 2) is constant, tend
simultaneously to in�nity then

L(n,N, 2; h) & h(0)N2 +
N[h(1− ξ)− ξh(0)]

ξ − 1
.

Proof. Plug n = N/ξ and ` = 1− ξ. �

Lower bounds for the energy of 4-designs in shorter intervals can be
obtained by interpolation with polynomials of degree four:

f (`) = h(`), f (a) = h(a), f ′(a) = h′(a), f (b) = h(b), f ′(b) = h′(b),

where the touching points a and b must be chosen to maximize
f0N − f (1) � as in the previous talk.
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Improving ULB � Higher degrees (1)

Let n and N be �xed, N ∈ [D(n, 2k − 1),D(n, 2k)), Lτ (n, s) = N and
j be positive integer.

We introduce the following functions in n and s ∈ I2k−1

Qj(n, s) =
1

N
+

k−1∑
i=0

ρiP
(n)
j (αi ) (2)

(note that P
(n)
j (1) = 1).

It follows that Qj(n, s) = 0 for every 1 ≤ j ≤ 2k − 1 and every
s ∈ I2k−1 (since this is the coe�cient f0 = 0 in the Gegenbauer

expansion of P
(n)
j (t)). So the functions Qj(n, s) are not interesting in

these cases and we assume below that j ≥ 2k .

The next theorem shows that the functions Qj(n, s) give necessary
and su�cient conditions for existence of improving polynomials of
higher degrees.
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Improving ULB � Higher degrees (2)

Theorem. Assume that h is completely monotone. Then the bound

L(n,N, 2k − 1; h) ≥ N2
k−1∑
i=0

ρih(αi )

can be improved by a polynomial from An,N,2k−1;h of degree at least
2k if and only if Qj(n, s) < 0 for some j ≥ 2k .
Moreover, if Qj(n, s) < 0 for some j ≥ 2k , then that bound can be
improved by a polynomial from An,N,2k−1;h of degree exactly j .
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Improving ULB � Higher degrees (3)

The test functions Qj(n, s) coincide algebraically with the functions
with the same name which were introduced and investigated in
B.-Danev-Bumova, Upper bounds on the minimum distance of
spherical codes, IEEE Trans. Inform. Theory 42, 1996, 1576-1581.

Theorem. The bounds L(n,N, 2k − 1; h) ≥ N2
∑k−1

i=0 ρih(αi ) can not
be improved by using polynomials of degrees 2k and 2k + 1.

Corollary. Any improving polynomial must have degree at least
2k + 2.

Algorithm for �nding improving polynomials of degrees 2k + 2 and
2k + 3 � as in the previous talk.
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Improving ULB � Higher degrees (4)

Theorem. The function Q2k+3(n, s) has the following properties for
n ≥ 3, k ≥ 2 and s ∈ I2k−1:
If k ≥ 9 and 3 ≤ n ≤ k2−4k+5+

√
k4−8k3−6k2+24k+25

4
, then

Q2k+3(n, s) < 0 for every s ∈
(
t1,1e−1, t

1,0
e

]
.

Thus in �xed dimension all ULBs
L(n,N, 2k − 1; h) ≥ N2

∑k−1
i=0 ρih(αi ) with su�ciently large k can be

improved.

Corollary. There could exist only �nitely many sharp con�gurations
(the same as codes attaining the odd Levenshtein bound L2k−1(n, s)
for some n ≥ 3 and s ∈ I2k−1 and k ≥ 2) in any �xed dimension.
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Upper bounds (1)

Theorem. Let n, N ∈ [D(n, 2k),D(n, 2k + 1)], τ = 2k and h be �xed
and g(t) be a real polynomial which satis�es (B2) and
(B1′) g(t) ≥ h(t) for `(n,N, 2k) ≤ t ≤ u(n,N, 2k).
Then U(n,N, τ ; h) ≤ N(g0N − g(1)).

Upper bound for 2-designs:

U(n,N, 2; h) ≤ N[(N − 1)(uh(`)− `h(u)) + h(`)− h(u)]

u − `

for every n, N ∈ [n + 1, 2n] and h.
Proof. Use the linear polynomial which graph passes through the
points (`, h(`)) and (u, h(u)). �
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Upper bounds (2)

If n and N = ξn, ξ ∈ (1, 2) is constant, tend simultaneously to in�nity,
then

U(n,N, 2; h)

N2
.

h(1− ξ) + h(ξ − 1)

2
+

(2− ξ)h(1− ξ)− ξh(ξ − 1)

2N(ξ − 1)
.

We now have an asymptotic strip for the energy E of spherical
2-designs of N = ξn ∈ [n + 1, 2n − 1] points:

h(0) +
h(1− ξ)− ξh(0)

(1− ξ)N
.

E

N2
.

h(1− ξ) + h(ξ − 1)

2

+
(2− ξ)h(1− ξ)− ξh(ξ − 1)

2(ξ − 1)N
.
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Upper bounds (3)

Upper bound for 3- and 4-designs:

U(n,N, τ ; h) ≤ N(N − 1)h(a0) +

+
(h(`)− h(a0))

[
uN(1+ na20) + 2Na0 + n(1− u)(1− a0)

2
]

n(u − `)(`− a0)2

+
(h(u)− h(a0))

[
`N(1+ na20) + 2Na0 + n(1− `)(1− a0)

2
]

n(u − `)(u − a0)2
,

for τ = 3, every n and N ∈ [2n, n(n+3)
2

], and for τ = 4, every n and

N ∈ [n(n+3)
2

, n2 + n], where a0 =
N(`+u)+n(1−`)(1−u)

n(1−`)(1−u)−N(1+`un) .

Proof. Use third degree polynomial which graph passes through the
points (`, h(`)) and (u, h(u)) and touches the graph of h(t) (from
above) at the point (a0, h(a0)). �
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Upper bounds (4)

Theorem. If n and N tend to in�nity in relation N = n2ξ, where
ξ ∈ [1/2, 1) is a constant, then

U(n,N, 4; h) . h(0)N2 − h(0)N + c1
√
N + c2,

where c1 and c2 are certain constants.
Proof. The asymptotic forms of our parameters is:

u(n,N, 4) ∼ 2
√
ξ − 1 (from Lemma),

`(n,N, 4) ∼ 1− 2
√
ξ (from Lemma),

a0 ∼ 0 (from above),

now plug these. �
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Example: compare lower and upper bounds for 2-designs (1)

The upper bounds coincide exactly when N = n + 1 or N = n + 2 for
every n and h.

The case N = n + 1 leads to the regular simplex on Sn−1.

The case N = n + 2 is more interesting � Mimura (1990) has proved
that spherical 2-designs with n + 2 points on Sn−1 do exists if and
only if n is even. The nonexistence result follows easily from the
coincidence.

It also follows that the 2-designs of n + 2 points for even n are unique
(�rstly proved by Sali in 1993) and optimal � they have simultaneously
minimum and maximum possible energy.
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Example: compare lower and upper bounds for 2-designs (2)

Furthermore, the case N = n + 2 (n ≥ 4 is even) is suitable to show
that the design property is important.

There are codes with N = n + 2 points which are not 2-designs and
which have smaller or greater energy.

Take two simplices of
n − 2k

2
and

n + 2k + 4

2
points, k = 0, 1, 2, . . .,

and place them orthogonal to each other. Then the di�erent distances
will prevail for suitable functions h(t). We can arrange to obtain less
or larger energies.
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Asymptotic bounds (1)

Let the dimension n and the cardinality N tend simultaneously to
in�nity in the relation

lim
N

nk−1
=

1

(k − 1)!
+ γ,

where γ ≥ 0 is a constant, i.e. N ∼ nk−1( 1
(k−1)! + γ).

We know the asymptotic behaviour of the parameters:

αi ∼ 0, for i = 1, 2, . . . , k − 1,

α0 ∼ −
1

1+ γ(k − 1)!
,

ρ0N ∼ (1+ γ(k − 1)!)2k−1.
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Applications � asymptotic bounds (2)

Now the bounds are easy to be calculated �

L(n,N, 2k − 1; h) ≥ N2
k−1∑
i=0

ρih(αi )

∼ h(0)N2.

The bound of h(0)N2 ∼ ch(0)n4 is attained by the spherical
realization of the Kerdock codes (in dimensions 22`).

Similarly, in the even case we obtain

L(n,N, 2k ; h) & h(0)N2.

Peter Boyvalenkov Linear programming method, Levenshtein bounds on maximal codes and Delsarte-Goethals-Seidel bounds on minimal designs18-24 August 2015 44 / 46



Work in progress and future work

General (universal) bounds in shorter intervals

General (universal) bounds by higher degrees

General (universal) upper bounds

Bounds for codes and designs in Hamming spaces, with special
interest to the binary case

Bounds for codes and designs in Johnson spaces

Bounds for codes and designs in in�nite projective spaces

Bounds for energy of Euclidean designs
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THANK YOU FOR YOUR ATTENTION !
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