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Statement of the problem

We use the standard notation L
(α,β)
q = L

(α,β)
q (−1, 1), 1 ≤ q <∞,

for the space of complex-valued functions f measurable on (−1, 1)
and such that the function |f |q is integrable over (−1, 1) with
Jacobi weight φ(α,β)(x) = (1− x)α(1 + x)β, α, β > −1.
This is a Banach space with respect to the norm

‖f ‖
L
(α,β)
q (−1,1) =

 1∫
−1

|f (x)|q(1− x)α(1 + x)β dx

1/q

.



Statement of the problem

In the limiting case q =∞, we assume that L(α,β)q is the classical
space L∞ = L∞(−1, 1) of measurable (complex-valued) functions
essentially bounded on (−1, 1) with the norm

‖f ‖L∞ = ess sup {|f (x)| : x ∈ (−1, 1)}. (∗)

This space contains the space C = C [−1, 1] of (complex-valued)
functions continuous on [−1, 1] where (∗) becomes the uniform
norm

‖f ‖C [−1,1] = max{|f (x)| : x ∈ [−1, 1]}.



Statement of the problem

Let Pn = Pn(C), n ≥ 0, be the set of algebraic polynomials (in
one variable) of degree (at most) n with complex coefficients.

Denote by Mn = M
(α,β)
n,q the best (i.e., the least possible) constant

in the inequality

‖pn‖C [−1,1] ≤ Mn ‖pn‖L(α,β)q (−1,1), pn ∈Pn. (1)



Statement of the problem

Our aim is to study polynomials extremal in inequality (1), i.e.,
polynomials ρn ∈Pn, ρn 6≡ 0, at which the inequality turns into an
equality.

In particular, we are interested in the uniqueness property of an
extremal polynomial.

It is clear that if a polynomial ρn is extremal, then the polynomial
cρn with any constant c 6= 0 is also extremal.

If ρn is an extremal polynomial in inequality (1) and any other
extremal polynomial has the form cρn, c 6= 0, then ρn is said to be
the unique extremal polynomial in inequality (1).



A background

Inequality (1) is a special case of a different metrics inequality or
Nikol’skii type inequality. Such inequalities and, more generally,
inequalities between the uniform norm and integral norms with
weights (especially with Jacobi weights) of derivatives of algebraic
polynomials and the polynomials themselves were studied during a
century and a half. A number of results is huge.
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A background

Let us describe results related to inequality (1) that are known to
the present.

A.Lupas (1974) obtained sharp inequality (1) for q = 2 and Jacobi
weight with parameters α, β ≥ −1/2. He found the best constant
and an extremal polynomial.

The Jacobi weight with α = β = −1/2 is called the Chebyshev
weight. Inequality (1) for the Chebyshev weight can be written as
the classical Nikol’skii inequality between the uniform norm and the
Lq-norm (with unit weight) on the set of trigonometric polynomials
of degree (at most) n.

Probably, Jackson was the first to study such inequality (1933,
q = 2).



A background

The case q = 1 is the most completely studied. This version of the
different metrics inequality was studied by Stechkin (1965), Taikov
(1965, 1993), V.Babenko, Kofanov, and Pichugov (2002), and
Gorbachev (2005).

Glazyrina and Simonov (2015) constructed a polynomial extremal
in inequality (1) with the Chebyshev weight for q = 1 (in the form
of a linear combination of Chebyshev polynomials of the first kind),
proved its uniqueness, and showed that its uniform norm is attained
at an end point of the interval [−1, 1].



Restrictions on parameters

In 2014–2015, the authors studied inequality (1) for the
ultraspherical weight (α = β > −1/2). The present talk is devoted
to an extension of the result.

Studying inequality (1), it is sufficient to consider the case α ≥ β.
Besides, our methods can be applied only for α, β ≥ −1/2.
Therefore, in what follows, we basically suppose that
α ≥ β ≥ −1/2.



End point version of the Nikol’skii inequality

Along with inequality

‖pn‖C [−1,1] ≤ Mn ‖pn‖L(α,β)q (−1,1), pn ∈Pn, (1)

consider an auxiliary inequality

|pn(1)| ≤ Dn ‖p‖L(α,β)q (−1,1), pn ∈Pn, (2)

with the best constant Dn = D
(α,β)
n,q . This inequality is also of

independent interest. It is clear that Dn ≤ Mn. We will show below
that, in fact, Dn = Mn at least for α ≥ β ≥ −1/2.



Polynomials that deviate least from zero

Given the Jacobi weight

φ(α+1,β)(x) = φ(α,β)(x)(1− x) = (1− x)α+1(1 + x)β,

a parameter q, 1 ≤ q <∞, and an integer n ≥ 1, denote by
%n = %

(α+1,β)
n,q the polynomial of degree n with unit leading

coefficient that deviates least from zero in the space L
(α+1,β)
q .

The polynomial %n is a solution of the problem

min{‖pn‖L(α+1,β)
q

: pn ∈P1
n} = ‖%n‖L(α+1,β)

q
, (3)

where P1
n is the set of polynomials pn(x) = xn +

∑n−1
k=0 akx

k

of degree n with leading coefficient 1.



Polynomials that deviate least from zero

Polynomials that deviate least from zero first appeared in
Chebyshev’s studies. He found (1854) polynomials that deviate
least from zero in the space C [−1, 1]. These polynomials are called
the Chebyshev polynomials of the first kind.

A.N.Korkin and E.I.Zolotarev (1873) solved such problem
in L(−1, 1); the extremal polynomials are the Chebyshev
polynomials of the second kind.

Later on, E.I.Zolotarev, Ya.L.Geronimus, F.Peherstorfer, V.E.Geit,
A.L.Lukashov, I.E.Simonov, and many others studied algebraic and
trigonometric polynomials with several leading coefficients fixed and
under some other restrictions that deviate least from zero with
respect to the uniform and integral norms.



Polynomials that deviate least from zero

The solution of the problem

min{‖pn‖L(α+1,β)
q

: pn ∈P1
n} = ‖%n‖L(α+1,β)

q
(3)

for q = 2 is well known. In this case, the Jacobi polynomial
R
(α+1,β)
n divided by its leading coefficient solves the problem.

For q = 1 and non-negative integer α and β, problem (3) reduces
to studying a system of n polynomial equations in n variables which
can be solved at least for small n immediately or by finding a
Grobner basis.



Main result

Theorem 1

For α > β ≥ −1/2, 1 ≤ q <∞, and n ≥ 1, the following
statements are valid.
1. The best constants in inequalities (1) and (2) coincide:

M
(α,β)
n,q = D

(α,β)
n,q .

2. The polynomial %n that deviates least from zero with respect to
the norm of the space L

(α+1,β)
q is the unique extremal polynomial in

both inequalities (1) and (2).
3. The polynomial %n and, hence, any polynomial extremal in
inequality (1) attain their uniform norms at the unique point x = 1.



Remarks on the proof

The fact that a polynomial extremal in inequality (1) attains its
uniform norm only at the right end point 1 of the interval plays an
important role in proving Theorem 1. To prove this fact we apply
the generalized translation operator generated by the Jacobi weight.



Background

For the ultraspherical case β = α, a statement similar to
Theorem 1 was proved in

[AD-2015] Arestov V., Deikalova M. Nikol’skii Inequality
Between the Uniform Norm and Lq-Norm with Ultraspherical
Weight of Algebraic Polynomials on a Segment // Computational
Methods and Function Theory. 2015.
DOI: 10.1007/s40315-015-0134-y



Background

For
α =

m − 3

2
, where m is an integer, m ≥ 3,

such statement was proved earlier in [AD-2013] simultaneously with
studying the Nikol’skii inequality between the uniform norm and the
Lq-norm of algebraic polynomials on the unit sphere of the
Euclidean space Rm, m ≥ 3.

[AD-2013] Arestov, V.V., Deikalova,M.V. Nikol’skii inequality
for algebraic polynomials on a multidimensional Euclidean sphere.
Trudy Inst. Mat. Mekh. Ural’sk. Otdel. Ross. Akad. Nauk 19(2)
34–47 (2013) = Proc. Steklov Inst. Math. 284 (Suppl. 1), S9–S23
(2014).



In [AD-2015] for β = α, we argued using the generalized translation
generated by the ultraspherical weight.

Arguments in the case β 6= α (the Jacobi weight) are similar but
with unique features.

Theorem 1 reduces the problem of studying inequality

‖pn‖C [−1,1] ≤ Mn ‖pn‖L(α,β)q (−1,1), pn ∈Pn. (1)

to studying the problem

min{‖pn‖L(α+1,β)
q

: pn ∈P1
n} = ‖%n‖L(α+1,β)

q
, (3)

which, in our opinion, is considerably simpler.



An auxiliary result

Lemma

For n ≥ 1, α, β > −1, and 1 ≤ q <∞, the polynomial %n is the
unique extremal polynomial in inequality

|pn(1)| ≤ Dn ‖p‖L(α,β)q (−1,1), pn ∈Pn. (2)

In fact [AD-2013], the lemma is valid for an arbitrary weight φ
nonzero almost everywhere.



Generalized translation operator

We prove Theorem 1 by means of the generalized translation
operator generated by the Jacobi weight φ(α,β). Initially, the
generalized translation operator is defined in the space L

(α,β)
2 .

This is a Hilbert space with the inner product

(f , g) = (f , g)
L
(α,β)
2

=

∫ 1

−1
f (x)g(x)(1− x)α(1 + x)βdx . (4)

The operator is defined on the base of expansion of functions into
series with respect to Jacobi polynomials. Let us list some
properties of the polynomials, which we use in what follows.

Let Rν = R
(α,β)
ν , ν ≥ 0, be a system of algebraic Jacobi

polynomials of degree ν orthogonal on the interval [−1, 1] with the
Jacobi weight; more exactly, orthogonal with respect to inner
product (4) and normalized by the condition Rν(1) = 1, ν ≥ 0.



Jacobi polynomials

In the case
α ≥ β > −1, α ≥ −1

2
, (5)

the following relation holds:

max{|Rν(x)| : x ∈ [−1, 1]} = Rν(1) = 1, ν ≥ 0. (6)

If the conditions

α > β > −1 and α ≥ −1

2

hold, which are more rigid than (5), then, for ν ≥ 1, the property

|Rν(x)| < Rν(1) = 1, x ∈ [−1, 1).

is valid, which is stronger than (6).



Jacobi polynomials

The system of Jacobi polynomials {Rν}ν≥0 forms an orthogonal
basis in the space L

(α,β)
2 . Thus, an arbitrary function f ∈ L

(α,β)
2 is

expanded into the Fourier series

f (x) =
∞∑
ν=0

fνRν(x), fν =
(f ,R

(α,β)
ν )

(R
(α,β)
ν ,R

(α,β)
ν )

. (7)

For a pair of functions f , g ∈ L
(α,β)
2 , the generalized version of

Parseval’s identity holds:

(f , g) =
∞∑
ν=0

δν fνgν , δν = (Rν ,Rν) = ‖Rν‖2
L
(α,β)
2

.

In particular, the norm of a function f ∈ L
(α,β)
2 can be expressed in

terms of its Fourier coefficients {fν} by Parseval’s identity:

‖f ‖2
L
(α,β)
2

=
∞∑
ν=0

δν |fν |2.



Generalized translation operator in the space L
(α,β)
2

The generalized translation operator with step t ∈ [−1, 1] is a linear
operator Θt defined on functions f ∈ L

(α,β)
2 with Fourier series (7)

by the relation

Θt f (x) =
∞∑
ν=0

fνRν(t)Rν(x). (8)



Probably, Legendre was the first to study the generalized
translation operator. It was in the early 18th century.

The generalized translation operator was used in studying several
problems of function theory on an interval: convergence of
Fourier–Jacobi series, direct and inverse theorems of approximation
of functions by algebraic polynomials in the spaces L(α,β)q (−1, 1),
and others; see, for example, the monograph

Askey, R. Orthogonal Polynomials and Special Functions. SIAM,
Philadelphia, 1975.



Generalized translation operator in the space L
(α,β)
2

(1) For α ≥ β > −1, α ≥ −1/2, and any t ∈ [−1, 1], the
generalized translation operator Θt is a bounded linear operator in
the space L

(α,β)
2 , and the norm of this operator is 1:

‖Θt‖L(α,β)2 →L
(α,β)
2

= 1.

(2) For α > β > −1, α ≥ −1/2, and t ∈ [−1, 1), the norm of the
operator Θt in the space L

(α,β)
2 is attained only at functions that

are constant almost everywhere on (−1, 1).



Generalized translation operator in the space L
(α,β)
2

The operator Θt can be extended by continuity to a bounded linear
operator in the space L

(α,β)
q , α ≥ β ≥ −1/2, 1 ≤ q <∞.



Norm of the generalized translation operator

Theorem 2

For α > β ≥ −1/2, 1 ≤ q <∞, and any t ∈ [−1, 1], the following
statements are valid.
1. The generalized translation operator Θt is a bounded linear
operator in the space L

(α,β)
q and

‖Θt‖L(α,β)q →L
(α,β)
q

= 1. (9)

2. For α > β ≥ −1/2, 1 < q <∞, and t ∈ [−1, 1), the norm of
the operator Θt is attained at a polynomial f if and only if f is a
constant.
3. For α > β ≥ −1/2, q = 1, and t ∈ [−1, 1), the norm of the
operator Θt is attained at a polynomial f 6≡ 0 if and only if f is of
constant sign on [−1, 1].



Norm of the generalized translation operator

The value of the norm of the generalized translation operator, i.e.,
the assertion (9), is known. It was proved in

[G-1971] Gasper G. Positivity and the Convolution Structure for
Jacobi Series. The Annals of Mathematics, Second Series, Vol. 93,
No. 1 (Jan., 1971), pp. 112–118.

Bavinck H. A special class of Jacobi series and some applications.
J. Math. Anal. Appl. 37, 767–797 (1972).



Norm of the generalized translation operator

R. Askey and S. Wainger, A convolution structure for Jacobi
series, Amer. J. Math. 91 (1969), 463-485

They proved that the formula

(Θt f )(x) =

∫ 1

−1
f (z)F (α,β)(x , t, z)(1− z)α(1 + z)βdz , (10)

holds for the generalized translation in the space L
(α,β)
1 with

α ≥ β ≥ −1/2, α > −1/2, and −1 ≤ x , t < 1; besides, the
function F (α,β) has a number of good properties; in particular, the
integral

∫ 1
−1 |F

(α,β)(x , t, z)|(1− z)α(1 + z)βdz is bounded by a
constant independent of x and t.



Norm of the generalized translation operator

G. Gasper [G-1971] showed that the function F (α,β) is nonnegative
and ∫ 1

−1
F (α,β)(x , t, z)(1− z)α(1 + z)βdz = 1.

This easily implies that the operator Θt has norm 1 in all spaces
L
(α,β)
q , 1 ≤ q <∞.

For us, it is important to find extremal functions, more precisely,
polynomials at which the norm is attained. This is a nontrivial
question. The point is that the support of the function F (α,β) in
(10) with respect to z does not coincide with (−1, 1) and depends
on x and t.



Norm of the generalized translation operator

To prove Theorem 1, we used an integral representation of the
generalized translation from

Koornwinder T. Jacobi polynomials, II. An analytic proof of the
product formula. SIAM J. Math. Anal. 5 (1), 125–137 (1974).



Integral representation of the generalized translation
operator

More precisely, Koornwinder proved that the generalized translation
admits the following integral representation for α > β > −1/2:

(Θt f )(x) =

=
1

κ(α, β)

∫ 1

0

∫ 1

−1
f (U)

(
1− ρ2

)α−β−1
ρ2β+1

(
1− ξ2

)β−1/2
dξdρ,

(11)

U = U(x , t, ρ, ξ) = tx+ρξ
√

1− t2
√

1− x2+
1

2
(ρ2−1)(1−t)(1−x),

κ(α, β) =

√
π Γ (α− β) Γ (β + 1/2)

2Γ(α + 1)
.

Formula (11) is valid at least on the set P = P(C) of all algebraic
polynomials with complex coefficients.



Conclusion remark

We consider the application of the generalized translation operator
in an extremal problem for algebraic polynomials to be one of the
key results of this research.



Thank you for your attention!


