Levenshtein-type bounds for codes with inner products in prescribed interval

Peter Dragnev
Indiana University-Purdue University Fort Wayne

Joint work "in progress" with: P. Boyvalenkov (BAS); D. Hardin, E. Saff (Vanderbilt); and M. Stoyanova (Sofia) (BDHSS)

Outline

- Levenshtein framework revisited
- Positive definite signed measures of given degree and orthogonality
- Gauss-type Radau quadrature
- ULB Theorem
- Levenshtein-type bound for "restricted" maximal codes

Recall: Minimal *h*-energy - preliminaries

- Spherical Code: A finite set $C \subset \mathbb{S}^{n-1}$ with cardinality |C|;
- Let the interaction potential $h:[-1,1]\to\mathbb{R}\cup\{+\infty\}$ be an absolutely monotone¹ function;
- The *h-energy* of a spherical code *C*:

$$E(n,C;h) := \sum_{x,y \in C, y \neq x} h(\langle x,y \rangle), \quad |x-y|^2 = 2-2\langle x,y \rangle = 2(1-t),$$

where $t = \langle x, y \rangle$ denotes Euclidean inner product of x and y.

Problem

Determine

$$\mathcal{E}(n, N; h) := \min\{E(n, C; h) : |C| = N, C \subset \mathbb{S}^{n-1}\}\$$

and find (prove) optimal h-energy codes.

¹A function f is absolutely monotone on I if $f^{(k)}(t) \ge 0$ for $t \in I$ and k = 0, 1, 2, ...

Recall: Delasarte-Yudin method (modified)

Problem

Let C_{ℓ} be a generic code with inner products in $[\ell, 1]$. Denote

$$\mathcal{E}(n,N,\ell;f) := \min_{C_{\ell}} \{ E(n,C_{\ell};h) \}.$$

GOAL: Find lower bounds on $\mathcal{E}(n, N, \ell; h)$.

Thm (Modified Delsarte-Yudin LP Bound)

Let $A_{n,h} = \{f : f(t) \le h(t), t \in [\ell, 1], f_k \ge 0, k = 1, 2, \dots\}$. Then

$$\mathcal{E}(n,N,\ell;h) \ge N^2(f_0 - f(1)/N), \qquad f \in A_{n,h}. \tag{1}$$

An *N*-point spherical code C_{ℓ} satisfies $E(n, C_{\ell}; h) = N^2(f_0 - f(1)/N)$ if and only if both of the following hold:

- (a) f(t) = h(t) for all $t \in \{\langle x, y \rangle : x \neq y, x, y \in C\}$.
- (b) for all $k \ge 1$, either $f_k = 0$ or $\sum_{x,y \in C} P_k^{(n)}(\langle x,y \rangle) = 0$.

Recall: Delasarte-Yudin method (modified)

Thm (Modified Delsarte-Yudin LP Bound)

Let $A_{n,h} = \{f : f(t) \le h(t), t \in [\ell, 1], f_k \ge 0, k = 1, 2, \dots\}$. Then

$$\mathcal{E}(n, N, \ell; h) \ge N^2(f_0 - f(1)/N), \qquad f \in A_{n,h}.$$
 (2)

Here $f(t) = \sum_{k=0}^{\infty} f_k P_k^{(n)}(t)$ is the Gegenbauer expansion of f.

Linear program

Maximizing $f_0 - f(1)/N$ leads to the truncated the program

(LP) Maximize
$$F_m(f_0, f_1, ..., f_m) := N\left(f_0(N-1) - \sum_{k=1}^m f_k\right)$$
,

subject to $f \in \mathcal{P}_m \cap A_{n,h}$.

Levenshtein framework revisited

Linear program 1

(LP 1) Maximize
$$f_0 - \frac{f(1)}{N}$$
 subject to $f \in \mathcal{P}_m \cap A_{n,h}$.

If a Gauss-type Quadrature Formula (QF with positive weights $\{\rho_i\}$) with $x_{k+1} = 1$ (called right end-point Radau quadrature) exists:

$$f_0 = \gamma_n \int_{-1}^1 f(t)(1-t^2)^{(n-3)/2} dt = \frac{f(1)}{N} + \sum_{i=1}^k \rho_i f(\alpha_i), \quad f \in \mathcal{P}_m,$$

Linear program 2

(LP 2) Maximize
$$\sum_{i=1}^k \rho_i f(\alpha_i)$$
, $f \in \mathcal{P}_m \cap A_{n,h} \left(\leq \sum_{i=1}^k \rho_i h(\alpha_i) \right)$.

Hence, we seek such Radau Quadrature.

Positive definite signed measures of degree *m*

Definition

A signed Borel measure ν on $\mathbb R$ for which all polinomials are integrable is called *positive definite up to degree m* if for all polinomials $p \in \mathcal P_m$ we have

$$\int p(t)^2 d\nu(t) > 0, \quad \text{for all} \quad p \in \mathcal{P}_m, \ \ p(t) \not\equiv 0.$$

For such measures Gram-Schmidt orthogonalization provides unique orthogonal polynomials p_0, p_1, \dots, p_{m+1} , where $p_i(1) = 1$.

They satisfy three-term requirence, have simple zeros in the support of ν , and zeros of p_i and p_{i+1} interlace.

Three positive definite signed measures

Let $t_{1,k} < t_{2,k} < \cdots < t_{k,k}$ be the zeros of the adjacent Gegenbauer polynomials

$$P_k^{1,0}(t) := \frac{P_k^{(\frac{n-1}{2},\frac{n-3}{2})}(t)}{P_k^{(\frac{n-1}{2},\frac{n-3}{2})}(1)} = \eta_k^{1,0}t^k + \cdots, \quad \eta_k^{1,0} > 0,$$
 (3)

orthogonal w.r.t. $d\chi(t) := (1-t)(1-t^2)^{(n-3)/2} dt$.

For any $-1 < \ell < t_{1,k} < t_{k,k} < s < 1$ define

$$d\nu_\ell(t):=(t-\ell)d\chi(t),\ \nu_s(t):=(s-t)d\chi(t),\ d\nu_{\ell,s}(t):=(t-\ell)(s-t)d\chi(t).$$

Lemma

The measures $d\nu_{\ell}(t)$ and $d\nu_{s}(t)$ are positive definite up to degree k-1 and the measure $d\nu_{\ell,s}(t)$ is positive definite up to degree k-2.

Proof: (on the board).

Applying Gram-Schmidt orthogonalization one derives the existence and uniqueness (for the so-chosen normalization) of the following classes of orthogonal polynomials.

Corollary

Let $\ell < t_{1,k} < t_{k,k} < s$. The following classes of orthogonal polynomials are well-defined:

$$\{P_j^{1,\ell}(t)\}_{j=0}^k$$
, orthogonal w.r.t. $d\nu_{\ell}(t)$, $P_j^{1,\ell}(1) = 1$; (4)

$$\{P_j^{1,s}(t)\}_{j=0}^k$$
, orthogonal w.r.t. $d\nu_s(t)$, $P_j^{1,s}(1) = 1$; (5)

$$\{P_j^{1,\ell,s}(t)\}_{j=0}^{k-1}$$
, orthogonal w.r.t. $d\nu_{\ell,s}(t)$, $P_j^{1,\ell,s}(1) = 1$. (6)

The polynomials in each class satisfy a three-term recurrence relation and their zeros interlace.

Christofel-Darboux formula and $\{P_i^{1,\ell}\}, \{P_i^{1,s}\}, \{P_i^{1,\ell,s}\}$

Recall the Christoffel-Darboux formula (associated with $\{P_i^{1,0}(t)\}$)

$$T_i(x,y) := \sum_{j=0}^i r_j^{1,0} P_j^{1,0}(x) P_j^{1,0}(y) = r_i^{1,0} b_i^{1,0} \frac{P_{i+1}^{1,0}(x) P_i^{1,0}(y) - P_{i+1}^{1,0}(y) P_i^{1,0}(x)}{x - y}.$$

Then
$$P_i^{1,\ell}(t)=\frac{T_i(t,\ell)}{T_i(1,\ell)},\quad P_i^{1,s}(t)=\frac{T_i(t,s)}{T_i(1,s)},\quad i=0,1,\ldots,k.$$

$$T_i(1,\ell)$$
 $T_i(1,S)$ Christoffel-Darboux kernel associated with $\{P_i^{1,\ell}\}_{i=0}^k$

$$R_i(x,y;\ell) := \sum_{i=0}^i r_j^{1,\ell} P_j^{1,\ell}(x) P_j^{1,\ell}(y) = r_i^{1,\ell} b_i^{1,\ell} \frac{P_{i+1}^{1,\ell}(x) P_i^{1,\ell}(y) - P_{i+1}^{1,\ell}(y) P_i^{1,\ell}(x)}{x - y}$$

 $P_i^{1,\ell,s}(t) := \frac{R_i(t,s;\ell)}{R_i(1,s;\ell)}, \quad i = 0,1,\ldots,k-1.$

Positive definiteness of some polynomials

Lemma

Under the condition that $-1 \le \ell < t_{1,k}$ the polynomials $(t - \ell)P_i^{1,\ell}(t)$, $i = 0, 1, \ldots, k$, have positive Gegenbauer coefficients.

Denote the zeros of $P_k^{1,\ell}(t)$ with $y_{1,k} < y_{2,k} < \cdots < y_{k,k}$.

Lemma

Let $t_{k,k}^{1,0} \le s \le y_{k,k}$. Then the polynomials $(t-\ell)(t-s)P_i^{1,\ell,s}(t)$ and $(t-\ell)P_i^{1,\ell,s}(t)$, $i=0,1,\ldots,k-1$, have positive Gegenbauer coefficients.

The Levenshtein-type polynomial in this case is:

$$f_{2k}^{(n,s,\ell)}(t) := (t-\ell)(t-s) \left(P_{k-1}^{1,\ell,s}(t)\right)^2.$$
 (7)

Gauss-type Radau Quadrature

Theorem

Let $\{\beta_1 < \beta_2 < \dots < \beta_{k-1}\}$ be the zeros of $P_{k-1}^{1,\ell,s}(t)$. Then the Radau quadrature formula

$$f_0 = \int_{-1}^{1} f(t)(1-t^2)^{\frac{n-3}{2}} dt = \rho_0^{\ell} f(\ell) + \sum_{i=1}^{k-1} \rho_i^{\ell} f(\beta_i) + \rho_k^{\ell} f(s) + \rho_{k+1}^{\ell} f(1)$$
 (8)

is exact for all polynomials of degree at most 2k and has positive weights $\rho_i > 0$, $i = 0, 1, \dots, k + 1$.

Proof: (on the board).

Definition - Levenshtein function for subinterval

For any fixed 1 < $\ell \le t_{1,k}$ the Levenshein-type function is defined to be

$$L_k^{\ell}(n,s) := 1/\rho_{k+1}^{\ell}.$$

Universal Lower Bound (ULB) on subinterval $[\ell, 1]$.

ULB Subinterval Theorem - (BDHSS - 2015)

Let h be a fixed absolutely monotone potential, $-1 < \ell < 1$, n and N be fixed. Let k be the largest integer such that $-1 < \ell \le t_{1,k}$. Let $s = s(\ell)$ be the unique real number such that $L_k^\ell(n,s) = N$. Then the Levenshtein-type nodes $\{\beta_i\}$ defined in the previous theorem, provide the bounds

$$\mathcal{E}(n,N,\ell,h) \geq N^2 \left(\rho_0^{\ell} h(\ell) + \sum_{i=1}^{k-1} \rho_i^{\ell} h(\beta_i) + \rho_k^{\ell} h(s) \right).$$

The Hermite interpolant of order 1 at ℓ and 2 at β_i , $i=1,\ldots,k-1$ and s provides the optimal polinomial solving the finite LP in the class $\mathcal{P}_{2k} \cap A_{n,h}$.

Levenshtein-type bound for "restricted" maximal codes

Bounds on restricted maximal codes - (BDHSS - 2015)

Suppose that $C=C_{\ell,s}$ is a spherical code with distinct inner products in the interval $[\ell,s]$. Then the following Levenshtein-type bound on its cardinality holds

$$|C_{\ell,s}| \leq L_k^{\ell}(n,s).$$

Peter Dragnev, IPFW

THANK YOU!