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External Field Problem in C - overview

—
=

Electrostatics - capacity, equilibrium measures;
Geometry - transfinite diameter;

Polynomials - Chebyshev constant discrete orthogonal
polynomials

Classical theorem in potential theory

| \

¢ Characterization theorem of weighted equilibrium
o Examples
o Applications to orthogonal polynomials on the real line

| A\

¢ Characterization theorem of constrained equilibrium
o Examples
o Applications to discrete orthogonal polynomials
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Classical energy problem and equilibrium measure

E - compact set in C, u € M(E) - probability measure on E;

Equilibrium occurs when potential (logarithmic) energy /(y) is
minimized.

Ve = inf{l(z) == — / / log [x—y| du(x)dju(y)}. cap(E) = exp(— V)

Remark: For Riesz energy we use Riesz kernel |x — y| ¢ instead.

| A\

If cap(E) > 0, there exists unique pg : I(ue) = Ve.
Potential satisfies U£(x) = — [log |x — y|du(y) = Con E.

| A\

o E=T, dug = df/(2r)
o E=[-1,1], dug = dx/7mvV1 — x2
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Classical theorem in potential theory

—
=

E - compactsetinC, Z, = {z,2,...,2n} C of E;
Maximize Vandermond (product of all mutual distances)

2/(n(n-1))
on(E) = max( 11 |z,-—z,-|) , 0(E) :==1limd,(E)

E - compact set in C, T,(x) - monic polynomial of minimal uniform
norm;

to(E) := min{[|x" — pp_1(X)|| : Po—t1 € Po_y}, 7(E)=Ilimt,"/"(E)

cap(E) = 6(E) = 7(E)
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External field problem - Characterization theorem

E - closed set in C, Q - lower semi-continuous on E (growth cond.);

Vg = inf{lg(s) = l(u) + 2 / Q(x) dju(x)

| A

There exists unique g : lo(ra) = Va-

Potential satisfies: Ure(x)+ Q(x) > C q.e.on E
Ure(x) + Q(x) < C on supp(vq)-

| \

Orthogonal polynomials on real line

Approximation of functions by weighted polynomials
Integrable systems

Random matrices
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Proof of the characterization theorem

Let E - compact, Q - continuous. Then Ig : M(E) — R is lower
semi-continuous functional, i.e. if u, — p weak* then

limin lo(jin) > la(p).

Let {un} s.t. Io(un) — Vq. Select a weak* convergent subsequence
My = Hs f € M(E) Then /Q(FL) = Va.

The positive definiteness of the energy functional implies uniqueness.

To show the first characterization inequlity, suppose
cap{x : UPo(x) + Q(x) < Vo — / Q(x) dua(z) =: Fa} > 0.

Then there is ns.t. cap(K,) =cap({x : U*e(x) + Q(x) < Fq — 1}) > 0.
Then for small enough « > 0, lg(auk, + (1 — a)uq) < lo(pa)-

Finally, if there is xo € supp(uq), S.t. U*e(xo) + Q(X0) > Fq then
lo(11q) > Vq, a contradiction.
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Constrained energy problem

Add constraint measure o: o(E) > 1

§ = inf{la(u) == (1) +2 [ Q) du(x) u <o

Applications: Discrete orthogonal polynomials, random walks,
numerical linear algebra methods, etc.

There exists unique \j : Io(A\3) = V3.
Potential satisfies: U*a(x) + Q(x) > C on supp(c — A3)
U*a(x) + Q(x) < C on supp(p).

If Q= 0, then o — A7 = (ol — 1)uq for Q(x) = — U (x)/(|lo|| — 1)
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Discrete Energy on S¢

Numerous applications in:
¢ Physics
« Biology
e Chemistry
e Computer Science
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Optimal Configurations in Physics

Find the (most) stable (ground state) energy
configuration of N classical electrons
(Coulomb law) constrained to move on the
sphere S?

A configuration wy := {X1,..., Xy} C S? that minimizes Riesz
s-energy
1
Es(wy) =Y ———5, §>0, = Iog
o %= Xl 7k P =]
is called an optimal s-energy configuration.
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Optimal Configurations in Biology

A Dutch botanist that studied modeling of the
distribution of the orifices in pollen grain
asked the following.

Place N points on the unit sphere so as to
maximize the minimum distance between
any pair of points, or, where to situate hostile

dictators?
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Optimal Configurations in Chemistry

Vaporizing graphite, Curl, Kroto, Smalley,
Heath, and O’Brian discovered Cgg
(Chemistry 1996 Nobel prize)

A giant fullerene molecule few nanometers in
diameter, but hundreds of microns (and
ultimately meters) in length, with electrical
conductivity similar to copper’s, thermal
conductivity as high as diamond and tensile
strength about 100 times higher than steel.

v
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Other "Fullerenes"

Under the lion paw Montreal biosphere
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Computational "Fulerene" - Rob Womersley

1089 Extremal Points on a Sphere Sydney VisLab
www.maths.unsw.edu.au/~rsw/Sphere e Www.vislab.usyd.edu.au

Rob Womersley . R Visualisation by
UNSW Maths e 7':-‘ :% Ben Simons

Y-Rotation:
001 degrees

Scaled Cubature Weights

065 0825 1.0 1.175
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Known Optimal Configurations

A configuration wy := {X1,..., Xy} C S? that minimizes Riesz
s-energy
1
Es(wy) =Y ———5, §>0, =Y lo Jrmn
jc 1% = Xid jk = X

is called an optimal s-energy configuration.

e s =0, Smale’s problem, logarithmic points (known for
N=1-86, 12);

e s =1, Thomson Problem (known for N =1 —6, 12)

e s = —1, Fejes-Toth Problem (known for N =1 —6, 12)

e s — oo, Tammes Problem (known for N =1 — 12, 13, 14, 24)

v
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Separation Problem for S¢

5(wN) = r]n;éip|xj—xk , WN= {X1,...,XN}

Expect: 6(w() =< N~"/9 as N — oo, where w{$ optimal for S

A sequence of N-point configurations {wn}37, C S% is
well-separated if there exists some ¢ > 0 not depending on N s.t.
§(wn) > ¢ N-1/9 for all N.
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Separation Problem for S¢
Separation Results for Optimal Configurations on 8¢

d=25=0 5wy > o(N~1/2) R-S-Z (1995)
0O<s<d—2 6wd)>?
s=d—1 6w ") >0oN"19) Dahlberg (1978)
d-1<s<d 5wy > o(N~1/9) K-S-S (2007)
d-2<s<d 5w > BsaN~/7 D-S (2007)
s=d 5w\) > O((Nlog N)~"/9) K-S (1998)
s>d 5w > o(N~1/9) K-S (1998)
s§=00 5w > o(N—1/9) Conway-Sloane |

Asymptotic Results (H-vdW (1951), Bo-H-S (2007))



Logarithmic Points on S? (d = 2,s = 0)

5w > (3/5)/VN R-S-Z (1995)
5w > (7/4)/V'N Dubickas (1997)

5w >2/v/N -1 Dragnev(2002)




Logarithmic Points on S? (d = 2,s = 0)

5w > (3/5)/VN R-S-Z (1995)
5w > (7/4)/V'N Dubickas (1997)
5w >2/v/N -1 Dragnev(2002)

e R-S-Z, Dubickas: Stereographical projection with South Pole
in WN.

e Dragnev: Stereographical projection with North Pole in wy. This
creates external field on projections of remaining N — 1
points {z}. All weighted Fekete points are contained in support
of continuous MEP, i.e. |z¢| < v/N — 2, which implies estimate.
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Separation Problem for S ford — 2 < s < d

e Fix a point of w,(vs) and consider external field Qy it generates on
the remaining n = N — 1 points.
e Study continuous energy problem for this external field Q.

e Discrete energy points for Qy are contained in CEP equilibrium
support.

‘Theorem (D-Saff2007)
Ks.d [ 2B(d/2,1/2) \"?
<B(d/2, (d— S)/2)> ’

where B(x, y) denotes the Beta function. In particular,

,d
5("-’/(\18 )) > Ni/d’ s,d =

Ki1.g=2"% Kso=2\/1-s/2.

Remark: We need Principle of Domination, de la Vallee-Pousin type
theorem, and Riesz balayage, hence the restriction on s.
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Discrete MEPonS%ford —2<s < d

Let Q be an external field. Find Q-optimal
configuration of n points on S, that solve

min {; [Ix,—1—xkls + QX)) + Q(Xk)] Xk € Sd}

2007 Separation: g =1/(N—-2), R=1,

_ 4 n=N-1.
Q) = s
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What do Q-Fekete points look like?
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Example (S2, s=1,g=1/3andg=1, n=4)
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Discrete MEPonS%ford —2<s < d

Let Q be an external field. Find Q-optimal
configuration of n points on S?, that solve

min {i [; I Q(Xj) ol Q(Xk)] Xk € Sd}

j#k |xf - xk|s

2007 Separation: g =1/(N—-2), R=1,

Q(x) |X_Rp|s

Key idea:
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Discrete MEPonS%ford —2<s < d

Let Q be an external field. Find Q-optimal
configuration of n points on S?, that solve

min {Z [|x,—1—xk|s + Q(x;) + Q(Xk)] ( Xk € Sd}

7k

2007 Separation: g =1/(N—-2), R=1,

Q(x) |X_Rp|s

Key idea:

Q-optimal points are contained in supp(1q)-
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Example (S2, s=0, Q= —log|x — An|, 20 > R > 1.1, n = 1000)




External field Continuous MEP onS%ford —2 < s < d

K c S? compact; M(K) class of positive unit Borel measures 1
supported on K

U= [Ix—yIfauy) T~ [ [Ix—yI T ano0au)
Riesz s-potential of Riesz s-energy of
We(K) := inf {Zs[u] : 1 € M(K)}
Riesz s-energy of K

v

Given an external field Q on K, there exists unique extremal
measure uq that minimizes the weighted energy

Is[u]+2/odu, i e M(K),

characterized by U (x) + Q(x) > C on S¢ with "=" on supp(xq)-




Physicist’s Problem (Signed Equilibrium)

Given compact K c S9, Q external field on K, find a signed measure
ng S-t.

Ud?(x) + Q(x) = const.  everywhere on K
na(K) =1

na = 1o,k is called signed equilibrium on K associated with Q.

If ng exists, then it is unique. l

Letnax = 1g x — ng k- Then supp(uak) < supp(1g )
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Example (Brauchart-Saff-D., 2009)

K=S89 Qax)=gq/|x—al°, R=|a]>1

na = 16, — g,

Let ¥; be spherical cap centered at South Pole of height —1 <t <1

supp(ng,) = Tra,), SUPP(ng,) =S\ Tyq,)-

Ifnq, > 0, then uq, = nq,- If not, then supp(uq,) C supp(ng,)-
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Finding 1. when supp(pq) = S¢

e

Let g =1, s = d — 1 (Newton potential).
Find Ry > 0 s.t. for Qa(x) =[x —a|'"~9% a= Rp

=89 if R> Ry,

SUpp(NOa) {C Sd |f Fl) < RO

Fors=d -1,

1 R 1
T+ g — b a|d+11 dog(x)

dnq,(x) =
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Finding 1. when supp(pq) = S¢
‘Gonchar's Problemfors?

Let g =1, s = d — 1 (Newton potential).
Find Ry > 0 s.t. for Qa(x) =[x —a|'~9,a= Rp

—s? if R> R,
cs? ifR< R

supp(iq,) {

Fors=d -1,

1 [
RA—1 = a|d+1] dog(x)

1
o2 then Ao — 1 = > Whend —4, Ry — 1 Plastic
number from architecture (see Padovan sequence Pn.3 = Ppi1 + Pp).




Finding 1.0 when supp(xq) & S%; B-D-S (2009)

Fs(K) == Ws(K) + / Qduk, K cS?compact.

Ifd —2 < s < dwiths > 0, then Fs is minimized for Sq := supp(1q)-

Ifd—2<s<dwiths >0, Q: K— R continuous and Ws(K) < oo,
then U + Q = F4(K) on K.

By definiton ~ U**(x)+ Q(x)=C  onK




Finding 1.0 when supp(xq) & S%; B-D-S (2009)

Fs(K) == Ws(K) + / Qduk, K cS?compact.

Ifd —2 < s < dwiths > 0, then Fs is minimized for Sq := supp(1q)-

Ifd—2<s<dwiths >0, Q: K— R continuous and Ws(K) < oo,
then U + Q = F4(K) on K.

Proof.
/U"QK(x)duK /o )d ik (X) = /CduK(x

|




Finding 1.0 when supp(xq) & S%; B-D-S (2009)

Fs(K) == Ws(K) + / Qduk, K cS?compact.

Ifd —2 < s < dwiths > 0, then Fs is minimized for Sq := supp(1q)-

Ifd—2<s<dwiths >0, Q: K— R continuous and Ws(K) < oo,
then U + Q = F4(K) on K.

Proof.
[ v ) dnox)+ [ Qa0 =C [ dnn(x)

|




Finding 1.0 when supp(xq) & S%; B-D-S (2009)

Fs(K) == Ws(K) + / Qduk, K cS?compact.

Ifd —2 < s < dwiths > 0, then Fs is minimized for Sq := supp(1q)-

Ifd—2<s<dwiths >0, Q: K— R continuous and Ws(K) < oo,
then U + Q = F4(K) on K.

Proof.
Wi(k) [ anax)+ [ Q) apntx) = C [ du(x

|
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Finding 1. when supp(rq) € S¢; B-D-S (2009)

Fs(K) == Ws(K) + / Qduk, K cS?compact.

Ifd —2 < s < dwiths > 0, then Fs is minimized for Sq := supp(1q)- I

Ifd—2<s<dwiths >0, Q: K— R continuous and Ws(K) < oo,
then U + Q = F4(K) on K.

Fo(K) = We(K) +/o duc = C
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Letd —2 <s<d,s>0.IfQ is axially symmetric, i.e. Q(z) = f(&),
where ¢ = height of z, with f convex and increasing, then

supp(uq) = X, for some ty.

Note: Qa(z) = g/ |z —a|® = f(¢) on S¥ for s > 0

supp(uq,) = X, for some f.

Ifd—2<s<d,s>0,anda = Rp, then F5 is minimized over ¥;’s
when t = ly is the unique solution of

1+qlel  qR+1)"° er = Bals(da, ),
A (Re—2Rt+1)"%"  v=Bals(0q, Xy)

Ws(S9)

or ty = 1 when such a solution does not exist.
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The Signed Equilibrium on ¥;

Letd —2 < s < d. Qa(x) = q/ |x — a|°. Signed equilibrium on ¥, is

1+ qlletl| er = Bals(da, Tt),

= = vt — €
Mt = 1Qa, % ]l t—get vy = Balg(og, Xt).

Moreover,
dn(x) = ni(u)dog(x), x=(V1-weXu)cx, xesi
The weighted s-potential is

U (z) + Qa(2) = F() on %,
Ud'(z) + Qa(2) = Fs(Zo) + [+ ] on S\,




—, t
-1 t] 1
Tt i
Us +Q4
-1 ht 1
—_
\ Us'+Q
Tt
-1 t=ty 1
-1 =ty 1
Ui
Th Ust+Q
‘ L
=1 t 1
-1 tt, 1
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» Compare with s = 0, d = 2 case

t >,
U(z) + Qa(z) > Fs(Zi) onS?\ Z,
UdH(z) + Qa(z) = Fs(Xt) on Xy,
0t #0 onX.

t=t,
UZ'(z) + Qa(z) > Fs(X:) onS?\ %4,
Ud'(z) + Qa(2) = Fs(Zt) on Xy,
7 >0 onX.

I <o,
U (2z) + Qa(2) # Fs(Z:) ons?\ %y,
U (2) + Qa(2) = Fs(Xt) onxy,
n >0 on¥.



Axis-supported external fields; B-D-S (2009)

Balayage of a measure is superposition of balayages of Dirac-delta’s

Q positive-axis supported, if

Q(x) = / X— Rp|°dA(R), xes®
for some finite pos. meas. A supp. on a compact subset of (0, c0).
Let Q be as above with supp(\) C [1,00) andd — 2 < s < d. Then

Mt = Ul L] vt — €
[l 7

where
Vi = Ba'S(O’d, Zt)

2= Bals(\, T)) = / Bals(dap. £r) dA(R)
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Separation of Q-Fekete points on S%; B-D-S (2014)
Set Q(x) := g/ |x — b|®, |b| > 1, let {Xq,Xz,..., Xy} be a Q-Fekete

point~set. If xy is the fixed, then {x,Xo,...,Xy_1} is @ Q-Fekete set
with Q(x) = Q(x) + [x — xn|~°/(N —2).

e Ifd—2 < s < d, then all Q-Fekete points are in supp(pg)-
e In addition, supp(ug) € supp( ) for any compact
supp(ug) € K € 7.

L(N) Ifd -2 < s<d,then

o 28(d/2,1/2)  \"* ) 1a
owan) = (( T+ q)B(d/2.(d —s)/z)) N




Logarithmic external fields with discrete support -

B-D-S-W, in progress

Let Q(x) := > qilog1/(]x —by|), b; € S%. (If d > 2, then s = d — 2)

For small enough q;, the support supp(uq) is found explicitly by
removing suitable nonintersecting spherical caps around b; and the
extremal measure is the normalized surface area measure for

supp(a)-
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THANK YOU!
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Suppose 7y and 7 are two signed s-equilibria on K. Then

Ud'(x)+ Q(x) = Fy, UF(x)+Q(x)=F, forallxeK.

Subtracting the two equations and integrating with respect to 7y — 72
we obtain

Tolm — o) = / (U2 () — UZ(X)] (1 — 72)(X) = 0.

We used that [(F> — F1)d(n1 — n2)(x) = 0, since (1 — n2)(K) = 0.

But Zs(n) > 0 for any signed measure n with equality iff n = 0.

Therefore ny = ns. O
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