Dualities in Algebraic Logic

Yde Venema Institute for Logic, Language and Computation Universiteit van Amsterdam https://staff.fnwi.uva.nl/y.venema

26 August 2017 Logic, Relativity and Beyond III, Budapest

This talk is dedicated to Hajnal Andréka

Overview

I

Introduction

- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

■ aim: study logics using methods from (universal) algebra

■ aim: study logics using methods from (universal) algebra

examples:

propositional logic: Boolean algebras intuitionistic logic: Heyting algebras first-order logic: cylindric algebras

■ aim: study logics using methods from (universal) algebra

examples:

propositional logic: Boolean algebras intuitionistic logic: Heyting algebras first-order logic: cylindric algebras

other examples:

■ aim: study logics using methods from (universal) algebra

examples:

propositional logic: Boolean algebras intuitionistic logic: Heyting algebras first-order logic: cylindric algebras

 other examples: interpolation: amalgamation completeness: representation

■ aim: study logics using methods from (universal) algebra

examples:

propositional logic: Boolean algebras intuitionistic logic: Heyting algebras first-order logic: cylindric algebras

 other examples: interpolation: amalgamation completeness: representation

 abstract algebraic logic: study Logic using methods from (universal) algebra

■ in mathematics: categorical dualities

Duality

■ in mathematics: categorical dualities

C and *D* are dual(ly equivalent) if *C* and D° are equivalent

Duality

- in mathematics: categorical dualities
- *C* and *D* are dual(ly equivalent) if *C* and *D*° are equivalent i.e. there are contravariant functors linking *C* and *D*

verbal

visual

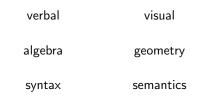
verbal

visual

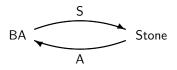
algebra

geometry

verbal visual algebra geometry syntax semantics



Stone duality:



Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces
- modal algebras vs topological Kripke structures
- cylindric algebras vs . . .
 - ...

Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces
- modal algebras vs topological Kripke structures
- cylindric algebras vs . . .
- ...

Contravariance

Variants of Stone duality

- Heyting algebra vs Esakia spaces
- compact regular frames vs compact Hausdorff spaces
- distributive lattices vs Priestley spaces
- modal algebras vs topological Kripke structures
- cylindric algebras vs . . .

. . .

Contravariance In all these examples both categories are concrete!

Overview

I

Introduction

- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

Overview

I

Introduction

- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

Main characters

■ modal algebras (MA)

Main characters

modal algebras (MA)Kripke structures (KS)

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)
- topological Kripke structures (TKS)

Main characters

- modal algebras (MA)
- Kripke structures (KS)
- Stone spaces (Stone)
- topological Kripke structures (TKS)

Aim:

 $\blacksquare \ introduce \ \mathsf{TKS}$

 \blacksquare develop duality between MA and TKS

■
$$A = (A, \lor, -, \bot, \diamondsuit)$$
 is a modal algebra if
• $(A, \lor, -, \bot)$ is a Boolean algebra
• $\diamondsuit : A \to A$ preserves finite joins:
 $\diamondsuit \bot = \bot$ and $\diamondsuit(a \lor b) = \diamondsuit a \lor \diamondsuit b$

■ MA is the category of modal algebras with MA-morphisms

 $\Diamond h(a').$

 \blacksquare MA is the category of modal algebras with MA-morphisms

• A modal logic L can be algebraized by a variety V_L of modal algebras

 \blacksquare MA is the category of modal algebras with MA-morphisms

A modal logic *L* can be algebraized by a variety V_L of modal algebras
 Modal algebras are (the simplest) Boolean Algebras with Operators

■ A Kripke structure (frame) is a pair S = (S, R) with $R \subseteq S \times S$

these provide the possible-world semantics of modal logic

A Kripke structure (frame) is a pair $\mathbb{S} = (S, R)$ with $R \subseteq S \times S$

these provide the possible-world semantics of modal logic

- $f: (S', R') \rightarrow (S, R)$ is a bounded morphism if
 - R's't' implies Rf(s')f(t')
 - Rf(s')t implies the existence of t' with R's't' and f(t') = t.

A Kripke structure (frame) is a pair $\mathbb{S} = (S, R)$ with $R \subseteq S \times S$

these provide the possible-world semantics of modal logic

- $f: (S', R') \rightarrow (S, R)$ is a bounded morphism if
 - R's't' implies Rf(s')f(t')
 - Rf(s')t implies the existence of t' with R's't' and f(t') = t.

KS is the category of Kripke structures with bounded morphisms

A Kripke structure (frame) is a pair $\mathbb{S} = (S, R)$ with $R \subseteq S \times S$

these provide the possible-world semantics of modal logic

- $f: (S', R') \rightarrow (S, R)$ is a bounded morphism if
 - R's't' implies Rf(s')f(t')
 - Rf(s')t implies the existence of t' with R's't' and f(t') = t.

KS is the category of Kripke structures with bounded morphisms

Auxiliary definitions

$$\blacksquare R^{\omega} := \bigcup_{n>0} R^n,$$

$$\blacktriangleright \text{ where } R^0 := Id_S \text{ and } R^{n+1} := R \circ R^n$$

A Kripke structure (frame) is a pair $\mathbb{S} = (S, R)$ with $R \subseteq S \times S$

these provide the possible-world semantics of modal logic

- $f: (S', R') \rightarrow (S, R)$ is a bounded morphism if
 - R's't' implies Rf(s')f(t')
 - Rf(s')t implies the existence of t' with R's't' and f(t') = t.

KS is the category of Kripke structures with bounded morphisms

Auxiliary definitions

$$\square R^{\omega} := \bigcup_{n>0} R^n,$$

$$\blacktriangleright \text{ where } R^0 := Id_S \text{ and } R^{n+1} := R \circ R$$

$$\square R(s) := \{t \in S \mid Rst\}$$

A Kripke structure (frame) is a pair $\mathbb{S} = (S, R)$ with $R \subseteq S \times S$

these provide the possible-world semantics of modal logic

- $f: (S', R') \rightarrow (S, R)$ is a bounded morphism if
 - R's't' implies Rf(s')f(t')
 - Rf(s')t implies the existence of t' with R's't' and f(t') = t.

KS is the category of Kripke structures with bounded morphisms

Auxiliary definitions

$$R^{\omega} := \bigcup_{n>0} R^n,$$

• where $R^0 := Id_S$ and $R^{n+1} := R \circ R^n$

$$R(s) := \{t \in S \mid Rst\}$$

• $r \in S$ is a root of S if $S = R^{\omega}(r)$

Kripke structures

• A Kripke structure (frame) is a pair $\mathbb{S} = (S, R)$ with $R \subseteq S \times S$

these provide the possible-world semantics of modal logic

- $f: (S', R') \rightarrow (S, R)$ is a bounded morphism if
 - R's't' implies Rf(s')f(t')
 - Rf(s')t implies the existence of t' with R's't' and f(t') = t.

KS is the category of Kripke structures with bounded morphisms

Auxiliary definitions

$$R^{\omega} := \bigcup_{n>0} R^n,$$

$$\bullet \text{ where } R^0 := Id_S \text{ and } R^{n+1} := R \circ R^n$$

$$R(s) := \{t \in S \mid Rst\}$$

$$r \in S \text{ is a root of } S \text{ if } S = R^{\omega}(r)$$

$$S \text{ is root of } f \text{ its collection } W(s \text{ of roots } if S)$$

I ${\mathbb S}$ is rooted if its collection $W_{\mathbb S}$ of roots is non-empty

Stone spaces

A (topological) space is a pair (S, τ) where τ is a topology on S
 A Stone space is a space (S, τ) where τ is

- compact,
- Hausdorff
- zero-dimensional (i.e. it has a basis of clopen sets)

Stone is the category of Stone spaces and continuous functions

From Stone spaces to Boolean algebras: $(\cdot)^*$ Objects Given (S, τ) take $(S, \tau)^* := (Clp(\tau), \cup, \sim_S, \varnothing)$ Arrows Given $f : (S', \tau') \to (S, \tau)$ define $f^* : Clp(\tau) \to Clp(\tau')$ $f^*(X) := \{s' \in S' \mid fs' \in X\}$

From Stone spaces to Boolean algebras: $(\cdot)^*$ Objects Given (S, τ) take $(S, \tau)^* := (Clp(\tau), \cup, \sim_S, \varnothing)$ Arrows Given $f : (S', \tau') \to (S, \tau)$ define $f^* : Clp(\tau) \to Clp(\tau')$ $f^*(X) := \{s' \in S' \mid fs' \in X\}$

From Boolean algebras to Stone spaces: $(\cdot)_*$

Objects Given $\mathbb{A} = (A, \lor, -, \bot)$ take $A_* := (Uf(\mathbb{A}), \sigma_{\mathbb{A}})$, where

From Stone spaces to Boolean algebras: $(\cdot)^*$ Objects Given (S, τ) take $(S, \tau)^* := (Clp(\tau), \cup, \sim_S, \varnothing)$ Arrows Given $f : (S', \tau') \to (S, \tau)$ define $f^* : Clp(\tau) \to Clp(\tau')$ $f^*(X) := \{s' \in S' \mid fs' \in X\}$

From Boolean algebras to Stone spaces: $(\cdot)_*$

Objects Given $\mathbb{A} = (A, \lor, -, \bot)$ take $A_* := (Uf(\mathbb{A}), \sigma_{\mathbb{A}})$, where $\blacktriangleright Uf(\mathbb{A})$ is the set of ultrafilters of \mathbb{A} and

From Stone spaces to Boolean algebras: $(\cdot)^*$ Objects Given (S, τ) take $(S, \tau)^* := (Clp(\tau), \cup, \sim_S, \varnothing)$ Arrows Given $f : (S', \tau') \to (S, \tau)$ define $f^* : Clp(\tau) \to Clp(\tau')$ $f^*(X) := \{s' \in S' \mid fs' \in X\}$

From Boolean algebras to Stone spaces: $(\cdot)_*$

Objects Given $\mathbb{A} = (A, \lor, -, \bot)$ take $A_* := (Uf(\mathbb{A}), \sigma_{\mathbb{A}})$, where $\blacktriangleright Uf(\mathbb{A})$ is the set of ultrafilters of \mathbb{A} and

• $\sigma_{\mathbb{A}}$ is generated by the basis $\{\widehat{a} \mid a \in A\}$

From Stone spaces to Boolean algebras: $(\cdot)^*$ Objects Given (S, τ) take $(S, \tau)^* := (Clp(\tau), \cup, \sim_S, \varnothing)$ Arrows Given $f : (S', \tau') \to (S, \tau)$ define $f^* : Clp(\tau) \to Clp(\tau')$ $f^*(X) := \{s' \in S' \mid fs' \in X\}$

From Boolean algebras to Stone spaces: $(\cdot)_*$

Objects Given $\mathbb{A} = (A, \lor, -, \bot)$ take $A_* := (Uf(\mathbb{A}), \sigma_{\mathbb{A}})$, where \checkmark $Uf(\mathbb{A})$ is the set of ultrafilters of \mathbb{A} and

•
$$\sigma_{\mathbb{A}}$$
 is generated by the basis $\{\widehat{a} \mid a \in A\}$

• with
$$\widehat{a} := \{ u \in UF(\mathbb{A}) \mid a \in u \}$$

From Stone spaces to Boolean algebras: $(\cdot)^*$ Objects Given (S, τ) take $(S, \tau)^* := (Clp(\tau), \cup, \sim_S, \varnothing)$ Arrows Given $f : (S', \tau') \to (S, \tau)$ define $f^* : Clp(\tau) \to Clp(\tau')$ $f^*(X) := \{s' \in S' \mid fs' \in X\}$

From Boolean algebras to Stone spaces: $(\cdot)_*$

Objects Given $\mathbb{A} = (A, \lor, -, \bot)$ take $A_* := (Uf(\mathbb{A}), \sigma_{\mathbb{A}})$, where $\blacktriangleright Uf(\mathbb{A})$ is the set of ultrafilters of \mathbb{A} and $\blacktriangleright \sigma_{\mathbb{A}}$ is generated by the basis $\{\widehat{a} \mid a \in A\}$ \blacktriangleright with $\widehat{a} := \{u \in UF(\mathbb{A}) \mid a \in u\}$ Arrows Given $h : \mathbb{A}' \to \mathbb{A}$ define $h_* : Uf(\mathbb{A}) \to Uf(\mathbb{A}')$ by $h_*(u) := \{a' \in A' \mid ha' \in u\}$

Theorem The functors $(\cdot)^*$ and $(\cdot)_*$ witness the dual equivalence of BA and Stone.

From Kripke structures to modal algebras: $(\cdot)^+$ Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where $\langle R \rangle(X) := \{ s \in S \mid R[s] \cap X \neq \emptyset \}$

Arrows Given $f: (S', R') \rightarrow (S, R)$ define f^+ as inverse image

From Kripke structures to modal algebras: $(\cdot)^+$ Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where $\land \langle R \rangle (X) := \{ s \in S \mid R[s] \cap X \neq \emptyset \}$ Arrows Given $f : (S', R') \rightarrow (S, R)$ define f^+ as inverse image

The operation $\langle R \rangle$ encodes the semantics of the modal diamond

From Kripke structures to modal algebras: $(\cdot)^+$ Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where $\land \langle R \rangle (X) := \{ s \in S \mid R[s] \cap X \neq \emptyset \}$ Arrows Given $f : (S', R') \rightarrow (S, R)$ define f^+ as inverse image

■ The operation ⟨R⟩ encodes the semantics of the modal diamond
 ■ (S, R)⁺ is the complex algebra of (S, R)

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where $\langle R \rangle(X) := \{ s \in S \mid R[s] \cap X \neq \emptyset \}$

Arrows Given $f : (S', R') \rightarrow (S, R)$ define f^+ as inverse image

- The operation ⟨R⟩ encodes the semantics of the modal diamond
 (S, R)⁺ is the complex algebra of (S, R)
- Complex algebras are perfect modal algebras (PMAs):
 - complete, atomic and completely additive

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where $\langle R \rangle(X) := \{ s \in S \mid R[s] \cap X \neq \emptyset \}$

Arrows Given $f : (S', R') \rightarrow (S, R)$ define f^+ as inverse image

- The operation ⟨R⟩ encodes the semantics of the modal diamond
 (S, R)⁺ is the complex algebra of (S, R)
- Complex algebras are perfect modal algebras (PMAs):
 - complete, atomic and completely additive
- \blacksquare (·)⁺ is part of a discrete duality between PMA and KS

From Kripke structures to modal algebras: $(\cdot)^+$

Objects Given (S, R) take $(S, R)^+ := (PS, \cup, \sim_S, \emptyset, \langle R \rangle)$, where $\langle R \rangle(X) := \{ s \in S \mid R[s] \cap X \neq \emptyset \}$

Arrows Given $f : (S', R') \rightarrow (S, R)$ define f^+ as inverse image

- I The operation $\langle R \rangle$ encodes the semantics of the modal diamond
- $(S, R)^+$ is the complex algebra of (S, R)
- Complex algebras are perfect modal algebras (PMAs):
 - complete, atomic and completely additive
- (·)⁺ is part of a discrete duality between PMA and KS (with the opposite functor (·)₊ taking the atom structure of a PMA)

From modal algebras to Kripke structures:

From modal algebras to Kripke structures:

Objects With $\mathbb{A} = (A, \lor, -, \bot, \diamondsuit)$ take $\mathbb{A}_{\bullet} := (Uf(\mathbb{A}), Q_{\diamondsuit})$, where

From modal algebras to Kripke structures:

Objects With $\mathbb{A} = (A, \lor, -, \bot, \diamondsuit)$ take $\mathbb{A}_{\bullet} := (Uf(\mathbb{A}), Q_{\diamondsuit})$, where $\triangleright Q_{\diamondsuit} uv \text{ iff } \forall a \in v. \diamondsuit a \in u$

From modal algebras to Kripke structures:

Objects With $\mathbb{A} = (A, \lor, -, \bot, \diamondsuit)$ take $\mathbb{A}_{\bullet} := (Uf(\mathbb{A}), Q_{\diamondsuit})$, where $\triangleright Q_{\diamondsuit} uv \text{ iff } \forall a \in v. \diamondsuit a \in u$

Arrows Given $f : \mathbb{A}' \to \mathbb{A}$ define f_{\bullet} as inverse image

■ These operations provide a functor: MA → KS

From modal algebras to Kripke structures:

Objects With $\mathbb{A} = (A, \lor, -, \bot, \diamondsuit)$ take $\mathbb{A}_{\bullet} := (Uf(\mathbb{A}), Q_{\diamondsuit})$, where $\triangleright Q_{\diamondsuit} uv \text{ iff } \forall a \in v. \diamondsuit a \in u$

Arrows Given $f : \mathbb{A}' \to \mathbb{A}$ define f_{\bullet} as inverse image

These operations provide a functor: $MA \rightarrow KS$

• \mathbb{A}_{\bullet} is the ultrafilter structure or canonical structure of \mathbb{A}

From modal algebras to Kripke structures:

Objects With $\mathbb{A} = (A, \lor, -, \bot, \diamondsuit)$ take $\mathbb{A}_{\bullet} := (Uf(\mathbb{A}), Q_{\diamondsuit})$, where $Q_{\diamondsuit} uv \text{ iff } \forall a \in v. \diamondsuit a \in u$

Arrows Given $f : \mathbb{A}' \to \mathbb{A}$ define f_{\bullet} as inverse image

■ These operations provide a functor: MA → KS

 \blacksquare \mathbb{A}_{\bullet} is the ultrafilter structure or canonical structure of \mathbb{A}

■ A embeds in its canonical extension $(A_{\bullet})^+$

From modal algebras to Kripke structures:

Objects With $\mathbb{A} = (A, \lor, -, \bot, \diamondsuit)$ take $\mathbb{A}_{\bullet} := (Uf(\mathbb{A}), Q_{\diamondsuit})$, where $\triangleright Q_{\diamondsuit} uv \text{ iff } \forall a \in v. \diamondsuit a \in u$

Arrows Given $f : \mathbb{A}' \to \mathbb{A}$ define f_{\bullet} as inverse image

■ These operations provide a functor: MA → KS

 \blacksquare \mathbb{A}_{\bullet} is the ultrafilter structure or canonical structure of \mathbb{A}

 \blacksquare A embeds in its canonical extension $(\mathbb{A}_{\bullet})^+$

Open Problem characterize the ultrafilter structures modulo isomorphism

- ▶ (*S*, *R*) is a Kripke structure
- (S, τ) is a Stone space

- ▶ (*S*, *R*) is a Kripke structure
- ► (S, τ) is a Stone space
- $\langle R \rangle X$ is clopen if $X \subseteq S$ is clopen

- ▶ (*S*, *R*) is a Kripke structure
- (S, τ) is a Stone space
- $\langle R \rangle X$ is clopen if $X \subseteq S$ is clopen
- R(s) is closed

- ▶ (*S*, *R*) is a Kripke structure
- ► (S, τ) is a Stone space
- $\langle R \rangle X$ is clopen if $X \subseteq S$ is clopen
- R(s) is closed
- TKS is the category with
 - objects: topological Kripke structures
 - arrows: continuous bounded morphism

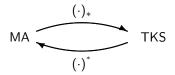
Topological modal duality

From modal algebras to topological Kripke structures: $(\cdot)_*$ Objects Given $\mathbb{A} = (A, \lor, -, \bot, \diamondsuit)$ take $\mathbb{A}_* := (Uf(\mathbb{A}), Q_{\diamondsuit}, \sigma_{\mathbb{A}})$ Arrows Given $h : \mathbb{A}' \to \mathbb{A}$ define h_* as inverse image

From topological Kripke structures to modal algebras: (·)* Objects Given $\mathbb{S} = (S, R, \tau)$ take $\mathbb{S}^* := (Clp(\tau), \cup, \sim_S, \emptyset, \langle R \rangle)$ Arrows Given $f : \mathbb{S}' \to \mathbb{S}$ define f^* as inverse image

Theorem

The functors $(\cdot)^*$ and $(\cdot)_*$ witness the dual equivalence of MA and TKS:



History:

■ Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

History:

■ Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

■ algebraic logic || modal logic

Research Topics:

History:

■ Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

■ algebraic logic || modal logic

Research Topics:

■ (canonicity) Which varieties are closed under $(\mathbb{A} \mapsto (\mathbb{A}_{\bullet})^+)$

History:

Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

■ algebraic logic || modal logic

Research Topics:

• (canonicity) Which varieties are closed under $(\mathbb{A} \mapsto (\mathbb{A}_{\bullet})^+)$

 \blacksquare (correspondence) FO properties of $\mathbb{S} \sim$ equational prop's of \mathbb{S}^+

• e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^+ \models x \leq \Diamond x$

History:

Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...

■ algebraic logic || modal logic

Research Topics:

• (canonicity) Which varieties are closed under $(\mathbb{A} \mapsto (\mathbb{A}_{\bullet})^+)$

 \blacksquare (correspondence) FO properties of $\mathbb{S} \sim$ equational prop's of \mathbb{S}^+

• e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^+ \models x \leq \Diamond x$

■ (canonicity & correspondence) Sahlqvist theorem

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

Research Topics:

- \blacksquare (canonicity) Which varieties are closed under $(\mathbb{A}\mapsto (\mathbb{A}_{\bullet})^+)$
- \blacksquare (correspondence) FO properties of $\mathbb{S} \sim$ equational prop's of \mathbb{S}^+

• e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^+ \models x \leq \Diamond x$

■ (canonicity & correspondence) Sahlqvist theorem

■ (completeness) Which varieties are generated by their PMAs?

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

Research Topics:

- \blacksquare (canonicity) Which varieties are closed under $(\mathbb{A}\mapsto (\mathbb{A}_{\bullet})^+)$
- \blacksquare (correspondence) FO properties of $\mathbb{S} \sim$ equational prop's of \mathbb{S}^+

• e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^+ \models x \leq \Diamond x$

- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?
 - (completions) canonical extensions, MacNeille completions, ...

Remarks

History:

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

Research Topics:

- \blacksquare (canonicity) Which varieties are closed under $(\mathbb{A}\mapsto (\mathbb{A}_{\bullet})^+)$
- \blacksquare (correspondence) FO properties of $\mathbb{S}\sim$ equational prop's of \mathbb{S}^+

• e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^+ \models x \leq \Diamond x$

- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?
- (completions) canonical extensions, MacNeille completions,
 - study free modal algebras

Remarks

History:

. . .

- Jónsson & Tarski, Lemmon, Scott, Esakia, Goldblatt, ...
- algebraic logic || modal logic

Research Topics:

- \blacksquare (canonicity) Which varieties are closed under $(\mathbb{A}\mapsto (\mathbb{A}_{\bullet})^+)$
- \blacksquare (correspondence) FO properties of $\mathbb{S}\sim$ equational prop's of \mathbb{S}^+

• e.g. $\mathbb{S} \models \forall v R v v$ iff $\mathbb{S}^+ \models x \leq \Diamond x$

- (canonicity & correspondence) Sahlqvist theorem
- (completeness) Which varieties are generated by their PMAs?
- (completions) canonical extensions, MacNeille completions,
- study free modal algebras

Overview

Introduction

Modal Dualities

Subdirectly irreducible algebras and rooted structures

Vietoris via modal logic

Final remarks

 \blacksquare Given an algebra \mathbb{A} , let Con \mathbb{A} be its lattice of congruences

 \blacksquare Given an algebra \mathbb{A} , let Con \mathbb{A} be its lattice of congruences

 $\blacksquare A is simple if ConA \cong 2$

■ A is subdirectly irreducible if ConA has a least non-identity element

- \blacksquare Given an algebra \mathbb{A} , let Con \mathbb{A} be its lattice of congruences
- $\blacksquare A is simple if ConA \cong 2$
- \blacksquare \mathbbm{A} is subdirectly irreducible if Con $\!\mathbbm{A}$ has a least non-identity element
- Birkhoff: every variety is generated by its s.i. members

- \blacksquare Given an algebra \mathbb{A} , let Con \mathbb{A} be its lattice of congruences
- $\blacksquare A is simple if ConA \cong 2$
- \blacksquare A is subdirectly irreducible if ConA has a least non-identity element
- Birkhoff: every variety is generated by its s.i. members

Question What is the dual of a s.i. modal algebra?

- Given an algebra A, let ConA be its lattice of congruences
- $\blacksquare A is simple if ConA \cong 2$
- \blacksquare A is subdirectly irreducible if ConA has a least non-identity element
- Birkhoff: every variety is generated by its s.i. members

Question What is the dual of a s.i. modal algebra?

Folklore Subdirect irreducibility is related to rootedness

Proposition (folklore) \mathbb{S} is rooted iff \mathbb{S}^+ is s.i.

Proposition (folklore) \mathbb{S} is rooted iff \mathbb{S}^+ is s.i.

Proposition (Sambin) (1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i.

Proposition (folklore) \mathbb{S} is rooted iff \mathbb{S}^+ is s.i.

Proposition (Sambin) (1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i. (2) If \mathbb{A} is s.i. then $Int(W_{\mathbb{A}_*}) \neq \emptyset$

Proposition (folklore) \mathbb{S} is rooted iff \mathbb{S}^+ is s.i.

Proposition (Sambin) (1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i. (2) If \mathbb{A} is s.i. then $Int(W_{\mathbb{A}_*}) \neq \emptyset$, provided \mathbb{A} is (ω -)transitive.

Proposition (folklore) \mathbb{S} is rooted iff \mathbb{S}^+ is s.i.

Proposition (Sambin) (1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i. (2) If \mathbb{A} is s.i. then $Int(W_{\mathbb{A}_*}) \neq \emptyset$, provided \mathbb{A} is $(\omega$ -)transitive.

Example (Kracht)

There are simple algebras of which the dual structure has no roots.

Proposition (folklore) \mathbb{S} is rooted iff \mathbb{S}^+ is s.i.

Proposition (Sambin) (1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i. (2) If \mathbb{A} is s.i. then $Int(W_{\mathbb{A}_*}) \neq \emptyset$, provided \mathbb{A} is (ω -)transitive.

Example (Kracht)

There are simple algebras of which the dual structure has no roots.

Proposition (Rautenberg) Given a modal algebra \mathbb{A} , t.f.a.e.

A is s.i.

Proposition (folklore) \mathbb{S} is rooted iff \mathbb{S}^+ is s.i.

Proposition (Sambin) (1) If $Int(W_{\mathbb{A}_*}) \neq \emptyset$ then \mathbb{A} is s.i. (2) If \mathbb{A} is s.i. then $Int(W_{\mathbb{A}_*}) \neq \emptyset$, provided \mathbb{A} is (ω -)transitive.

Example (Kracht)

There are simple algebras of which the dual structure has no roots.

Proposition (Rautenberg) Given a modal algebra \mathbb{A} , t.f.a.e.

■ A is s.i.

 \blacksquare \mathbb{A}_* has a largest nontrivial, closed hereditary subset

Fix a modal algebra \mathbb{A} .

 \blacksquare r is a root of \mathbb{A}_* iff $Q^{\omega}_{\diamond}(r) = Uf(\mathbb{A})$

Fix a modal algebra \mathbb{A} .

- \blacksquare r is a root of \mathbb{A}_* iff $Q^{\omega}_{\diamond}(r) = Uf(\mathbb{A})$
- $\blacksquare \ Q^{\omega}_{\Diamond}uv \text{ iff } \exists n \in \omega \forall a \in v. \diamondsuit^{n} a \in u$

Fix a modal algebra \mathbb{A} .

- \blacksquare r is a root of \mathbb{A}_* iff $Q^{\omega}_{\diamond}(r) = Uf(\mathbb{A})$
- $\blacksquare \ Q^{\omega}_{\Diamond}uv \text{ iff } \exists n \in \omega \forall a \in v. \diamondsuit^{n} a \in u$

■ Define Q^*_{\Diamond} by putting $Q^*_{\Diamond}uv$ iff $\forall a \in v \exists n \in \omega$. $\Diamond^n a \in u$

Fix a modal algebra \mathbb{A} .

- \blacksquare r is a root of \mathbb{A}_* iff $Q^{\omega}_{\diamond}(r) = Uf(\mathbb{A})$
- $\blacksquare \ Q^{\omega}_{\diamond}uv \text{ iff } \exists n \in \omega \forall a \in v. \diamond^{n}a \in u$
- Define Q^*_{\Diamond} by putting $Q^*_{\Diamond}uv$ iff $\forall a \in v \exists n \in \omega$. $\Diamond^n a \in u$

 $\blacksquare \quad \mathsf{Call} \ r \in Uf(\mathbb{A}) \text{ a topo-root if } Q^{\star}_{\Diamond}(r) = Uf(\mathbb{A})$

Fix a modal algebra \mathbb{A} .

- \blacksquare r is a root of \mathbb{A}_* iff $Q^{\omega}_{\diamond}(r) = Uf(\mathbb{A})$
- $\blacksquare \ Q^{\omega}_{\diamond}uv \text{ iff } \exists n \in \omega \forall a \in v. \diamond^{n}a \in u$
- Define Q^*_{\Diamond} by putting $Q^*_{\Diamond}uv$ iff $\forall a \in v \exists n \in \omega. \Diamond^n a \in u$
- $\blacksquare \quad \mathsf{Call} \ r \in Uf(\mathbb{A}) \text{ a topo-root if } Q^\star_{\Diamond}(r) = Uf(\mathbb{A})$
- Let $T_{\mathbb{A}_*}$ denote the collection of topo-roots of \mathbb{A}_*

Observations

$\label{eq:proposition} \textbf{Proposition} \ \textbf{For any modal algebra} \ \mathbb{A}:$

(1) Q^* is transitive

(2) $Q^{\omega} \subseteq Q^{\star}$

- (3) $Q^{\star}(u)$ is hereditary for any ultrafilter u
- (4) $Q^{\star}(u)$ is <u>closed</u> for any ultrafilter u
- (5) $Q^{\star}(u) = \overline{Q^{\omega}(u)}$ for any ultrafilter u
- (6) $\langle Q^{\star} \rangle$ maps opens to opens

(7) If Q is transitive then $Q = Q^{\omega} = Q^{\star}$

Characterizations

Theorem For any modal algebra \mathbb{A} : (1) \mathbb{A} is simple iff $T_{\mathbb{A}_*} = Uf(\mathbb{A})$

Characterizations

Theorem For any modal algebra \mathbb{A} : (1) \mathbb{A} is simple iff $T_{\mathbb{A}_*} = Uf(\mathbb{A})$ (2) \mathbb{A} is s.i. iff $Int(T_{\mathbb{A}_*}) \neq \emptyset$

Characterizations

Theorem For any modal algebra \mathbb{A} : (1) \mathbb{A} is simple iff $T_{\mathbb{A}_*} = Uf(\mathbb{A})$ (2) \mathbb{A} is s.i. iff $Int(T_{\mathbb{A}_*}) \neq \emptyset$

Note Earlier results follow from this.

Theorem For any modal algebra \mathbb{A} : (1) \mathbb{A} is simple iff $T_{\mathbb{A}_*} = Uf(\mathbb{A})$ (2) \mathbb{A} is s.i. iff $Int(T_{\mathbb{A}_*}) \neq \emptyset$

Note Earlier results follow from this.

Suggestion Develop the modal theory of Q^*

Overview

I

Introduction

- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

- Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.
- **\blacksquare** $K(\mathbb{X})$ denotes the collection of compact sets

• Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.

\blacksquare $K(\mathbb{X})$ denotes the collection of compact sets

 $\blacksquare \text{ With } \mathcal{U} \subseteq \tau, \text{ define }$

$$abla \mathcal{U} := \{F \in \mathcal{K}(\mathbb{X}) \mid F \ \overline{\mathsf{P}} \in \mathcal{U}\},\$$

• Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.

\blacksquare $K(\mathbb{X})$ denotes the collection of compact sets

 $\blacksquare \text{ With } \mathcal{U} \subseteq \tau, \text{ define }$

$$\nabla \mathcal{U} := \{F \in K(\mathbb{X}) \mid F \ \overline{\mathsf{P}} \in \mathcal{U}\},\$$

where $F\overline{P} \in \mathcal{U}$ if *F* is 'properly covered' by \mathcal{U} :

• Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.

\blacksquare $K(\mathbb{X})$ denotes the collection of compact sets

 $\blacksquare \text{ With } \mathcal{U} \subseteq \tau, \text{ define }$

$$abla \mathcal{U} := \{F \in \mathcal{K}(\mathbb{X}) \mid F \ \overline{\mathsf{P}} \in \mathcal{U}\},\$$

where $F\overline{P} \in \mathcal{U}$ if *F* is 'properly covered' by \mathcal{U} :

- $\forall s \in F \exists U \in U. s \in U$ and
- $\lor \forall U \in \mathcal{U} \exists s \in F . s \in U$

• Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.

\blacksquare $K(\mathbb{X})$ denotes the collection of compact sets

• With $\mathcal{U} \subseteq \tau$, define

$$abla \mathcal{U} := \{F \in \mathcal{K}(\mathbb{X}) \mid F \ \overline{\mathsf{P}} \in \mathcal{U}\},\$$

where $F\overline{P} \in \mathcal{U}$ if *F* is 'properly covered' by \mathcal{U} :

- $\forall s \in F \exists U \in U. s \in U$ and
- $\lor \forall U \in \mathcal{U} \exists s \in F . s \in U$

These sets $\nabla \mathcal{U}$ together provide a basis for a topology on $\mathcal{K}(\mathbb{X})$,

• Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.

 \blacksquare $K(\mathbb{X})$ denotes the collection of compact sets

• With $\mathcal{U} \subseteq \tau$, define

$$abla \mathcal{U} := \{F \in \mathcal{K}(\mathbb{X}) \mid F \ \overline{\mathsf{P}} \in \mathcal{U}\},\$$

where $F\overline{P} \in \mathcal{U}$ if *F* is 'properly covered' by \mathcal{U} :

- $\forall s \in F \exists U \in U. s \in U$ and
- ► $\forall U \in \mathcal{U} \exists s \in F . s \in U$

■ These sets ∇U together provide a basis for a topology on K(X), the Vietoris topology v_τ

• Let $\mathbb{X} = \langle X, \tau \rangle$ be a topological space.

 \blacksquare $K(\mathbb{X})$ denotes the collection of compact sets

• With $\mathcal{U} \subseteq \tau$, define

$$abla \mathcal{U} := \{F \in K(\mathbb{X}) \mid F \ \overline{\mathsf{P}} \in \mathcal{U}\},\$$

where $F\overline{P} \in \mathcal{U}$ if F is 'properly covered' by \mathcal{U} :

- $\forall s \in F \exists U \in U. s \in U$ and
- ► $\forall U \in \mathcal{U} \exists s \in F . s \in U$
- These sets ∇U together provide a basis for a topology on K(X), the Vietoris topology v_τ
- $\blacksquare V(\mathbb{X}) := \langle K(\mathbb{X}), v_{\tau} \rangle \text{ is the Vietoris space of } \mathbb{X}.$

Different presentation:

For
$$a \in \tau$$
, define

$$\diamond a := \{F \in K(\mathbb{X}) \mid F \cap a \neq \emptyset\}$$
$$\Box a := \{F \in K(\mathbb{X}) \mid F \subseteq a\}$$

Different presentation:

For $a \in \tau$, define

$$\diamond a := \{F \in K(\mathbb{X}) \mid F \cap a \neq \emptyset\}$$
$$\Box a := \{F \in K(\mathbb{X}) \mid F \subseteq a\}$$

Generate v_{τ} from $\{\langle \ni \rangle a, [\ni] \mid a \in \tau\}$ as a subbasis.

The Vietoris construction 2

Different presentation:

For $a \in \tau$, define

$$\diamond a := \{F \in K(\mathbb{X}) \mid F \cap a \neq \emptyset\}$$
$$\Box a := \{F \in K(\mathbb{X}) \mid F \subseteq a\}$$

■ Generate v_{τ} from $\{\langle \ni \rangle a, [\ni] \mid a \in \tau\}$ as a subbasis.

Fact The Vietoris construction preserves various properties, including:

- compactness
- compact Hausdorfness
- zero-dimensionality

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f : \mathbb{X} \to \mathbb{Y}$,

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f : \mathbb{X} \to \mathbb{Y}$, let $\forall f : \mathcal{K}(\mathbb{X}) \to \mathsf{P}(Y)$ be given by

$$\mathsf{V}f(F) := f[F] \qquad \left(= \{fx \mid x \in F\} \right)$$

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f : \mathbb{X} \to \mathbb{Y}$, let $\forall f : \mathcal{K}(\mathbb{X}) \to \mathsf{P}(Y)$ be given by

$$\mathsf{V}f(F) := f[F] \qquad \left(= \{fx \mid x \in F\} \right)$$

Then Vf maps compact sets to compact sets.

From now on we restrict to the category KHaus of

- objects: compact Hausdorff spaces
- arrows: continuous maps

Fact Given $f : \mathbb{X} \to \mathbb{Y}$, let $\forall f : \mathcal{K}(\mathbb{X}) \to \mathsf{P}(Y)$ be given by

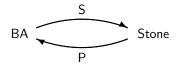
$$\mathsf{V}f(F) := f[F] \qquad \left(= \{fx \mid x \in F\} \right)$$

Then Vf maps compact sets to compact sets.

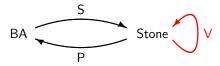
Fact

V is a functor on the categories KHaus and Stone.

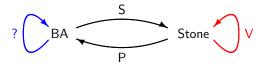
Observation Stone duality and the Vietoris functor:



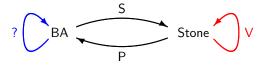
Observation Stone duality and the Vietoris functor:



Observation Stone duality and the Vietoris functor:

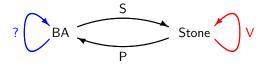


Observation Stone duality and the Vietoris functor:



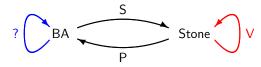
Observation (Esakia) In a TKS (S, R, τ) , $R : S \rightarrow P(S)$

Observation Stone duality and the Vietoris functor:



Observation (Esakia) In a TKS (S, R, τ) , $R : S \to P(S)$ is an arrow $R : (S, \tau) \to V(S, \tau)$

Observation Stone duality and the Vietoris functor:



Observation (Esakia) In a TKS (S, R, τ) , $R : S \to P(S)$ is an arrow $R : (S, \tau) \to V(S, \tau)$

Theorem

Topological Kripke frames are Vietoris coalgebras over Stone

Universal Coalgebra (Rutten, 2000) is a general mathematical theory for evolving systems

- Universal Coalgebra (Rutten, 2000) is
 - a general mathematical theory for evolving systems
- It provides a natural framework for notions like
 - behavior

- Universal Coalgebra (Rutten, 2000) is
 - a general mathematical theory for evolving systems
- It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence

- Universal Coalgebra (Rutten, 2000) is
 - a general mathematical theory for evolving systems
- It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants

- Universal Coalgebra (Rutten, 2000) is
 - a general mathematical theory for evolving systems
- It provides a natural framework for notions like
 - behavior
 - bisimulation/behavioral equivalence
 - invariants
- Sufficiently general to model notions like:

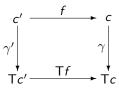
input, output, non-determinism, interaction, probability, ...

Let $\mathsf{T}: {\it C} \rightarrow {\it C}$ be an endofunctor on the category ${\it C}$

Let $T : C \to C$ be an endofunctor on the category CAn T-coalgebra is a pair $(c, \gamma : c \to Tc)$.

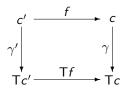
Let $T : C \to C$ be an endofunctor on the category C

- An T-coalgebra is a pair $(c, \gamma : c \to Tc)$.
- A coalgebra morphism between two coalgebras (c', γ') and (c, γ) is an arrow $f : c' \to C$ with



Let $\mathsf{T}: \mathit{C} \to \mathit{C}$ be an endofunctor on the category C

- An T-coalgebra is a pair $(c, \gamma : c \to Tc)$.
- A coalgebra morphism between two coalgebras (c', γ') and (c, γ) is an arrow $f : c' \to C$ with



Examples:

- Kripke structures are P-coalgebras over Set
- deterministics finite automata are coalgebras over Set

Theorem TKS \cong Coalg_V(Stone)

Theorem TKS \cong Coalg_V(Stone)

Manifestations:

I The final V-coalgebra \sim the canonical general frame (C, R, τ),

Theorem TKS \cong Coalg_V(Stone)

Manifestations:

 \blacksquare The final V-coalgebra \sim the canonical general frame (C, R, au),

■ the map $s \mapsto R(s)$ is a homeomorphism $R : (C, \tau) \to V(C, \tau)$

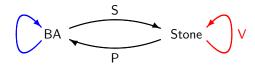
Theorem TKS \cong Coalg_V(Stone)

Manifestations:

The final V-coalgebra \sim the canonical general frame (C, R, τ) ,

 $\blacksquare \text{ the map } s \mapsto R(s) \text{ is a homeomorphism } R: (C, \tau) \to V(C, \tau)$

Duality:



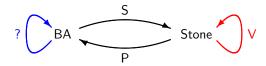
Theorem TKS \cong Coalg_V(Stone)

Manifestations:

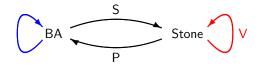
The final V-coalgebra \sim the canonical general frame (C, R, τ) ,

 $\blacksquare \text{ the map } s \mapsto R(s) \text{ is a homeomorphism } R: (C, \tau) \to V(C, \tau)$

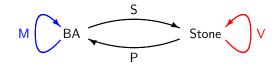
Duality:



Modal Logic Dualizes the Vietoris Functor



Modal Logic Dualizes the Vietoris Functor

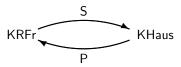


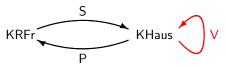
Johnstone: describe M via generators and relations
 Given a BA 𝔅, M𝔅 is the Boolean algebra

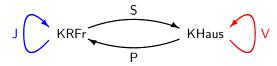
- generated by the set $\{ \underline{\diamond b} : b \in B \}$
- modulo the relations $\Diamond (a \lor b) = \underline{\Diamond a} \lor \underline{\Diamond b}$ and $\underline{\Diamond \top} = \top$

Theorem (Kupke, Kurz & Venema) $MA \cong ALg_{BA}(M)$.

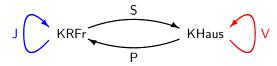
The topological modal duality is an algebra coalgebra duality







Frames/Locales provide pointfree versions of topologies.



Geometric modal logic dualizes/axiomatizes the Vietoris functor (Johnstone)

Vietoris pointfree (Johnstone Functor)

Given a frame \mathbb{L} , define $L_{\Box} := \{\Box a \mid a \in L\}$ and $L_{\diamondsuit} := \{\diamondsuit a \mid a \in L\}$.

$$V\mathbb{L} := \operatorname{Fr}\langle L_{\Box} \uplus L_{\diamond} \mid \Box(\bigwedge A) = \bigwedge_{a \in A} \Box a \quad (A \in \mathsf{P}_{\omega}L)$$

$$\diamond(\bigvee A) = \bigvee_{a \in A} \diamond a \quad (A \in \mathsf{P}_{\omega}L)$$

$$\Box a \land \diamond b \leq \diamond(a \land b)$$

$$\Box(a \lor b) \leq \Box a \lor \diamond b$$

$$\Box(\bigsqcup A) = \bigsqcup_{a \in A} \Box a \quad (A \in \mathsf{P}L \text{ directed})$$

$$\diamond(\bigsqcup A) = \bigsqcup_{a \in A} \diamond a \quad (A \in \mathsf{P}L \text{ directed})$$

$$\diamond(\bigsqcup A) = \bigsqcup_{a \in A} \diamond a \quad (A \in \mathsf{P}L \text{ directed})$$

Vietoris and the Cover Modality ∇

 \blacktriangleright Vietoris used the $\nabla\text{-constructor}$ on $\mathsf{P}_{\omega}\tau$

Vietoris and the Cover Modality ∇

- \blacktriangleright Vietoris used the $\nabla\text{-constructor}$ on $\mathsf{P}_{\omega}\tau$
- \blacktriangleright Now think of ∇ as a primitive modality

Vietoris and the Cover Modality abla

- \blacktriangleright Vietoris used the $\nabla\text{-constructor}$ on $\mathsf{P}_{\omega}\tau$
- Now think of ∇ as a primitive modality
- This modality has many manifestations in modal logic
 - normal forms (Fine)
 - coalgebraic modal logic (Moss)
 - automata theory (Walukiewicz)

Vietoris and the Cover Modality abla

- \blacktriangleright Vietoris used the $\nabla\text{-constructor}$ on $\mathsf{P}_{\omega}\tau$
- Now think of ∇ as a primitive modality
- This modality has many manifestations in modal logic
 - normal forms (Fine)
 - coalgebraic modal logic (Moss)
 - automata theory (Walukiewicz)
- ► May develop <u>V</u>-logic ...

Vietoris and the Cover Modality abla

- \blacktriangleright Vietoris used the $\nabla\text{-constructor}$ on $\mathsf{P}_{\omega}\tau$
- Now think of ∇ as a primitive modality
- This modality has many manifestations in modal logic
 - normal forms (Fine)
 - coalgebraic modal logic (Moss)
 - automata theory (Walukiewicz)
- ► May develop <u>∇-logic</u> ...

 \ldots and formulate M & J accordingly, in terms of abla

Fix a standard set functor T that preserves weak pullbacks.

Fix a standard set functor T that preserves weak pullbacks. Define the T-powerlocale of a frame $\mathbb L$ as

 $\mathsf{V}_{\mathsf{T}}\mathbb{L} := \mathsf{Fr}\langle \mathsf{T}_{\omega}L \mid (\nabla 1), (\nabla 2), (\nabla 3) \rangle,$

Fix a standard set functor T that preserves weak pullbacks. Define the T-powerlocale of a frame $\mathbb L$ as

$$\mathsf{V}_{\mathsf{T}}\mathbb{L} := \mathsf{Fr}\langle \mathsf{T}_{\omega}L \mid (\nabla 1), (\nabla 2), (\nabla 3) \rangle,$$

Fix a standard set functor T that preserves weak pullbacks. Define the T-powerlocale of a frame $\mathbb L$ as

$$\mathsf{V}_{\mathsf{T}}\mathbb{L} := \mathsf{Fr}\langle \mathsf{T}_{\omega}L \mid (\nabla 1), (\nabla 2), (\nabla 3) \rangle,$$

$$(\nabla 1) \quad \nabla \alpha \le \nabla \beta \qquad \qquad (\alpha \ \overline{\mathsf{T}} \le \beta)$$

Fix a standard set functor T that preserves weak pullbacks. Define the T-powerlocale of a frame $\mathbb L$ as

$$\mathsf{V}_{\mathsf{T}}\mathbb{L} := \mathsf{Fr}\langle \mathsf{T}_{\omega}L \mid (\nabla 1), (\nabla 2), (\nabla 3) \rangle,$$

$$\begin{array}{ll} (\nabla 1) & \nabla \alpha \leq \nabla \beta & (\alpha \ \overline{\mathsf{T}} \leq \beta) \\ (\nabla 2) & \bigwedge_{\gamma \in \mathsf{\Gamma}} \nabla \gamma \leq \bigvee \{ \nabla (\mathsf{T} \bigwedge) \Psi \mid \Psi \in SRD(\mathsf{\Gamma}) \} & (\mathsf{\Gamma} \in \mathsf{P}_{\omega}\mathsf{T}_{\omega}L) \end{array}$$

Fix a standard set functor T that preserves weak pullbacks. Define the T-powerlocale of a frame $\mathbb L$ as

$$\mathsf{V}_{\mathsf{T}}\mathbb{L} := \mathsf{Fr}\langle \mathsf{T}_{\omega}L \mid (\nabla 1), (\nabla 2), (\nabla 3) \rangle,$$

$$\begin{array}{ll} (\nabla 1) & \nabla \alpha \leq \nabla \beta & (\alpha \ \overline{\mathsf{T}} \leq \beta) \\ (\nabla 2) & \bigwedge_{\gamma \in \mathsf{\Gamma}} \nabla \gamma \leq \bigvee \{ \nabla (\mathsf{T} \land) \Psi \mid \Psi \in SRD(\mathsf{\Gamma}) \} & (\mathsf{\Gamma} \in \mathsf{P}_{\omega}\mathsf{T}_{\omega}L) \\ (\nabla 3) & \nabla (\mathsf{T} \lor) \Phi \leq \bigvee \{ \nabla \beta \mid \beta \ \overline{\mathsf{T}} \in \Phi \} & (\Phi \in \mathsf{T}_{\omega}\mathsf{P}L) \end{array}$$

Theorem (V., Vickers & Vosmaer)

 \blacksquare J_T provides a functor on the category Fr of frames.

Theorem (V., Vickers & Vosmaer)

- \blacksquare J_T provides a functor on the category Fr of frames.
- $\blacksquare \ J_T \text{ generalizes Johnstone's } J: \ J = J_P.$

Theorem (V., Vickers & Vosmaer)

- \blacksquare J_T provides a functor on the category Fr of frames.
- $\blacksquare \ J_T \text{ generalizes Johnstone's } J: \ J = J_P.$
- \blacksquare J_T preserves regularity, zero-dimensionality, and Stone-ness.

Theorem (V., Vickers & Vosmaer)

- \blacksquare J_T provides a functor on the category Fr of frames.
- $\blacksquare \ J_T \text{ generalizes Johnstone's } J: \ J = J_P.$
- \blacksquare J_T preserves regularity, zero-dimensionality, and Stone-ness.

Conjecture

If T preserves finite sets, then J_T preserves compactness.

Theorem (V., Vickers & Vosmaer)

 \blacksquare J_T provides a functor on the category Fr of frames.

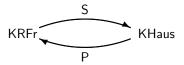
 $\blacksquare \ J_T \text{ generalizes Johnstone's } J: \ J = J_P.$

 \blacksquare J_T preserves regularity, zero-dimensionality, and Stone-ness.

Conjecture

If T preserves finite sets, then J_T preserves compactness.

Question



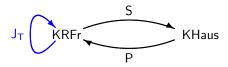
Theorem (V., Vickers & Vosmaer)

- \blacksquare J_T provides a functor on the category Fr of frames.
- $\blacksquare \ J_T \text{ generalizes Johnstone's } J: \ J = J_P.$
- \blacksquare J_T preserves regularity, zero-dimensionality, and Stone-ness.

Conjecture

If T preserves finite sets, then J_T preserves compactness.

Question



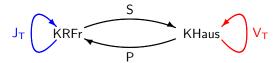
Theorem (V., Vickers & Vosmaer)

- \blacksquare J_T provides a functor on the category Fr of frames.
- $\blacksquare \ J_T \text{ generalizes Johnstone's } J: \ J = J_P.$
- \blacksquare J_T preserves regularity, zero-dimensionality, and Stone-ness.

Conjecture

If T preserves finite sets, then J_T preserves compactness.

Question



The Vietoris functor is the power set instantiation of the functor V_T

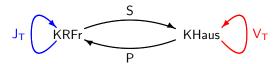
Theorem (V., Vickers & Vosmaer)

- \blacksquare J_T provides a functor on the category Fr of frames.
- $\blacksquare \ J_T \text{ generalizes Johnstone's } J: \ J = J_P.$
- \blacksquare J_T preserves regularity, zero-dimensionality, and Stone-ness.

Conjecture

If T preserves finite sets, then J_T preserves compactness.

Question



The Vietoris functor is the power set instantiation of the functor V_T Describe the functor V_T for an arbitrary set functor T!

Overview

I

Introduction

- Modal Dualities
- Subdirectly irreducible algebras and rooted structures
- Vietoris via modal logic
- Final remarks

- Dualities are particularly useful if both categories are concrete
- Dualities can be used 'on the other side' to

Final Remarks

Dualities are particularly useful if both categories are concrete

Dualities can be used 'on the other side' to

► solve problems

Final Remarks

Dualities are particularly useful if both categories are concrete

Dualities can be used 'on the other side' to

- ► solve problems
- ► isolate interesting concepts

Final Remarks

Dualities are particularly useful if both categories are concrete

Dualities can be used 'on the other side' to

- ► solve problems
- ▶ isolate interesting concepts
- ► trigger interesting questions

References

- ► Y. Venema. A dual characterization of subdirectly irreducible BAOs. Studia Logica, 77 (2004) 105–115.
- ► C. Kupke, A. Kurz and Y. Venema. Stone Coalgebras. Theoretical Computer Science 327 (2004) 109–134.
- ▶ Y. Venema. Algebras and coalgebras. In P. Blackburn, J. van Benthem, and F. Wolter, editors, *Handbook of Modal Logic*. Elsevier, 2006.
- ► Y. Venema, S. Vickers and J. Vosmaer. Generalized powerlocales via relation lifting. Mathematical Structures in Computer Science 23 (2013) pp. 142-199.
- ► Y. Venema and J. Vosmaer, Modal logic and the Vietoris functor. In G. Bezhanishvili (ed.), Leo Esakia on Duality in Modal and Intuitionistic Logics. Springer, 2014.

http://staff.fnwi.uva.nl/y.venema