Beyond A-Theory and the Block Universe: A non-circular derivation of "before", change, and local asymmetric time

> by Daniel Saudek daniel.saudek@uibk.ac.at

Challenge: asymmetric time compatible with relativity?

Answers in the literature:

- Cosmic A-theory: e.g. W. L. Craig, D. Zimmerman, Unger & Smolin
- Block universe: O. C. de Beauregard, K. Gödel, B. Skow
- Branching spacetimes
- Time real but local: S. Savitt, J. Harrington

 \rightarrow My proposal: Aristotelian theory; time in terms of substances, powers, causation; does *not* rely on causal asymmetry!

Steps:

- 1. Defining "before" non-circularly
- 2. Defining change
- 3. Defining local time
- 4. Epistemological realism
- 5. Derivation of local time's asymmetric character: linearity, "one way street", fixity of past and openness of the future.

A.1: Substances exist, and they can exist in different states characterized by non-essential intrinsic properties.

→Substance A, non-essential intrinsic properties p: A-with-p and A-without-p "states" of A.

A.2: For any substance *A*, different states of it exist only if it is subject to causal interactions, either with its environment, or among its own parts.

→ non-essential intrinsic properties as "records", substances as "recorders".

Simple examples (e.g. moon): asymmetry *in the existence of states* of recorder *A*

D.1: An amended recorder is a recorder *A* such that each event affecting it produces a record in *A*, and does not affect other records in *A*.

But what if record *r** twice?

D.2: An ideal recorder is an amended recorder which is able to fully specify its own state.

 $\rightarrow r_a^*$ and r_b^* discernible

D.3: *x* is before *y* iff there is a state of *A* with r_x , and a state with r_x and r_y , but no state with r_y and without r_x .

Note: no explicit quantification over all states of A needed!

2. Defining change

D.4 A substance *B* changes iff it acquires or loses a property *p*, where "*B* acquires *p*" iff $r_{B-without-p}$ is before $r_{B-with-p}$ for *A*, and "*B* loses *p*" iff $r_{B-with-p}$ is before $r_{B-without-p}$ for *A*.

Note: "for $A'' \rightarrow$ for any recorder.

3. Defining time

A in state with r_a^* and r_b^* . Collection of r_a^* and r_b^* : r_2^* . A with r_2^* plus another instance of $r^* \rightarrow$ collection of r_2^* and r^* : r_3^* , etc.

D.5: If A is an ideal recorder, or a sufficiently good approximation thereof, then for all r_i^* in A, $i \equiv t$.

3. Defining time

Writing "A-with- r_x " as "Ax", we identify: **I.1:** $A_t = Ax_1, ..., x_n$, for some *n*.

Also:

D.6: If a record *r* is produced in A_t , then $r \equiv r_t$.

3. Defining time

D.7: Time is a local parameter t established through a recorder A on the basis of repeated instances of records of the same type r^* in A, such that t is used to quantify processes of change in substances which can causally affect A.

4. Epistemological realism

V: set of rules of inference *v*. *R*^{*A*}: set containing records *r*^{*A*} in *A*. Then:

A.3: From the fact that the rules $v \in V$ apply, and from the existence of records $r^A \in R^A$, it follows that some propositions p_R^A are true, the set of which will be called P_R^A .

Consider: A in state $A_{t\alpha}$, where $t_{\alpha} > 0$. $A_{t\alpha}$

• will in general bear records of causal interactions (identification I.1)

• is a substance \rightarrow can receive more records (assumptions A.1 and A.2)

- Records in A associated with locally measured times t (definition D.6).
- For each time t less than t_{α} , there is a set R^{A_t} of records r^{A_t} in A.
- Existence of records $r \wedge_t$ in $R \wedge_t$, plus rules of inference v in $V \rightarrow$ truth of some propositions associated with records $r \wedge_t \rightarrow$ We call them $p \wedge_t$, and the set containing all of them and only them will be called $P \wedge_t$.

 \rightarrow all times *t* less than t_{α} associated with sets P_{A_t} , all times *t* greater than t_{α} not.

Linearity:

Given: two locally measured times t and t', records r_{t} in R_{t} indiscernible from records $r_{t'}$ in $R_{t'} \rightarrow$ two type-identical sets of propositions P_{t} and $P_{t'}$. But P_{t} and $P_{t'}$ not identical: all propositions contained in $P_{t'}$ involve $A_{t'}$ rather than A_{t} .

 \rightarrow Every local time *t*: *unique* set P_{A_t} .

 \rightarrow "Same happens again" does not mean "the past recurs".

Fixity of the past:

State $A_{t\alpha}$ of A: propositional content of local time t less than t_{α} given by P_{A_t} .

- Let $(p_{A_t})^* \in P_{A_t}$. "I wish not- $(p_{A_t})^*$!" \rightarrow impossible, because $(p_{A_t})^*$ implied by true statements: 1. existence of records in $A_{t\alpha}$, associated with local time *t*; 2. rules $v \in V$.
- Let $(p_{A_t}) + \notin P_{A_t}$. "I wish $(p_{A_t}) + !$ " \rightarrow impossible, because P_{A_t} contains all and only the propositions which follow from rules $v \in V$ and existence of $r_{A_t} \in R_{A_t}$.
- \rightarrow Notion of changing local past implies a contradiction.

Openness of the future:

Propositional content of local times t greater than t_{α} can be influenced:

- $A_{t\alpha}$ state of substance A. Substances can acquire records through causal interactions \rightarrow sets of propositions (assumption (A.3)).
- Propositional content of a time less than t_{α} cannot be changed (shown above)
- No such argument for times greater than t_{α} , because no records in $A_{t\alpha}$ for such times.

→ Local future is open: each time t greater than t_{α} is not associated with a unique P-set, but can be occupied by infinitely many such sets. Propositional content of such times "branches".

Time's anisotropic character:

Revisiting the past \rightarrow contradiction. \rightarrow Time can only move "forward".

Conclusion

- Time is something purely local.
- Local times have asymmetric character: fixed past, open future, unidirectional flow → horsetail model.
- No conflict between relativity theory and our experience of the passage of time (unlike e.g. in Gödel, Unger & Smolin).
- Events do not change their ontological status, as in classical A-theory, i.e. not: "future events become present, then past".
- Time is neither merely subjective, nor independent of measuring operations. It is an *ens rationis cum fundamento in re.*