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Gabbay, Olivetti: goal-directed deduction

• a methodology to be applied to the major families of non-classical logics,

• (in automated deduction) significantly reduces the non-determinism in proof
search,

• focuses on the relevant data (premisses) for the proof of the goal and ignores the
rest,

• proposed a procedural approach to logical systems (different proof systems
interpreted as procedural variants of the same deduction algorithm).

Original task:

– use non-classical logics to specify deductive databases and logic programs,

– out of hundreds of formulae, most of which are irrelevant to the given goal
formula, select those which are relevant.
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Batens and Provijn start from a different motivation: a "natural" reasoning process
and so develop a human-oriented method and proof format.

The features of the new proof format (for propositional CL:

• If the main goal G is derivable from the premises ∆, then the heuristics leads to a
finite proof of ∆ ` G (a positive test for derivability).

• If the heuristics stops and the main goal G is not derived, then ∆ 0 G .

Observation (Batens, Meheus)
We can use the new proof format to bring out the pragmatic aspects of explanation in
the process of proof.
Thus, we can start applying goal-directed proof theory to philosophy of science.
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Hintikka:

• definitory rules (the rules of inference)

• the strategy (the heuristic rules used when pursuing a proof, the search paths)

Observation (Batens, Provijn)
We can "push down" the search paths (heuristic rules) into the rules of inference.

Batens and Meheus stray from the original motivation of keeping apart the
mathematical stage and the algorithmic stage of defining a logical system (as
proposed by Gabbay and Olivetti).
Result: the consequence operation may be non-Tarskian, where Tarskian
consequnence operation ` is:

• reflexive (A ` A),

• transitive (if Γ ` B and ∆ ∪ {B} ` A, then Γ ∪∆ ` A),

• monotonic (if Γ ` A, then Γ ∪∆ ` A).
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Two-stage process of explanation within the proof

Task
Explain the phenomenon ϕ in the context of the theory T .

Interpret the process of scientific explanation as a two-stage process:

1. identify certain sets of factual statements as prospective explanations (call them
initial conditions),

2. given one or more initial conditions, check whether one or more of them lead to
explanation (prove to be true).

– for each initial condition A, obtain a question of the form Is A the case? (?A),

– try to obtain either A or ¬A from your full knowledge base directly,

– if the question ?A cannot be answered directly, obtain partial questions and
proceed to answer ?A indirectly.
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The new proof format

Task
Make explicit the heuristic reasoning that leads to adding new steps to a proof.

Suppose we find the following line in your proof:

i A ⊃ B [some justification]

If we are interested in deriving B, we can try to derive A and apply modus ponens.
Using the new proof format we can write down the following:

i+1 B i , ?; modus ponens {A}

where ? in the justification means that a line of the proof in which A occurs in missing
at this stage of the proof.
The A in the condition indicates that if we are able to derive A, then we can remove
the condition and replace the question mark with the number of the line at which A is
derived. Thus we will have derived B from the premises.

This new format aimed at making the search patch (heuristics) formally explicit.
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Our project: motivation

Batens and Meheus developed an adaptive logic of questions Q suitable for
formulating the questions for the initial conditions (sets of factual statements as
prospective explanations).

Our plan1 is to further the human-oriented aspect of goal-directed proofs by allowing
the use of diagrams (doodling instead of writing down line after line).

We plan to develop a goal-directed diagrammatic proof method adequate for human
reasoning in which we pay particular attention to the relevance relation between the
precedent and the consequent.

We focus on providing a reliable tool for making relevant inferences which can be used
with ease and also giving the reasoner an enhanced understanding of the inference and
the relation between the precedent and the consequent. This in turn leads to
improving the strategies of our everyday reasoning.

1People involved in the project are Peter Verdee, Inge de Bal and myself.
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Our project: advantages

1. Goal-directedness reflects the state of the resources available to the reasoner:
often the premisses and the conclusion are given, but not the inference.

2. Our method allows to differentiate between two types of inferences in classical
logic: those which are useful from the point of view of understanding and
explanaining the material conditions behind the inference and those which can
only be explained by refering to the rules of inference, e. g. non-sequiturs and
other irrelevant inferences.

3. Doodling brings out the structual clarity in proofs and enhances understanding in
humans.

4. Our method offers a real-time proof conversion procedure from diagrams into
Fitch-style proofs (unlike, e.g. Batens and Meheus).

5. Doodling is easy.
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Our method: an example

Let us consider the following example.

We are interested in whether Γ ` α, where
Γ = {r ∨ q, (r ⊃ ¬p) ∧ t} and α is of the form (p ⊃ q) ∧ [(s ⊃ t) ∨ u].

The proof proceeds as follows. We keep Γ = {r ∨ q, (r ⊃ ¬p) ∧ t} as a set of available
premisses and designate (p ⊃ q) ∧ [(s ⊃ t) ∨ u] as our goal formula (the goal of the
proof). We draw a goal node, that is a diamond shape which contains the goal
formula:

Now we procced to simplify the goal formula by obtaining the two premisses needed to
prove it. We mark it by drawing two diamond-shaped subgoals and proceeding to
justify both of them.
We have two options to do this.
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proof). We draw a goal node, that is a diamond shape which contains the goal
formula:

Now we procced to simplify the goal formula by obtaining the two premisses needed to
prove it. We mark it by drawing two diamond-shaped subgoals and proceeding to
justify both of them.
We have two options to do this.
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Our method: an example

Now, the leftmost diagram is continued by means of conditional proof: p is introduced
as hypothesis and q forms the new subgoal.

This diagram explores (p ⊃ q). The
rightmost diagram follows another disjunct of (s ⊃ t) ∨ u.

Since u is a variable that is not present in the premisses, no premise is relevant for its
deduction. The diagram can therefore not be completed.
We introduce premise ((r ⊃ ¬p) ∧ t), which grounds the rightmost part of the
diagram. This part is now completed:
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deducing q. This implies that we have a new goal, namely ¬r .
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We continue our search for ¬r by means of premise (r ⊃ ¬p) ∧ t, via simplification.

We then can deduce ¬r (and thus our goal) on the condition of p.

Since we are still inside the frame, the hypothesis (p) is still valid and can be used as
extra premise. We can therefore underline the node which contains p. The proof is
thus concluded.
Note that we handled the two implications differently: one was grounded via a
conditional proof, one via the grounding of the consequent.
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Structual rules

GOAL allows us to define a goal in a diamond node

PREM allows us to write down a premise in an underlined rectangular node

HYP allows us to write down a formula in a circular node; in doing so a new
conditional proof is commenced in which the hypothesis may be used as an extra
premise. The boundaries of the conditional proof are depicted by a box.
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Reductio ad absurdum

This allows us to ground any formula in a hypothesis consisting of its negation and
itself. Given that the hypothesis functions as an extra premise inside the box, this
means we can ground the formula if we can derive it from its negation.



a and b rules

We use the following table to abbreviate formulas with the same meaning:

We use ∗b to denote the complement of b. We can define the rules as follows:



Conditional proof

These rules allow us to ground a b-formula, such as an implication, in a hypothesis
(the implicans) and the implicandum. The hypothesis functions as an extra premise in
the entire box. Nodes that are part of the tree with the implicandum as root node also
fall inside the box.
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Remaining rules

• Several rules contain dashed underlined nodes. This implies that they can be
premises.

• The contraction rule is expressed in a different way than the other rules. The
triangle expresses that there is diagrammatic proof to which these nodes belong.
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The result: no EQCs can go through our diagram

Definition (Correct diagram)
A correct proof diagram has a diamond-shaped top node and all box-shaped bottom
nodes, each derived by means of rules presented before.

Our rules do not allow to obtain the following diagram:

Why? b-decomposition 2 cannot be applied to a diamond-shaped node here and so t
cannot be deduced.
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Summary

• Gabbay and Olivetti initiated goal-directed proof theory based on the distinction
between the mathematical and the algorithmical stage of defining a logical
system.

• Batens and Meheus developed a goal-directed proof theory aimed at human
reasoning rather than automated proof analysis.

• To reach their goal, Batens and Meheus push down the proof heuristics
(algorithmic stage) into the rules of inference (mathematical stage), thus
modifying the consequence operation.

• Our proof method allows human reasoners to use a specific proving method
(without ECQs) without letting go of the Tarskian consequence operation in the
underlying logic.

• In this way, our approach is closer to the original motivations of Gabbay and
Olivetti.
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Thank you for your attention!

aleksandra.samonek@uclouvain.be


	Introduction
	The diagrammatic proof method

