Ordered Domain-Range Semigroups

Szabolcs Mikulás
Department of Computer Science and Information Systems
Birkbeck College, University of London
www.dcs.bbk.ac.uk/~szabolcs

Operations on binary relations

Let U be a set. We define operations on elements of $\wp(U \times U)$.

Domain

$$D(X) = \{(u, u) \mid (u, v) \in X \text{ for some } v \in U\}$$

Range

$$R(X) = \{(v, v) \mid (u, v) \in X \text{ for some } u \in U\}$$

Composition

$$X;Y = \{(u,v) \mid (u,w) \in X \text{ and } (w,v) \in Y \text{ for some } w \in U\}$$

Identity

$$1' = \{(u, u) \mid u \in U\}$$

Antidomain

$$A(X) = \{(u, u) \mid u \in U, (u, v) \notin X \text{ for any } v\}$$

Converse

$$X^{\smile} = \{(u, v) \mid (v, u) \in X\}$$

for every $X, Y \subseteq U \times U$.

Domain-range semigroups

Representable domain-range semigroups

A representable domain-range semigroup is a subalgebra of

$$(\wp(U \times U), D, R, ;)$$

With motivation in software verification:

Jipsen and Struth

Is the class $\mathbb{R}(D,R,;)$ of representable domain–range semigroups finitely axiomatizable?

[Hirsch and M, JLAP 2011]

Let τ be a similarity type such that $\{D,;\}\subseteq\tau\subseteq\{D,R,A,;,1',0\}$. The class $\mathbb{R}(\tau)$ of representable τ -algebras is not finitely axiomatizable in first-order logic.

Adding a semilattice structure?

Adding join?

[Hirsch and M, JLAP 2011] using [Andréka 1988]

Let τ be a similarity type such that

 $\{;,+\}\subseteq \tau\subseteq \{\mathsf{D},\mathsf{R},\mathsf{A},;,+,\overset{\smile}{,}^*,1',0,1\}$. The class $\mathbb{R}(\tau)$ of representable τ -algebras is not finitely axiomatizable in first-order logic.

Adding meet?

[Hirsch and M, AU 2007]

The class $\mathbb{R}(:,\cdot,1')$ is not finitely axiomatizable in first-order logic.

An ultraproduct construction of non-representable algebras, where 1' is an atom. Thus we can augment these algebras with D, R. Thus $\mathbb{R}(D,R,;,\cdot)$ is not finitely axiomatizable.

Adding a lattice structure?

[Andréka, AU 1991]

Let τ be a similarity type such that $\{;,+,\cdot\}\subseteq\tau\subseteq\{;,+,\cdot,-,\overset{\smile}{,}^*,1',0,1\}$. The class $\mathbb{R}(\tau)$ of representable τ -algebras is not finitely axiomatizable in first-order logic.

Another ultraproduct construction. Observe that we can define $D(x)=(x\,;\,x^\smile)\cdot 1',\; R(x)=(x^\smile\,;\,x)\cdot 1'$ and $A(x)=-D(x)\cdot 1'.$ Thus $\mathbb{R}(D,R,A,;,+,\cdot,\ldots)$ is not finitely axiomatizable.

Axiomatizing the equational theory

Recall that antidomain is defined as

$$A(X) = \{(u, u) \mid (u, v) \notin X \text{ for any } v\}$$

Observe that D(x) = A(A(x)).

[Hollenberg, JOLLI 1997]

The varieties $\mathbb{V}(A,;)$ and $\mathbb{V}(A,;,+)$ generated by $\mathbb{R}(A,;)$ and $\mathbb{R}(A,;,+)$, respectively, are finitely axiomatizable.

Our main result is:

Jackson and M

The variety V(D, R, ;, +) generated by $\mathbb{R}(D, R, ;, +)$ is finitely axiomatizable.

Ordered domain-range semigroups

Define $x \le y$ by x + y = y.

The axioms Ax:

(D1)
$$D(x); x = x$$
 (R1) $x; R(x) = x$

(D2)
$$D(x; y) = D(x; D(y))$$
 (R2) $R(x; y) = R(R(x); y)$

(D3)
$$D(D(x); y) = D(x); D(y)$$
 (R3) $R(x; R(y)) = R(x); R(y)$

(D4)
$$D(x)$$
; $D(y) = D(y)$; $D(x)$ (R4) $R(x)$; $R(y) = R(y)$; $R(x)$

(D5)
$$D(R(x)) = R(x)$$
 (R5) $R(D(x)) = D(x)$

(D6)
$$D(x)$$
; $y \le y$ (R6) x ; $R(y) \le x$

together with associativity of ; and +, idempotency of + and additivity of ;, D, R.

Eliminating join

Assume

$$\mathbb{V}(\mathsf{D},\mathsf{R},;,+) \models s \leq t$$

and we need $Ax \vdash s \leq t$, for all terms s, t. Using additivity of the operations we have that

$$\mathbb{V}(\mathsf{D},\mathsf{R},;,+) \models s_1 + \ldots + s_n = s \leq t = t_1 + \ldots + t_m$$

for some join-free terms $s_1, \ldots, s_n, t_1, \ldots, t_m$.

It is not difficult to show that this happens iff for every i there is j such that

$$\mathbb{V}(\mathsf{D},\mathsf{R},;,+) \models s_i \leq t_j$$

Thus it is enough to show $Ax \vdash s_i \leq t_j$ for join-free terms.

Domain elements (in the free algebra)

Claim

Let \mathfrak{A} be a model of Ax.

- The algebra (D(A),;) of domain elements is a (lower) semilattice and the semilattice ordering coincides with \leq .
- ② For every $a \in A$, D(a) (resp. R(a)) is the minimal element d in D(A) such that d; a = a (resp. a; d = a).

Let $\mathfrak{F}_{Var} = (F_{Var}, :, D, R, +)$ be the free algebra of the variety defined by Ax freely generated by a set Var of variables.

Claim

Let r, s, t be join-free terms such that $\mathfrak{F}_{Var} \models D(r) \leq s$; t. Then $\mathfrak{F}_{Var} \models D(r) \leq s = D(s)$ and $\mathfrak{F}_{Var} \models D(r) \leq t = D(t)$.

Claim

Let s, t be join-free terms such that $\mathfrak{F}_{Var} \models s \leq \mathsf{D}(t)$. Then $\mathfrak{F}_{Var} \models s = \mathsf{D}(s)$.

Creating a representable algebra witnessing $Ax \not\vdash s \leq t$

Let T_{Var}^- be the set of join-free terms and $s,t\in T_{Var}^-$. We assume that $Ax\not\vdash s\leq t$ and we will construct a representable algebra $\mathfrak{A}\in\mathbb{R}(\mathsf{D},\mathsf{R},;,+)$ witnessing $s\not\leq t\colon \mathfrak{A}\not\models s\leq t$.

Let F_{Var}^- be the equivalence classes of join-free terms (elements of \mathfrak{F}_{Var}). We will define a labelled, directed graph G_ω as the union of a chain of labelled, directed graphs $G_n = (U_n, \ell_n, E_n)$ for $n \in \omega$, where

- *U_n* is the set of nodes,
- $\ell_n \colon U_n \times U_n \to \wp(F_{Var}^-)$ is a labelling of edges,
- $E_n = \{(u, v) \in U_n \times U_n \mid \ell_n(u, v) \neq \emptyset\}$

Coherence

We will make sure that the following *coherence conditions* are maintained during the construction:

- GenC E_n is a reflexive, transitive and antisymmetric relation on U_n .
- PriC For every $(u, v) \in E_n$, $\ell_n(u, v)$ is a principal upset: $\ell_n(u, v) = a^{\uparrow} = \{x \in F_{Var}^- \mid a \leq x\}$ for some $a \in F_{Var}^-$.
- CompC For all (u, v), (u, w), $(w, v) \in U_n \times U_n$ and $a, b \in F_{Var}^-$, if $a \in \ell_n(u, w)$ and $b \in \ell_n(w, v)$, then $a ; b \in \ell_n(u, v)$.
 - DomC For all $(u, v) \in U_n \times U_n$ and $a \in F_{Var}^-$, if $\ell_n(u, v) = a^{\uparrow}$, then $\ell_n(u, u) = \mathsf{D}(a)^{\uparrow}$.
 - RanC For all $(u, v) \in U_n \times U_n$ and $a \in F_{Var}^-$, if $\ell_n(u, v) = a^{\uparrow}$, then $\ell_n(v, v) = R(a)^{\uparrow}$.
 - IdeC For all $(u, v) \in U_n \times U_n$, u = v iff $\ell_n(u, v) = D(a)^{\uparrow}$ for some $a \in F_{Var}^-$.

Saturation

The construction will terminate in ω steps, yielding $G_{\omega}=(U_{\omega},\ell_{\omega},E_{\omega})$ where $U_{\omega}=\bigcup_{n}U_{n}$, $\ell_{\omega}=\bigcup_{n}\ell_{n}$ and $E_{\omega}=\bigcup_{n}E_{n}$. By the end of the construction we will achieve the following saturation conditions:

- CompS For all $(u, v) \in U_{\omega} \times U_{\omega}$ and $a, b \in F_{Var}^-$, if $a : b \in \ell_{\omega}(u, v)$, then $a \in \ell_{\omega}(u, w)$ and $b \in \ell_{\omega}(w, v)$ for some $w \in U_{\omega}$.
 - DomS For all $(u, u) \in U_{\omega} \times U_{\omega}$ and $a \in F_{Var}^-$, if $D(a) \in \ell_{\omega}(u, u)$, then $a \in \ell_{\omega}(u, w)$ for some $w \in U_{\omega}$.
 - RanS For all $(u, u) \in U_{\omega} \times U_{\omega}$ and $a \in F_{Var}^-$, if $R(a) \in \ell_{\omega}(u, u)$, then $a \in \ell_{\omega}(w, u)$ for some $w \in U_{\omega}$.

Initial step

In the 0th step of the step-by-step construction we define $G_0=(U_0,\ell_0,W_0)$ by creating an edge for every element of F_{Var}^- . We define U_0 by choosing elements $u_a,v_a,\ldots\in\omega$ so that $\{u_a,v_a\}\cap\{u_b,v_b\}=\emptyset$ for distinct a,b, and $u_a=v_a$ iff D(a)=a (i.e., a is a domain element of \mathfrak{F}_{Var}). We can assume that $|\omega\setminus U_0|=\omega$. We define

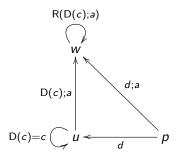
$$\ell_0(u_a, v_a) = a^{\uparrow}$$

 $\ell_0(u_a, u_a) = D(a)^{\uparrow}$
 $\ell_0(v_a, v_a) = R(a)^{\uparrow}$

and we label all other edges by \emptyset .

Step for domain

Our aim is to extend G_m to create an edge (u, w) witnessing a, provided $D(a) \in \ell_m(u, u) = c^{\uparrow}$.



Domain step

We assume that we have a loop (u, u) labelled by the upset of a domain element $c = D(c) \le a$ such that D(c); a is not a domain element, but we may miss an edge (u, w) witnessing a.

We choose $w \in \omega \setminus U_m$, extend ℓ_m by

$$\ell_{m+1}(u, w) = (\mathsf{D}(c); a)^{\uparrow}$$

 $\ell_{m+1}(w, w) = (\mathsf{R}(\mathsf{D}(c); a))^{\uparrow}$

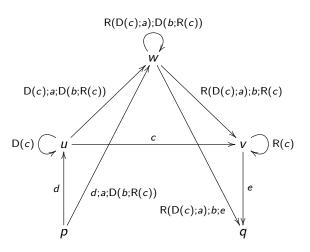
and for every $(p,u) \in E_m$ with $\ell_m(p,u) = d^{\uparrow}$ (some $d \in F_{Var}^-$)

$$\ell_{m+1}(p,w)=(d;a)^{\uparrow}$$

All other edges involving the point w have empty labels.

Step for composition

Our aim is to extend G_m to create edges (u, w) and (w, v) witnessing a and b, provided a; $b \in \ell_m(u, v) = c^{\uparrow}$.



Composition step

We assume that

- (CC1) $u \neq v$,
- (CC2) D(c); a; D(b; R(c)) $\neq D(D(c)$; a; D(b; R(c)),
- (CC3) $R(D(c); a); b; R(c) \neq R(R(D(c); a); b; R(c)),$ otherwise we define $G_{m+1} = G_m$. If (CC1)–(CC3) hold, then we choose $w \in \omega \setminus U_m$, extend ℓ_m by

$$\ell_{m+1}(u, w) = (D(c); a; D(b; R(c)))^{\uparrow}$$

 $\ell_{m+1}(w, v) = (R(D(c); a); b; R(c))^{\uparrow}$
 $\ell_{m+1}(w, w) = (R(D(c); a); D(b; R(c)))^{\uparrow}$

and for $(p,u),(v,q)\in E_m$ with $\ell_m(p,u)=d^\uparrow$ and $\ell_m(v,q)=e^\uparrow$ (some $d,e\in F_{Var}^-$)

$$\ell_{m+1}(p, w) = (d; a; D(b; R(c)))^{\uparrow}$$

 $\ell_{m+1}(w, q) = (R(D(c); a); b; e)^{\uparrow}$

All other edges involving w will have empty labels.

In the limit

Lemma

 G_{ω} is coherent and saturated.

Coherence of G_{ω} follows from the coherence of each G_m (easy but tedious). Saturation of G_{ω} follows from the fact that we constructed the required witness edges (if they were not present yet in G_m).

Next we define a valuation \flat of variables. Let for term r, its equivalence class in F_{Var} be denoted by \overline{r} . We let

$$x^{\flat} = \{(u, v) \in U_{\omega} \times U_{\omega} : \overline{x} \in \ell_{\omega}(u, v)\}$$

for every variable $x \in Var$.

Truth lemma

Let $\mathfrak{A}=(A,\mathsf{D},\mathsf{R},;,+)$ be the subalgebra of the full algebra $(\wp(U_\omega\times U_\omega),\mathsf{D},\mathsf{R},;,+)$ generated by $\{x^\flat:x\in \mathit{Var}\}$. Clearly $\mathfrak A$ is representable.

Lemma

For every join-free term r and $(u, v) \in U_{\omega} \times U_{\omega}$,

$$(u,v)\in r^{\flat} ext{ iff } \overline{r}\in \ell_{\omega}(u,v)$$

where r^{\flat} is the interpretation of r in $\mathfrak A$ under the valuation \flat .

By coherence and saturation of G_{ω} .

Recall that we assumed that $\mathfrak{F}_{Var} \not\models s \leq t$. In the initial step of the construction we created the edge $(u_{\overline{s}}, v_{\overline{s}})$ such that $\ell_0(u_{\overline{s}}, v_{\overline{s}}) = \overline{s}^{\uparrow}$. Thus $\overline{s} \in \ell_{\omega}(u_{\overline{s}}, v_{\overline{s}})$ and $\overline{t} \notin \ell_{\omega}(u_{\overline{s}}, v_{\overline{s}})$. Hence, by Lemma, $(u_{\overline{s}}, v_{\overline{s}}) \in s^{\flat}$ and $(u_{\overline{s}}, v_{\overline{s}}) \notin t^{\flat}$. That is, $\mathfrak{A} \not\models s \leq t$, as desired.

Open problems

Adding meet and/or antidomain.

Open problems

Are the varieties generated by

- ℝ(D, R, A, ;, +)
- ℝ(D, R, ;, +, ·)
- ℝ(D, R, A, ;, +, ·)

finitely axiomatizable?