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Theorem (Representation)

Any orthomodular lattice

OML := 〈H(S),0,f,g,1, ·⊥ ,4 〉 ,

viewable as arising from a Hilbert-space H(S) over some state
space S (a set), embeds into a Boolean (powerset) algebra

BAO := 〈P(S), ∅,∩,∪,S, · , 〈R〉,⊆〉

with an operator 〈R〉 via a certain lattice-embedding ρ, that is,
ρ is a structure-preserving bijection between OML and

S := 〈 { ρ(H) | H ∈ H(S) }, ρ(0),∩,∪, ρ(1), ∼ := 〈R〉 ◦ · ,⊆〉 .
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A representative physical experiment. . .

Let P, Q, and Q′ be statements about three quantum
phenomena such that

P is observed to be true︸ ︷︷ ︸
�P is true

and (Q or Q′) is observed to be true︸ ︷︷ ︸
�(Q ∨ Q′) is true︸ ︷︷ ︸

�P ∧ �(Q ∨ Q′) is true

.

QL 6=IL: observing a disjunction does not imply observing one
of its disjuncts! The converse implication is a valid principle.

Actually,

neither (P and Q) nor (P and Q′) is observed to be true.︸ ︷︷ ︸
¬�(P ∧ Q) ∧ ¬�(P ∧ Q′) is true (or: ¬(�(P ∧ Q) ∨ �(P ∧ Q′)) is true)
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. . . beset by an elementary fallacy
The presentation of the experiment wrongly concludes that

(P and (Q or Q′)) is true but not ((P and Q) or (P and Q′)).

That is,

“(P and (Q or Q′))” and “((P and Q) or (P and Q′))” are not
equivalent.

Apparently, the distributivity of classical conjunction and
disjunction fails! Whence wrongly arises the motivation for
special quantum conjunction and disjunction.
Wrongly, because the obvious correct conclusion—making
explicit the fact of observing facts—is that

(�P ∧�(Q ∨ R))↔ (�(P ∧Q) ∨�(P ∧ R)) is false,

which is a normal state of affairs in classical modal logic.
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Orthomodular lattices (OML)

I De Morgan (quantum join as meet and complement):

H g H ′ = (H⊥ f H ′⊥)
⊥

I orthocomplementarity (quantum complement):
I involution: H⊥⊥

= H
I disjointness: H f H⊥ = 0
I exhaustiveness: H g H⊥ = 1
I antitonicity: H 4 H ′ ⇒ H ′⊥ 4 H⊥

I orthomodularity (OM):

H 4 H ′ :iff H = H f H ′

⇔ H ′ = H g H ′

⇒ H ′ = H g (H ′ f H⊥) (OM)
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Boolean Algebras with Operators (BAO)

BAOs can be viewed as powerset lattices with additional
(non-Boolean) operators.

Here, we define
1. the powerset P(S) of the considered state space S to be

the carrier set of our BAO.
2. the one additional (modal) operator 〈R〉 for our BAO to be

〈R〉(S) := { s ∈ S | there is s′ ∈ S s.t. s R s′ and s′ ∈ S }

such that (discovered during the proof):
I ∀s∀s′(s R s′ → s′ R s) (symmetry)
I ∀s∃s′(s R s′︸ ︷︷ ︸

seriality

∧∀s′′((s′ R s′′)→ (s′′ = s))) (Q-property)
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Idea: translate

I quantum join (disjunction) of quantum propositions as the
quantum complement (negation) of the quantum meet
(conjunction) of the quantum complements of those
propositions (De Morgan):

H g H ′ = (H⊥ f H ′⊥)
⊥

I quantum complement as the modal operator applied to the
classical complement of the quantum proposition

ρ(H⊥) = ∼ρ(H) (∼-homomorphism)

where ∼ := 〈R〉 ◦ ·
I quantum meet as classical intersection

ρ(H f H ′) = ρ(H) ∩ ρ(H ′) (meet homomorphism)
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Proposition

The complete lattice BAO is a completion [2, Definition 7.36] of
the lattice (and thus partially ordered set) OML via the
order-embedding ρ, that is,

for all H,H ′ ∈ H(S), H 4 H ′ if and only if ρ(H) ⊆ ρ(H ′) .
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Proposition (Properties of ∼)

1. ∼∼ρ(H) = ρ(H)

2. ∼(S ∩ S′) = ∼S ∪ ∼S′ (thus
∼(ρ(H) ∩ ρ(H ′)) = ∼ρ(H) ∪ ∼ρ(H ′))

3. ∼(ρ(H) ∪ ρ(H ′)) = ∼ρ(H) ∩ ∼ρ(H ′)
4. ρ(H) ∩ ∼ρ(H) = ρ(0)
5. ρ(H) ∪ ∼ρ(H) = ρ(1)
6. (H 4 H ′ or ρ(H) ⊆ ρ(H ′)) implies

6.1 ∼ρ(H ′) ⊆ ∼ρ(H) and
6.2 ρ(H ′) = ρ(H) ∪ (ρ(H ′) ∩ ∼ρ(H))

7. ∼ρ(0) = ρ(1)
8. ∼ρ(1) = ρ(0)
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Theorem (Representation)

Any orthomodular lattice

OML := 〈H(S),0,f,g,1, ·⊥ ,4 〉 ,

viewable as arising from a Hilbert-space H(S) over some state
space S (a set), embeds into a Boolean (powerset) algebra

BAO := 〈P(S), ∅,∩,∪,S, · , 〈R〉,⊆〉

with an operator 〈R〉 via a certain lattice-embedding ρ, that is,
ρ is a structure-preserving bijection between OML and

S := 〈 { ρ(H) | H ∈ H(S) }, ρ(0),∩,∪, ρ(1), ∼ := 〈R〉 ◦ · ,⊆〉 .

Simon KRAMER QL as CL (OML as BAO) Page 12 of 14

https://www.simon-kramer.ch


Outline
Introduction

Representation Theorem for Orthomodular Lattices
Conclusion

Conclusion: QL vs CL, axiomatically speaking
1. (A ≡ B)→0 ((B ≡ C)→0 (A ≡ C))

2. (A ≡ B)→0 (∼A ≡ ∼B)

3. (A ≡ B)→0 ((A f C) ≡ (B f C))

4. (A f B) ≡ (B f A)

5. (A f (B f C)) ≡ ((A f B) f C)

6. (A f (A g B)) ≡ A

7. (∼A f A) ≡ ((∼A f A) f B)

8. A ≡ ∼∼A

9. ∼(A g B) ≡ (∼A f∼B)

10. (A ≡ B) ≡ (B ≡ A)

11. (A ≡ B)→0 (A→0 B)

12. (A→0 B)→3 (A→3 (A→3 B))

13. from A and A→3 B infer B

with the three abbreviations:

A→0 B := ∼A g B

A→3 B := (∼A f B) g (∼A f∼B)
g(A f (∼A g B))

A ≡ B := (A f B) g (∼A f∼B)

1. the classical propositional axioms plus
modus ponens

2. �(A→ B)→ (�A→ �B)

3. �♦A↔ A, where ♦ := ¬�¬
4. from A infer �A

This simple classical modal logic can be translated
to classical first-order logic with one relational
symbol (R) in a standard way (connection to [1]?).

In conclusion, the logic of quantum mechanics is
entirely classical, in particular it is not intuitionistic!
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