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The invariance in form of the equations of electrodynamics under Lorentz
transformations was shown by Lorentz and Poincaré before Einstein for-
mulated the special theory of relativity. We will now discuss this covari-
ance and consider its consequences. There are two points of view possi-
ble. One is to take some experimentally proven fact such as the invariance
of electric charge and try to deduce that the equations must be covariant.
The other is to demand that the equations be covariant in form and to
show that the transformation properties of the various physical quanti-
ties, such as field strengths and charge and current, can be satisfactorily
chosen to accomplish this. Although the first view is to some the most
satisfying, we will adopt the second course. Classical electrodynamics is
correct, and it can be cast in covariant form. (Jackson: Classical Electrody-
namics, 1st edition, 1962, p. 377)



The invariance in form of the equations of electrodynamics under Lorentz
transformations was shown by Lorentz and Poincaré before the formula-
tion the special theory of relativity. This invariance of form or covariance
of the Maxwell and Lorentz force equation implies that the various quan-
tities $, j, E, B that enter these equations transform in well-defined ways
under Lorentz transformations. Then the terms of the equations can have
consistent behavior under Lorentz transformations. (Jackson: Classical
Electrodynamics, 3rd edition, 1999, p. 553)



Assume that the equations of ED are covariant
↓

Transformation rules
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The standard treatment of covariance is a kind of question begging,
until we have an independent verification of the transformation rules



Obtain the transformation rules without presuming covariance
↓

Covariance of the equations of ED
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Transformation rules



Equations in K



Covariance
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↓

Covariance of the equations of ED



Lorentzian pedagogy

“the laws of physics in any one reference frame account for all physical
phenomena, including the observations of moving observers”

(J.S. Bell: How to teach special relativity)



Lorentzian pedagogy
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Derive the transformation rules
from the equations of ED in one single frame

↓
Covariance of the equations of ED
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The Lorentzian pedagogy derivation is a consistency check of the
standard treatment of covariance



Lorentzian pedagogy



Sketch of a possible construction

1. Kinematic notions are already defined

2. Choose a standard test particle

3. E := acceleration of the standard test particle at rest, B := ...

4. $ := ∇ · E j := c2∇× B− ∂tE

5. Charged point-particle:

(a) d
dt

v√
1−v2

c2

= π (E + v× B)

(b) $ (x, t) = αδ (x− r (t)) j (x, t) = αδ (x− r (t)) v (t)

6. µ := α/π



Laws of ED

We have defined: E, B, $, j, charged point-particle, α, π, µ

(L1)

∇ · B = 0
∇× E + ∂tB = 0

(L2) Each particle is a charged point-particle with some π and α.

(L3) If there are n particles in a given space-time region, then the source
densities are:

$ (x, t) =
n

∑
i=1

αiδ (x− ri (t))

j (x, t) =
n

∑
i=1

αiδ (x− ri (t)) vi (t)



Putting laws (L1)–(L3) together, we have the coupled Maxwell–Lorentz
equations:

∇ · E (x, t) =
n

∑
i=1

αiδ (x− ri (t))

c2∇× B (x, t)− ∂tE (x, t) =
n

∑
i=1

αiδ (x− ri (t)) vi (t)

∇ · B (x, t) = 0
∇× E (x, t) + ∂tB (x, t) = 0

d
dt

vi(t)√
1− vi(t)2

c2

= πi {E (ri (t) , t) + vi(t)× B (ri (t) , t)}

(i = 1, 2, . . . n)



Lorentzian pedagogy



Operational definitions of the ED quantities in K′

1. Kinematic notions are already defined—the measuring rods and
clocks are at rest relative to K′

2. Take an identical copy of the standard test particle

3. E′ := (acceleration)’ of the standard test particle at (rest)’, B′ := ...

4. $′ := ∇ · E′ j′ := c2∇× B′ − ∂′tE′

5. (Charged point-particle)’:

(a) d
dt′

v′√
1−v′2

c2

= π′ (E′ + v′ × B′)

(b) $′ (x′, t′) = α′δ (x′ − r′ (t′)) j′ (x′, t′) = α′δ (x′ − r′ (t′)) v′ (t′)

6. µ′ := α′/π′



Observations of moving observer—applying the Lorentzian peda-
gogy

Long long calculations based on the “primed” definitions, the laws of ED
in K, and the kinematic Lorentz transformations. The typical schema:

1. From the “primed” definition we know the physical situation during
the operational procedure

2. We can describe this situation in terms of the quantities in K (using
the kinematic Lorentz transformation)

3. We calculate the acceleration of the standard test particle in K, ap-
plying the Lorentz equation of motion in K

4. We can apply (backward) the Lorentz transformation of accelera-
tion



Theorem 1.

E′x = Ex

E′y =
Ey −VBz√

1− V2

c2

E′z =
Ez + VBy√

1− V2

c2



Theorem 2.

B′x = Bx

B′y =
By +

V
c2 Ez√

1− V2

c2

B′z =
Bz − V

c2 Ey√
1− V2

c2



Theorem 3.

$′ =
$− V

c2 jx√
1− V2

c2

j′x =
jx −V$√

1− V2

c2

j′y = jy
j′z = jz



Theorem 4.

charged point-particle⇔ (charged point-particle)’

such that π′ = π and α′ = α.

Proof
1. Lorentz equation of motion: Situation in K′—E′, B′, v′, r′, t′ ⇒ Sit-
uation in K—E, B, v, x, t⇒ Acceleration in K (from the Lorentz eq.) ⇒
Acceleration in K′, and one finds the (Lorentz eq.)’

2. Densities: trajectory in K′ kin. LT⇒ trajectory in K ⇒ densities in K
densities′ T⇒ densities in K′, and one finds:

$′ (x′, t′) = αδ (x′ − r(t′))
j′ (x′, t′) = α (x′ − r(t′)) v(t′)



Theorem 5.

∇ · B′ = 0
∇× E′ + ∂t′B′ = 0



Theorem 6. If there are n particles in a given space-time region, then the
(source densities)’ are:

$′ (x′, t′) =
n

∑
i=1

α′iδ (x
′ − r′i (t

′))

j′ (x′, t′) =
n

∑
i=1

α′iδ (x
′ − r′i (t

′)) v′i (t
′)



Putting all these together:

∇ · E′ (x′, t′) =
n

∑
i=1

α′iδ (x
′ − r′i (t

′))

c2∇× B′ (x′, t′)− ∂t′E′ (x′, t′) =
n

∑
i=1

α′iδ (x
′ − r′i (t

′)) v′i (t
′)

∇ · B′ (x′, t′) = 0
∇× E′ (x′, t′) + ∂t′B′ (x′, t′) = 0

d
dt′

v′i(t
′)√

1− v′i(t
′)2

c2

= π′i {E′ (r′i (t′) , t′) + v′i(t
′)× B′ (r′i (t

′) , t′)}

(i = 1, 2, . . . n)



What we proved

• The transformation rules derivable from the laws of ED in
one single frame are identical with the textbook transforma-
tions—derived from the presumption of covariance

• The Maxwell–Lorentz equations are covariant against the trans-
formation rules derivable from the laws of ED in one single frame



In the derivation we essentially made use of:

• the relativistic version of Lorentz’s equation

• the kinematic Lorentz transformations

• the operational definitions of the ED quantities



The principle of covariance is consistent with ED in one single
frame—ED including all the above ingredients


