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The meaning and physical formulation of the strong
cosmic censor conjecture (SCCC)

We have the strong conviction that in the classical physical world
at least, every physical event (possibly except the Big Bang) has a
cause which is another and preceding physical event. R. Penrose’
original aim in the 1960-1970’s with formulating the strong cosmic
censor conjecture (or hypothesis) was to protect this concept of
causality in general gravitational situations. Mathematically
speaking space-times having this property are globally hyperbolic
therefore

SCCC. A physically relevant (i.e., with a matter content subject to
some energy condition), generic (i.e., stable) space-time is globally
hyperbolic.
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Remark
By a space-time we will always mean an inextendible, connected,
oriented and time-oriented 4-dimensional Lorentzian manifold.

(i) Without the “genericity” assumption the SCCC is trivially not
true, almost all basic solutions (AdS, Taub–NUT, Gödel,
Kerr–Newman, etc.) are counterexamples. But problem: what
is “genericity”?

(ii) Conventional approach: using the initial value formulation
“genericity” can be defined rigorously. Within this framework
during the past five decades several partial results appeared
and gave a support for the validity of the SCCC in certain
classes of space-times (Gowdy space-times, space-times with
compact Cauchy horizon, scalar field space-times, etc.).
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The SCCC in four dimensions

(i) In the initial value approach “genericity” of three dimensional
initial data (S , h, k) is defined rigorously and considered.
However, when thinking about the SCCC, certainly one
should be able to talk about the “genericity” of the four
dimensional space-time (M, g) itself;

(ii) In light of discoveries in low dimensional differential topology
during the 1980’s typical smooth 4-manifolds have unexpected
properties (called exotica) not detectable from a 3-manifold
perspective. Therefore one has to be caucious when applies
the genuinely 3 dimensional initial value paradigm,
investigated during the 1950-60’s, to genuinely 4 dimensional
space-time problems;
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(iii) The inherent three dimensionality of the initial value
formulation fits well with the following important fact:

Theorem (Bernal–Sánchez 2003)

Let (M, g) be a globally hyperbolic space-time. Then there exists a
diffeomorphism M ∼= S × R where S is a smooth 3-manifold. 3

expressing a similar inherent three dimensionality of the
smooth structures underlying globally hyperbolic space-times.
Hence it is not surprising that this solution method of the
(vacuum) Einstein’s equation produces affirmative answers for
the SCCC;

(iv) But: every non-compact topological 4-manifold X admits
uncountably many (with the cardinality of the continuum in
ZFC set theory) smooth structures (Gompf, 1993) and most
of these smooth structures are not of product form i.e.,
X 6∼= S × R with any 3-manifold S (exotica);
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(v) Therefore, as it has been recognized recently, from the
viewpoint of differential topology SCCC is very restrictive.
For example:

Theorem (Chernov–Nemirovski 2013)

Let M be an m dimensional open contractible differentiable
manifold and (M, g) be globally hyperbolic. Then M ∼= Rm. 3

but iff m = 4 there exist contractible 4-manifolds which are
not diffeomorphic to the standard R4 (exotic or fake R4’s).

Summary: if the (vacuum) Einstein’s equation does not admit
solutions on such (not-smooth-product) 4-manifolds then exotica
can be abandoned in physics but otherwise not. Besides the initial
value formulation (always producing non-exotic solutions),
however, there are yet other methods to solve the (vacuum)
Einstein’s equation, for example Penrose’ non-linear graviton
construction i.e., twistor theory.
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Relativistic computation and the SCCC

How the SCCC is related to relativistic computation?

Definition
(M, g) is called a Malament–Hogarth space-time if there is a
future-directed timelike half-curve γC : [0,+∞)→ M such that
‖γC‖ = +∞ and a point q ∈ M satisfying γC ([0,+∞)) ⊂ J−(q).
The event q ∈ M is called a Malament–Hogarth event.

Another timelike curve γO : [0, b]→ M also exists such that
‖γO‖ < +∞, γO([0, b]) ⊂ J−(q), γO(0) = γC (0) and γO(b) = q.
Then (M, g , q, γC , γO) can be used to perform non-Turing
computations (e.g. Hogarth, 1992, 1994; Etesi–Németi, 2002;
Welch, 2008; etc.).

On the stability of relativistic computing devices Gábor Etesi
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Theorem
Let (M, g) be a Malament–Hogarth space-time. Then (M, g) is
not globally hyperbolic. 3

In fact, being Malament–Hogarth and being non-globally
hyperbolic is almost the same:

Theorem
Let (M, g) be a non-globally hyperbolic space-time. If it is
moreover distinguishable then (M, g) is conformally equivalent to a
Malament–Hogarth space-time. 3

Remark
From now on we assume that a Malament–Hogarth space-time is
physically reasonable as well i.e., (M, g) is a solution of the
Einstein’s equation with vacuum or a matter content satisfying
some energy condition.
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Consequently Malament–Hogarth space-times are subjects to the
SCCC ( = a physically relevant and generic space-time is globally
hyperbolic): if it holds true then no physically relevant
Malament–Hogarth space-time can be generic i.e., stable!

In other words: in order to make the idea of relativistic
computation via Malament–Hogarth space-times physically
realistic, first one has to invalidate the SCCC!
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The problem of stability or genericity

One can put the question of stability into a more general context.

Definition
A quintuple (M, g , q, γC , γO) is called a gravitational computer if
(M, g) is a space-time, γC , γO are timelike curves and q ∈ M is an
event such that the images of the curves lie within J−(q).

Remark
This concept is broad enough to serve as an abstract model for any
kind of artificial computing systems based on classical physics so
that an artificial computing system can perform non-Turing
computations iff the corresponding gravitational computer is
defined in an ambient space-time (M, g) possessing the
Malament–Hogarth property.
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Case-by-case studies demonstrate that all known physically
relevant solutions (M, g) of the Einstein constraint equations
which are non-globally hyperbolic—i.e., arise as further extensions
of maximal Cauchy developments of initial data sets (S , h, k)—are
unstable: an arbitrary “small” but “generic” perturbation of their
metric in the maximal Cauchy development destroys extendibility
across the Cauchy horizon. That is, a generic perturbation of these
non-globally hyperbolic space-times makes them globally
hyperbolic.

This is in particular true for certain physically relevant
Malament–Hogarth space-times: small perturbation of them (e.g.
taking into account the backreaction of the computer itself on the
geometry, etc.) destroys the Malament–Hogarth property.
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That is, if SCCC is true then all physically relevant artificial
computing systems based on Malament–Hogarth space-times i.e.,
capable for non-Turing computations contain an inherent
instability.

Other artificial computing systems in principle capable for
non-Turing computations (e.g. the generalized quantum computers
of Calude–Pavlov, 2002; Kieu, 2003, 2004; etc.) also seem to
suffer from inherent instabilities.

Even worse: artificial computing systems used just for very complex
but still Turing computations (e.g. usual quantum computers or
the Chern–Simons TQFT computer of Freedman, 1998 to calculate
the Jones polynomial of knots) apparently contain an inherent
instability increasing with the degree of computational complexity.
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However none of these considerations take into account the
aforementioned exotic phenomena; but this can significantly alter
the situation at least in the case of global relativistic computations.

Recall that SCCC requires a space-time to have a product smooth
structure while there are many smooth 4-manifolds which are not
smooth products; moreover beyond the initial value formulation
there is a twistorial method to solve Einstein’s equation.
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Definition of a counterexample to the SCCC

Definition
Let (M, g) be a maximal extension of the maximal Cauchy
development (D(S), g |D(S)) of an initial data set (S , h, k). The
(continuous) Lorentzian manifold (M ′, g ′) is a perturbation of
(M, g) relative to (S , h, k) if

(i) M ′ has the structure

M ′ := the connected component of M \ H containing S

where, for a connected open subset S ⊂ U j M containing
the initial surface, the subset H is closed and satisfies
∅ j H j ∂U = U \ U i.e., is a closed subset in the boundary
of U;

continued...
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...continued

(ii) g ′ is a solution of Einstein’s equation at least in a
neighbourhood of the initial surface S ⊂ M ′ with a
fundamental matter represented by a stress-energy tensor T ′

obeying the dominant energy condition at least in a
neighbourhood of S ⊂ M ′;

(iii) (M ′, g ′) does not admit further extensions and
(S , h′) ⊂ (M ′, g ′) with h′ := g ′|S is a spacelike complete
sub-3-manifold.
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Definition
Let (M, g) be a maximal extension of the maximal Cauchy
development (D(S), g |D(S)) of an initial data set (S , h, k).
Then (M, g) is a robust counterexample to the SCCC if it is very
stably non-globally hyperbolic i.e., all of its perturbations (M ′, g ′)
relative to (S , h, k) are not globally hyperbolic.

Remark

(i) Perturbations of the whole 4 dimensional space-time are
considered;

(ii) The concept of a robust counterexample is logically stronger
than the “generic” one.
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Counterexamples to the SCCC via exotica

Strongly motivated by the Bernal–Sánchez smooth splitting
theorem (2003) and the Chernov–Nemirovski smooth censorship
theorem (2013) we consider a family of fake R4’s:

Theorem (Gompf 1993, Taubes 1987)

There exists a pair (R4,K ) consisting of a differentiable 4-manifold
R4 homeomorphic but not diffeomorphic to the standard R4 and a
compact oriented smooth 4-manifold K ⊂ R4 such that

(i) R4 cannot be smoothly embedded into the standard R4 i.e.,
R4 6j R4 but it can be smoothly embedded as a proper open
subset into the complex projective plane i.e., R4 $ CP2;

continued...
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...continued

(ii) Take a homeomorphism f : R4 → R4, let 0 ∈ B4
t ⊂ R4 be the

standard open 4-ball of radius t ∈ R+ centered at the origin
and put R4

t := f (B4
t ) and R4

+∞ := R4. Then{
R4
t

∣∣ r 5 t 5 +∞ such that 0 < r < +∞ satisfies K ⊂ R4
r

}
is an uncountable family of nondiffeomorphic exotic R4’s none
of them admitting a smooth embedding into R4 i.e., R4

t 6j R4

for all r 5 t 5 +∞. 3
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Using this exotic family we arrive at (Etesi 2017)

SCCC. From every connected and simply connected closed (i.e.,
compact without boundary) smooth 4-manifold M one can
construct an open (i.e., non-compact without boundary) smooth
4-manifold

XM = M#CP2# . . .#CP2︸ ︷︷ ︸
finitely many

#KR
4 (1)

and a smooth Ricci-flat Lorentzian metric g on it such that
(XM , g) is not globally hyperbolic. Moreover, any “sufficiently
large” (in an appropriate topological sense) perturbation (X ′M , g

′)
of this space cannot be globally hyperbolic, too.
This very stable non-global-hyperbolicity follows because XM as a
smooth 4-manifold contains a “creased end” (see Figure 1), a
typical four dimensional phenomenon.
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M XM

CP2

R4

Figure 1. Construction of XM out of M.
The creased end of XM is drawn by a red zig-zag.
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Idea of the construction.

(i) Following Taubes 1992, glue sufficiently many CP2’s to M to
make it a self-dual 4-manifold and remove an S2 from one of
these CP2’s (note: CP2 \ S2 ∼= R4) to get a space XM ;

(ii) Apply Penrose’ non-linear graviton construction (i.e., twistor
theory) to obtain a hyper-Kähler Riemannian metric g1 on
this XM ;

(iii) Use “Wick rotation” (in a precise way) to get a Ricci-flat
Lorentzian metric g on XM . 3
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Concerning the very stable non-global-hyperbolicity:

Lemma (Etesi 2017)

Consider the Ricci-flat Lorentzian 4-manifold (XM , g) as above
with any spacelike and complete sub-3-manifold (S , h) ⊂ (XM , g)
in it (non-empty submanifolds of this sort exist). Let (S , h, k) be
the (necessary partial) initial data set inside (XM , g) induced by
(S , h) and let (X ′M , g

′) be a perturbation of (XM , g) relative to
(S , h, k). Consider the pair (R4,K ). Assume that X ′M contains the
image, present in the R4-factor of XM in its decmoposition (1), of
the compact subset K. Then (X ′M , g

′) is not globally hyperbolic.

Idea of the proof. Assume (X ′M , g
′) was globally hyperbolic. Then

X ′M
∼= S × R which is impossible by its creased end. 3
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Although (XM , g) is not a robust counterexample as we defined, it
is still very reasonable to consider the Ricci-flat Lorentzian spaces
(XM , g) as generic counterexamples to the SCCC.

Remark
The resolution of the apparent conflict between the initial value
approach (providing affirmative answers for the SCCC) and this
more global one (providing results against the SCCC) is that the
initial value approach probes only the tubular neighbourhood of 3
dimensional spacelike submanifolds in the ambient 4 dimensional
space-time hence cannot detect exotica at all!
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What is the physical interpretation of the very stably
non-globally-hyperbolic vacuum space-times (XM , g) ? (They exist
in a superabundance.)

How they can be used to construct stable non-Turing gravitational
computers?
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For further details please check:

G. Etesi: A proof of the Geroch–Horowitz–Penrose formulation of
the strong cosmic censor conjecture motivated by computability
theory, Int. Journ. Theor. Phys. 52, 946-960 (2013), arXiv:
1205.4550v3 [gr-qc];

http://www.math.bme.hu/∼etesi/censor2.pdf

G. Etesi: Exotica and the status of the strong cosmic censor
conjecture in four dimensions, preprint, 24 pp. (2017), arXiv:
1707.09180 [gr-qc];

http://www.math.bme.hu/∼etesi/censor4.pdf
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Thank you!
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