Towards a Formal Theory of Digital Physics: Digital Multiverses

Logic, Relativity, and Beyond 2017 - Renyi Institute

Adam Catto adam(dot)catto(at)stonybrook(dot)edu

Undergraduate, Stony Brook University Departments of Mathematics and Philosophy Stony Brook, NY, USA

August 25, 2017

・ロト ・同ト ・ヨト ・ヨト

Talking Points

Talking Points:

- Digital Physics
- Ø Multiverse Hierarchy
- Iigher-Order Cellular Automata (HOCA)
- Toy Model of Physics on CA
- Multiverses as HOCA
- **9** Philosophical Implications of HOCA

/□ ▶ < 글 ▶ < 글

Foundations of Digital Physics

Definition: Discrete Structure

• $(Disc(D) \iff (Obj(D) \subset Obj(Set) \land \forall x(x \in Obj(D) \implies \forall y(y \in Obj(D) \implies \exists N((x \in N) \land \neg(y \in N))))))$

Definition: Digital Structure

•
$$(Dig(D) \iff (Disc(D) \land \exists B(B \subseteq D_A \land \forall d_i(d_i \in D_A \implies \exists z(z = (b_1, \cdots, b_k) \in B^k \land d_i = conc(z)))))).$$

- Digitalism Physical Reality ⇔ Digital Structure
- Pancomputationalism All physical processes computable
- Zuse Thesis Physical reality is ontologically a digital computer

Digitalism Implies Pancomputationalism

Theorem

 $Digitalism \implies Pancomputationalism$

Heuristic Proof.

(Digitalism \land Kreisel Thesis \land Church Thesis \land Church-Turing Thesis) \implies Pancomputationalism

(日)

Classical Definition

Level 0 Multiverse

• Our Hubble Volume (Observable Universe)

- 4 同 2 4 日 2 4 日 2

Classical Definition

Level 1 Multiverse

- Induced by cosmic inflation
- Infinite space of Hubble Volumes realizing all initial conditions
- Each universe has the same physical laws / constants

- 4 同 6 4 日 6 4 日 6

Level 2 Multiverse

- Infinite space of "finite" Level 1 Multiverses
- Induced by spontaneous symmetry-breaking predicted by chaotic inflation
- Each universe may have different physical laws / constants

Level 3 Multiverse

- Similar to Modal Realism
- Everettian Many-Worlds Interpretation of Quantum Mechanics
- Branching histories; all possible worlds consistent with the wavefunction
- Every world shares the same physical laws, is in a different dimension of Hilbert Space (worlds are orthogonal)

(4月) (4日) (4日)

Classical Definition

Level 4 Multiverse

- Platonism

イロト イポト イヨト イヨト

3

Classical CA Statically-Typed HOCA Freely-Typed HOCA Emergent HOCA

Usual Definition of Classical CA

John Milnor:

$$CA = (\mathcal{K}, \mathscr{L}^n, f)$$

 K is a finite set of "alphabet symbols", i.e. the atomic constituents of the automaton; this includes at least two symbols, namely the empty symbol e and at least one other arbitrary symbol

•
$$\mathscr{L}^n \subseteq \mathbb{R}^n = \sum_{k=1}^n (a_k v_k) | a_k \in (A \subseteq \mathbb{Z})$$

- $f: \tau \to \tau$ is a *cellular automaton map*, which maps configurations onto configurations

Adam Catto adam(dot)catto(at)stonybrook(dot)edu

Towards a Formal Theory of Digital Physics: Digital Multiverses

Classical CA Statically-Typed HOCA Freely-Typed HOCA Emergent HOCA

Statically-Typed HOCA

Suppose we allowed our configurations instead to look like this: $\tau: \mathscr{L}^n \to CA$. Then we would have another definition:

$$CA^{r} = (\mathcal{K}^{\lambda}, \mathscr{L}^{n}, q_{0}^{r}, Q, f^{r}, r)$$

in which:

- $\lambda = r 1$
- $r \in \mathbb{N}$ is a type,
- \mathcal{K}^{λ} is an alphabet, the set generated by all CA^{λ} . (i.e. type- λ cellular automata).
- *ECA*⁰ is the canonical empty symbol.
- ECA^r is the empty type-r automaton whose elements are ECA^{λ} , where $\lambda = r 1$.

Introduction Digital Physics Multiverses Toy Model of Physics on a Classical CA Toy Model of Physics on a Classical CA Toy Models of Multiverses as HOCA Philosophical Implications of HOCA References

Classical CA Statically-Typed HOCA Freely-Typed HOCA Emergent HOCA

Statically-Typed HOCA (cont.)

- \mathcal{L}^n is the same as it is in classical CA models.
- $f^r: au^\lambda o au^\lambda$ is a type-r CA map, or a $C\!A^r$ map
- $\tau^{\lambda}: \mathscr{L}^{n} \to CA^{\lambda}$ is a type- λ configuration
- q_0^r is a particular (initial) type-*r* configuration

Example – Fractal Tic-Tac-Toe

Towards a Formal Theory of Digital Physics: Digital Multiverses

Classical CA Statically-Typed HOCA Freely-Typed HOCA Emergent HOCA

Freely-Typed HOCA

Intuitively, Type-n automata whose configurations not restricted by type (except that the types of its elements strictly less than n).

$$CA_{x}^{r} = (\mathcal{K}^{\lambda}, \mathscr{L}^{n}, q_{x}^{r}, Q, f_{x}^{r}, x, r)$$

- Most is the same; distinction lies in the configurations:
- τ^λ: K^λ_x → ℒⁿ maps objects of (λ = r − 1)-type objects or objects of lower type (down to x) onto lattice points. In general, K^y_x is the set ⋃ _{k=x} CA^k.
- Such automata are called CA_{x}^{r} .

(日) (同) (三) (三)

Classical CA Statically-Typed HOCA Freely-Typed HOCA Emergent HOCA

Emergent HOCA

- Maximally type-n automata with differently-ruled maximally type-n sub-automata
- $\exists (\mathscr{L}^m \in CA')[(\mathscr{L}^m \subseteq \mathscr{L}^n) \land (m \leq n) \land (\exists (x', ((\mathcal{K}^{\lambda}_{x'})' \subseteq \mathcal{K}^{\lambda}_{x}), (q^r_{x'})', Q', (f^r_{x'}))' [((\mathcal{K}^{\lambda}_{x'})', \mathscr{L}^m, (q^r_{x'})', Q', f^r_{x'}, x', r) \in CA^r_{x'}])].$
- Analogous to Object-Oriented Programming

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Classical CA Statically-Typed HOCA Freely-Typed HOCA Emergent HOCA

Example of Emergent HOCA – Conway's Game of Life

- (U): If a cell is alive and has less than 2 live neighbors, it dies
- (L): If a cell is alive and has 2 or 3 live neighbors, it lives on
- (0): If a cell is alive and has more than 3 live neighbors, it dies
- (R): If a cell is dead and has exactly 3 live neighbors, it becomes alive

・ロト ・同ト ・ヨト ・ヨト

What the Modern Physics Might Look Like on a CA

	(Modern	\iff	Digital)
	Spacetime	\iff	\mathscr{L}^{n}
J	ElementaryParticles	\iff	\mathcal{K}
١	InitialConditions	\iff	q_0
	NaturalLaws	\iff	f
	SpatialHistory	\iff	QJ

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Introduction	
Digital Physics	
Multiverses	L
Higher Order Cellular Automata	L
Toy Model of Physics on a Classical CA	L
Toy Models of Multiverses as HOCA	L
Philosophical Implications of HOCA	
References	

Level 1 Level 2 Level 3 Level 4

Level 1 Multiverse as CA

- Type-1 Emergent HOCA
- Each (disjoint) neighborhood represents a Hubble Volume and has different initial conditions

伺 ト く ヨ ト く ヨ ト

Introduction Digital Physics Multiverses Higher Order Cellular Automata Toy Model of Physics on a Classical CA Toy Models of Multiverses as HOCA Philosophical Implications of HOCA	Level 1 Level 2 Level 3 Level 4
References	

Level 2 Multiverse as CA

- Type-1 Emergent, whose sub-automata are Level-1 CA Multiverses with different laws
- Each Type-1 element has a different evolution function

Introduction Digital Physics Multiverses Higher Order Cellular Automata Toy Model of Physics on a Classical CA Toy Models of Multiverses as HOCA Philosophical Implications of HOCA References	Level 1 Level 2 Level 3 Level 4
--	---

Level 3 Multiverse as CA

- Similar to Modal Realism
- Contains all possible worlds consistent with some stochastic evolution function
- Type-t Statically-Typed for time t (branching spacetime)

Level 4 Multiverse as CA

- Neo-Platonism
- Classical \bigcup ST \bigcup FT \bigcup Emergent
- "All is computation"

< ∃ >

Philosophical Implications

- Ontological formalization of the simulation hypothesis (emergent HOCA)
- Epistemic representation of Everettian wavefunction realism (static type-2 automaton)
- New way to think of modal realism

同 ト イ ヨ ト イ ヨ ト

References

- Baravalle, L.; Beraldo-de-Araujo. The Onotology of Digital Physics Erkenntnis, An International Journal of Scientific Philosophy, ISSN 0165-0106, Vol 81 No. 6, Dec 2016. (2016)
- Colvin, Andrew Z. By Andrew Z. Colvin Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=13251597.
- Milnor, J. On the Entropy Geometry of Cellular Automata Complex Systems, 2 (3) 1988, pp. 257385. (1988)
 - Tegmark, M.: The Mathematical Universe. arxiv.org/pdf/0704.0646. 8 Oct 2007.

・ロト ・同ト ・ヨト ・ヨト