incorporating relativity in categorical models of abstract physical theories

Marcoen J.T.F. Cabbolet Vrije Universiteit Brussel LRB 2017

overview

• background

some words about my research

• **abstract physical theories** what are they and why are they interesting?

problem

agreement with SR: standard model theory inapplicable

• solution

apply <u>categorical</u> model theory!

background (1/3)

background (2/3) antiparticle \vec{F} earth \vec{a}

$$\overline{m}_g = -\overline{m}_i$$
 (Morrison & Gold, 1957)

background (3/3)

- GR, QED, QCD are incompatible with repulsive gravity: $\overline{m}_g = -\overline{m}_i$ is <u>impossible</u>
- ∴ repulsive gravity → GR/QED/QCD emergent these theories are then not fundamental
- what lies underneath? which physical principles underlie repulsive gravity?
- I've developed a theory
 Ann. Phys. 522:699 (2010); 523:990 (2011); 528:626 (2016)
- unfortunately, no low hanging fruit

abstract physical theories (1/5)

an abstract physical theory T formalized in ZF consists of:

- 1. the language L(T), a sublanguage of L(ZF) given by:
 - i. the **individual constants** of T
 - ii. the **relations** of T
- 2. the **formal axioms** of T:
 - i. for every individual constant φ : $\exists x(x = \varphi)$
 - ii. for every relation R: $\exists v(v = R)$
- 3. the **physical axioms** of T: wffs in L(T)
- 4. the **interpretation rules** of T add physical meaning to constants and relations of T

abstract physical theories (2/5)

essential feature of an <u>abstract</u> physical theory T: constants interpeted as real-world things are <u>abstract</u> sets

proper designator/definite description

- <u>designates</u> a thing by an interpretation rule
- but does not <u>represent</u> its physical state

an abstract physical theory T is to be true regardless of the properties of the things designated

abstract physical theories (3/5)

non-examples of abstract physical theories:

- special relativity
 <u>event</u>: concrete element of R⁴
 <u>world line</u>: concrete function on R⁴
- quantum mechanics
 <u>wave function</u>: concrete element of *H* <u>spectrum of observable</u>: concrete set of values

an abstract physical theory is to express the most general principles, even more general than SR and QM

abstract physical theories (4/5)

toy example of abstract physical theory:

• <u>language</u>

for $n, k \in \mathbb{Z}$, constants p_k^n, w_k^n binary relation (.) \rightarrow (.)

• interpretation rules

 p_k^n : particle state #*n* in process #*k* w_k^n : wave state #*n* in process #*k* $\alpha \rightarrow \beta$: α turns into β by a discrete transition

• <u>physical axioms</u> $\forall n, k \in \mathbb{Z}: p_k^n \to w_k^n$ $\forall n, k \in \mathbb{Z}: w_k^n \to p_k^{n+1}$

abstract physical theories (5/5)

why are abstract physical theories interesting?

- <u>empirical reduction</u> (Rosaler 2015) a theory T reduces empirically to a theory T' *iff* T reproduces the empirically successful predictions of T'
- Unifying Scheme

an abstract physical theory T is a **Unifying Scheme** *iff* T has a model M that reduces empirically to GR <u>and</u> QED

 <u>Grand Unifying Scheme (GUS)</u> an abstract physical theory T is a **GUS** *iff* T has a model M that is empirically adequate

problem (1/3)

<u>agreement with SR</u> an abstract physical theory T agrees with SR *iff* it has a model M that reduces empirically to SR

standard tool: specify a concrete set-theoretic model of T

- an interpretation of the constants and relations of T in a <u>concrete</u> set such that for every physical axiom A of T
 M ⊨ I(A)
- if ϕ designates a thing, then I(ϕ) represents the <u>physical</u> <u>state</u> of that thing in the coordinate system of an observer

problem (2/3)

suppose you have specified a set-theoretic model M of T

• M predicts the motion of object φ for one observer

HOWEVER

- M does not predict the motion of that object φ in the coordinate system of another observer
- <u>so</u>: M does not reduce empirically to SR

a single set-theoretic model M of T does not predict relativity of spatiotemporal characteristics of motion

problem (3/3)

SET-THEORETIC MODEL M OF THE TOY THEORY

- p_1^1 , p_1^2 : point particles at (t_1, X_1) , (t_2, X_2) in the IRF of \mathcal{O}
- in the IRF of \mathcal{O}' , p_1^1 and p_1^2 will be at (t'_1, X'_1) , (t'_2, X'_2)
- M has no info on coordinates of p_1^1 , p_1^2 in the IRF of \mathcal{O}'

specifying a single set-theoretic model is <u>insuffient</u> for proving that the physical axioms of T agree with SR

solution (1/4)

category \mathcal{C}

- 'objects' of C
- 'arrows' of \mathcal{C}
- an arrow f connects an object x to an object y

 $f: x \to y$ x = dom fy = cod f

- if $f: x \to y$, $g: y \to z$ then there is an arrow h $h = g \circ f \land h: x \to z$
- for every object x there is an identity arrow 1_x $1_x: x \to x$

solution (2/4)

Example 1

- 'objects' of *C* are all groups
- 'arrows' of *C* are group isomorphisms
- collection of 'objects' <u>not necessarily</u> a set
- if so: **small category**

Example 2

- 'objects' of C are <u>all</u> models of a first-order theory T
- 'arrows' of *C* are model isomorphisms

solution (3/4)

Categorical model \mathcal{C} of an abstract physical theory T

- collection of objects: $\{M_j\}_{j \in F}$ (small category)
- *M_j* is <u>concrete</u> set-theoretic model of T
 - $\circ M_j \leftrightarrow (X, \phi_j)$
 - M_j 's all formulated in the <u>same</u> language L(C)
- 'arrows' f of C are model isomorphisms $\circ f: M_i \to M_i \leftrightarrow \text{coordinate transformation}$

solution (4/4)

• C reproduces SR if SR can be incorporated in C $\{M_j\}_{j \in F}$ relativistic theory from semantic point of view T theory from the syntactic point of view

- <u>the</u> tool to apply for proving that T agrees with SR: specify a <u>categorical</u> model C_0 of T incorporating SR
- 'speculative' research program: <u>hard core</u>: T <u>empirical & theoretical progression</u>: successors C₁, C₂, ... <u>aim</u>: prove that T is a GUS