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GPU LabIntroduction

Modern programming tries to tackle more and more complex
problems and to succeed it relies on results and tools from

• Functional Programming

• Type Theory

• Algebra

• Logic

• Category Theory
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Monoid:

Σ = 1 + 𝐴 × 𝐴

𝑝 ∨ ¬𝑝 ⇔ 𝑇



GPU LabIntroduction

What do we use from them?
(Non exhaustive collection!)

• Functional Programming

• Type Theory

• Algebra

• Logic

• Category Theory
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Compositional,

abstract (rel. to hardware) 

primitives

Safety, improved reasoning, 

soundness

Type compositions

Proving abstract relations in TT and FP

Reasoning, 

inferring, 

proving



GPU LabIntroduction

When solving a problem in a certain field with the aid of a 
computer and programming languages,

we inevitably face a transition from one formal system to
another:
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Formal System 1. Formal System 2.



GPU LabIntroduction

Even worse, usually we end up with a series of transitions:
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Formal System 1.

Formal System 2.

Formal System 3.

Formal System 4.



GPU LabIntroduction

During the transition many operations should be carried out on
the expressions on the formal systems and we need tools that
are easy to reason about...
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Formal System 1.

Formal System 2.

Formal System 3.

Formal System 4.

is valid?

is valid?

is valid?



GPU LabFormal Systems

Formal systems consist of:

• Symbols

• Grammar

• Axioms

• Inference rules
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GPU LabFormal Systems

Formal systems consist of:

• Symbols

• Grammar

• Axioms

• Inference rules
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Tells how to build well-formed

expressions from the symbols



GPU LabFormal Systems

Example system: addition of integers

Valid expressions:

• 1

• 1+1

• (1+2) + 4

• (2+2) + (4+5)
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GPU LabFormal Systems

Example system: addition of integers

Valid expressions:

• 1

• 1+1

• (1+2) + 4

• (2+2) + (4+5)
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+

++

2 2 4 5



GPU LabExpression Trees

When transforming this into a programming language, 
we need to assign a type to the syntax of the
expressions...

• 1 Integer

• 1+1 Addition Integer Integer

• (1+2) + 4 Addition (Addition Integer Integer) Integer

But this seems unnatural, as we would like to have a common type 
for all expressions...
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GPU LabExpression Trees

Let’s capture the recursive nature of expression trees
into a single type:

„an Expression is EITHER (a Constant)

or (an Addition of two Expressions)”
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GPU LabExpression Trees

„an Expression is EITHER (a Constant)

or (an Addition of two Expressions)”

This is exactly represented by sum types:

type Expression = Constant Integer

| Addition Expression Expression
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GPU LabExpression Trees

Let’s factor out recursion:

Consider the standard recursive definition of the factorial 
function:

factorial: (𝑛) → ቊ
1, 𝑛 = 0

𝑛 ⋅ factorial(𝑛 − 1), 𝑛 ≠ 0
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GPU LabExpression Trees

The recursion can be abstracted out in the form of fixed 
points.

Given fix 𝑓 = 𝑓( fix 𝑓 ), where 𝑓 is a function taking a function

(itself under the image of fix) as first argument:

factorial_prototype: (𝑓, 𝑛) → ቊ
1, 𝑛 = 0

𝑛 ⋅ 𝑓(𝑓, 𝑛 − 1), 𝑛 ≠ 0

and then:
factorial(𝑥) = fix( factorial_prototype )(𝑥)
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GPU LabExpression Trees

Similarly we can create a parametric type:

forall t ∈ Types

type Expression_proto t =
Constant Integer | Addition t t

type Expression = Fix Expression_Proto

With the following helper functions:

fix : F( Fix F ) -> Fix F      Hide one level of the tree

unfix : Fix F      -> F( Fix F ) Reveal one level of the tree
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GPU LabExpression Trees

One of the common operations on expressions is reducing them 
according to certain rules.

▪ How does an evaluator look like for our grammar?

▪We would like to have something like this if the sub exprs are
already evaluated:

If e is an Expression_proto Integer, then

case Constant:  Integer -> Integer

case Addition: (Integer, Integer) -> Integer

So together the signature of this evaluator function is:

Expression_proto Integer -> Integer
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+

++

2 2 4 5



GPU LabExpression Trees

But...

We have a recursive tree, we need to apply our 
evaluator bottom-up and be well-typed at every 
level...
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+

++

2 2 4 5

94
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GPU LabStructured Recursions

The solution is called the catamorphism, and was 
constructed in functional programming and it’s 
properties were proven in category theory:
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cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix

ϕ = cata α

F( Fix(F) )
F( )

 
Fix(F)

F(a)

a

  ix



GPU LabCatamorphism

The catamorphism takes an evaluator α: F a → a that produces a 
type 'a' from an expression type F holding evaluated subresults.

The evaluator is called an algebra and the type a is called the
carrier type of the algebra.

The parametric expression type F should be a Functor in the
category of types.
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cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix



GPU LabCatamorphism

The catamorphism first
unwraps the fixed point type, 
revealing one step below:
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cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix

Fix (Expression_proto) Addition->

Fix 

(Expression_proto)

Fix 

(Expression_proto)

Fix( F )    ->    F ( Fix( F ) )



GPU LabCatamorphism

Then it applies itself recursively to
evaluate subexpressions down 
until it reaches a terminal leaf
(in our case an Constant)
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cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix

Addition->

4 5

Addition

Fix 

(Expression_proto)

Fix 

(Expression_proto)

F ( Fix( F ) )       ->        F a



GPU LabCatamorphism

Finally, with the subresults
available, it can apply the
algebra at the current level:
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cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix

Addition
->

4 5

9

F a        ->        a



GPU LabCatamorphism - example

So in our expression example:

type Expression_proto t = Constant Integer

| Addition t t

type Expression = Fix Expression_proto

alg : Expression_proto Integer -> Integer

alg x = case (Constant n) => n

case (Addition left right) => left + right

sum : Expression -> Integer

sum tree = (cata alg) tree
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+

++

2 2 4 5

94

13



GPU LabAnamorphism

Category theoretical constructs usually come with dual theorems, 
in this case by reversing the arrows we arrive at the anamorphism:

This recursion scheme takes a co-algebra that creates one level of 
a tree, takes an initial value, and repeats the co-recursion to
create a full fixed tree.
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ana ∶ a → F a → a → Fix F
ana ഥα = fix ∘ F ana ഥα ∘ ഥα

cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix



GPU LabAnamorphism

An example of an anamorphism can be generating
an expression from a value:

coalg n = if( n == 1 ) (Constant 1)

else

if( is_even(n) ) (Addition n/2 n/2)

else (Addition n-1 1)

decompose : Integer -> Expression

decompose n = (ana coalg) n
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ana ∶ a → F a → a → Fix F
ana ഥα = fix ∘ F ana ഥα ∘ ഥα

4
+

1 1

+

1 1

+

3
+

1 1

1

+



GPU LabZoo of morphisms

There are many other recursion schemes, in fact there is a 
hierarchy of more and more general schemes:

Catamorphism – consume tree level by level

Paramorphism – same consumption, but can depend on the
structure of the subtrees

Zygomorphism – same consumption with an auxiliary tree
traversal

Mutumorphism – consumption with a pair of recursive functions
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GPU LabWhy stuctured recursion?

Why are these good for us?

• Factor out recursion from other code

• Makes reasoning simpler

• Makes it possible to algebraically reason about code
operating on algebraic structures (products, trees, 
etc.)

• Expresses intent more clearly

• Combination/fusion identities
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GPU LabWhat can be done with recursion schemes?

We started with the claim that recursion schemes makes
conversion of expressions from one formal system to another
simpler.
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Formal System 1. Formal System 2.



GPU LabWhat can be done with recursion schemes?

One research project at the
Wigner GPU Lab is dealing with 
transforming formulas down to low 
level GPU code automatically.

Obviously, the two formal systems 
are quite different, and lots of 
information need to be analysed and 
synthetized in the transition.
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𝜕[𝛼𝐹𝛽𝛾] = 0 𝜕𝛼𝐹𝛼𝛽 = 𝜇0𝐽𝛽

How to get

there?

gpu.wigner.mta.hu


GPU LabWhat can be done with recursion schemes?

We are developing a library1 to transform linear algebraic
formulas into efficient GPU code
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data ExprF a =
Scalar { getValue :: Double }

| Addition { left :: a, right :: a }
| Multiplication{ left :: a, right :: a }
| VectorView { id :: String, dms :: [Int], strd :: [Int] }
| Apply { lambda :: a, value :: a}
| Lambda { varID :: String, varType :: Type, body :: a }
| Variable { id :: String, tp :: Type }
| Map { lambda :: a, vector :: a }
| Reduce { lambda :: a, vector :: a }
| ZipWith { lambda :: a, vector1 :: a, vector2 :: a }
deriving (Functor, Show)

1 LambdaGen, see András Leitereg’s github page.

https://github.com/leanil/LambdaGen


GPU LabWhat can be done with recursion schemes?

We are developing a library1 to transform linear algebraic
formulas into efficient GPU code
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1 LambdaGen, see András Leitereg’s github page.

https://github.com/leanil/LambdaGen


GPU LabWhat can be done with recursion schemes?

By using recursion schemes, it is really hard to create mistakes
in the code, as most of them can be caught by the type checker.

Recursion schemes also make the transition modular: we can
easily compose yet another traversal onto the pipeline
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GPU LabOne more use case for recursion schemes

Another seemingly different area where structured recursion
started to pop up is...
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GPU LabOne more use case for recursion schemes

Another seemingly different area where structured recursion
started to pop up is...

... Machine Learning

Especially the case of Neural Networks...
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GPU LabOne more use case for recursion schemes

Neural networks are no more than differentiable function
compositions optimized with automatic differentiation.

The interesting part is what kind of differentiable functions to
compose and how☺
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GPU LabOne more use case for recursion schemes

There is a type of Neural Network that looks like the following:
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Net

Input1

Net

Input2

Net

Input3

Net

Net
Final output

The same net with the

same weights operate

at each level at each

branch!



GPU LabOne more use case for recursion schemes

It is called Recursive
Neural Network that
works just like a 
catamorphism...

Proved useful in 
speech-, text 
processing, scene
parsing, etc., where
structure is essential
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Socher, Richard & Chiung-Yu Lin, Cliff & Y. Ng, Andrew & Manning, Christoper. (2011).

Parsing Natural Scenes and Natural Language with Recursive Neural Networks.

Proceedings of the 28th International Conference on Machine Learning, ICML 2011. 129-136. 



GPU LabFunctional Programming and Neural Networks

In fact, it turns out that neural network layer types correspond
to functional programming primitives (see here)

This opens an interesting new field where category theoretical
results prove valuable.
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http://colah.github.io/posts/2015-09-NN-Types-FP/


GPU LabSummary

• Structured Recursion Schemes are useful tools for 
manipulating generic trees and expressing analysis, 
transformation and evaluation of them.

• They connect algebra, type theory and functional 
programming, and are backed up by category theoretical 
identities.

• Hopefully they will soon power the tools of researchers of all 
kinds☺
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