
GPU Lab

Applications of structured recursion schemes

Dániel Berényi
Wigner Research Centre for Physics, GPU Lab

In collaboration with

András Leitereg and Gábor Lehel

Eötvös University

Logic, Relativity and Beyond '17

August 23-27. Budapest

GPU LabIntroduction

Modern programming tries to tackle more and more complex
problems and to succeed it relies on results and tools from

• Functional Programming

• Type Theory

• Algebra

• Logic

• Category Theory

8/24/2017 2

Monoid:

Σ = 1 + 𝐴 × 𝐴

𝑝 ∨ ¬𝑝 ⇔ 𝑇

GPU LabIntroduction

What do we use from them?
(Non exhaustive collection!)

• Functional Programming

• Type Theory

• Algebra

• Logic

• Category Theory

8/24/2017 3

Compositional,

abstract (rel. to hardware)

primitives

Safety, improved reasoning,

soundness

Type compositions

Proving abstract relations in TT and FP

Reasoning,

inferring,

proving

GPU LabIntroduction

When solving a problem in a certain field with the aid of a
computer and programming languages,

we inevitably face a transition from one formal system to
another:

8/24/2017 4

Formal System 1. Formal System 2.

GPU LabIntroduction

Even worse, usually we end up with a series of transitions:

8/24/2017 5

Formal System 1.

Formal System 2.

Formal System 3.

Formal System 4.

GPU LabIntroduction

During the transition many operations should be carried out on
the expressions on the formal systems and we need tools that
are easy to reason about...

8/24/2017 6

Formal System 1.

Formal System 2.

Formal System 3.

Formal System 4.

is valid?

is valid?

is valid?

GPU LabFormal Systems

Formal systems consist of:

• Symbols

• Grammar

• Axioms

• Inference rules

8/24/2017 7

GPU LabFormal Systems

Formal systems consist of:

• Symbols

• Grammar

• Axioms

• Inference rules

8/24/2017 8

Tells how to build well-formed

expressions from the symbols

GPU LabFormal Systems

Example system: addition of integers

Valid expressions:

• 1

• 1+1

• (1+2) + 4

• (2+2) + (4+5)

8/24/2017 9

GPU LabFormal Systems

Example system: addition of integers

Valid expressions:

• 1

• 1+1

• (1+2) + 4

• (2+2) + (4+5)

8/24/2017 10

+

++

2 2 4 5

GPU LabExpression Trees

When transforming this into a programming language,
we need to assign a type to the syntax of the
expressions...

• 1 Integer

• 1+1 Addition Integer Integer

• (1+2) + 4 Addition (Addition Integer Integer) Integer

But this seems unnatural, as we would like to have a common type
for all expressions...

8/24/2017 11

GPU LabExpression Trees

Let’s capture the recursive nature of expression trees
into a single type:

„an Expression is EITHER (a Constant)

or (an Addition of two Expressions)”

8/24/2017 12

GPU LabExpression Trees

„an Expression is EITHER (a Constant)

or (an Addition of two Expressions)”

This is exactly represented by sum types:

type Expression = Constant Integer

| Addition Expression Expression

8/24/2017 13

GPU LabExpression Trees

Let’s factor out recursion:

Consider the standard recursive definition of the factorial
function:

factorial: (𝑛) → ቊ
1, 𝑛 = 0

𝑛 ⋅ factorial(𝑛 − 1), 𝑛 ≠ 0

8/24/2017 14

GPU LabExpression Trees

The recursion can be abstracted out in the form of fixed
points.

Given fix 𝑓 = 𝑓(fix 𝑓), where 𝑓 is a function taking a function

(itself under the image of fix) as first argument:

factorial_prototype: (𝑓, 𝑛) → ቊ
1, 𝑛 = 0

𝑛 ⋅ 𝑓(𝑓, 𝑛 − 1), 𝑛 ≠ 0

and then:
factorial(𝑥) = fix(factorial_prototype)(𝑥)

8/24/2017 15

GPU LabExpression Trees

Similarly we can create a parametric type:

forall t ∈ Types

type Expression_proto t =
Constant Integer | Addition t t

type Expression = Fix Expression_Proto

With the following helper functions:

fix : F(Fix F) -> Fix F Hide one level of the tree

unfix : Fix F -> F(Fix F) Reveal one level of the tree

8/24/2017 16

GPU LabExpression Trees

One of the common operations on expressions is reducing them
according to certain rules.

▪ How does an evaluator look like for our grammar?

▪We would like to have something like this if the sub exprs are
already evaluated:

If e is an Expression_proto Integer, then

case Constant: Integer -> Integer

case Addition: (Integer, Integer) -> Integer

So together the signature of this evaluator function is:

Expression_proto Integer -> Integer

8/24/2017 17

+

++

2 2 4 5

GPU LabExpression Trees

But...

We have a recursive tree, we need to apply our
evaluator bottom-up and be well-typed at every
level...

8/24/2017 18

+

++

2 2 4 5

94

13

GPU LabStructured Recursions

The solution is called the catamorphism, and was
constructed in functional programming and it’s
properties were proven in category theory:

8/24/2017 19

cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix

ϕ = cata α

F(Fix(F))
F()

Fix(F)

F(a)

a

 ix

GPU LabCatamorphism

The catamorphism takes an evaluator α: F a → a that produces a
type 'a' from an expression type F holding evaluated subresults.

The evaluator is called an algebra and the type a is called the
carrier type of the algebra.

The parametric expression type F should be a Functor in the
category of types.

8/24/2017 20

cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix

GPU LabCatamorphism

The catamorphism first
unwraps the fixed point type,
revealing one step below:

8/24/2017 21

cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix

Fix (Expression_proto) Addition->

Fix

(Expression_proto)

Fix

(Expression_proto)

Fix(F) -> F (Fix(F))

GPU LabCatamorphism

Then it applies itself recursively to
evaluate subexpressions down
until it reaches a terminal leaf
(in our case an Constant)

8/24/2017 22

cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix

Addition->

4 5

Addition

Fix

(Expression_proto)

Fix

(Expression_proto)

F (Fix(F)) -> F a

GPU LabCatamorphism

Finally, with the subresults
available, it can apply the
algebra at the current level:

8/24/2017 23

cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix

Addition
->

4 5

9

F a -> a

GPU LabCatamorphism - example

So in our expression example:

type Expression_proto t = Constant Integer

| Addition t t

type Expression = Fix Expression_proto

alg : Expression_proto Integer -> Integer

alg x = case (Constant n) => n

case (Addition left right) => left + right

sum : Expression -> Integer

sum tree = (cata alg) tree

8/24/2017 24

+

++

2 2 4 5

94

13

GPU LabAnamorphism

Category theoretical constructs usually come with dual theorems,
in this case by reversing the arrows we arrive at the anamorphism:

This recursion scheme takes a co-algebra that creates one level of
a tree, takes an initial value, and repeats the co-recursion to
create a full fixed tree.

8/24/2017 25

ana ∶ a → F a → a → Fix F
ana ഥα = fix ∘ F ana ഥα ∘ ഥα

cata ∶ F a → a → Fix F → a
cata α = α ∘ F(cata α) ∘ unfix

GPU LabAnamorphism

An example of an anamorphism can be generating
an expression from a value:

coalg n = if(n == 1) (Constant 1)

else

if(is_even(n)) (Addition n/2 n/2)

else (Addition n-1 1)

decompose : Integer -> Expression

decompose n = (ana coalg) n

8/24/2017 26

ana ∶ a → F a → a → Fix F
ana ഥα = fix ∘ F ana ഥα ∘ ഥα

4
+

1 1

+

1 1

+

3
+

1 1

1

+

GPU LabZoo of morphisms

There are many other recursion schemes, in fact there is a
hierarchy of more and more general schemes:

Catamorphism – consume tree level by level

Paramorphism – same consumption, but can depend on the
structure of the subtrees

Zygomorphism – same consumption with an auxiliary tree
traversal

Mutumorphism – consumption with a pair of recursive functions

8/24/2017 27

GPU LabWhy stuctured recursion?

Why are these good for us?

• Factor out recursion from other code

• Makes reasoning simpler

• Makes it possible to algebraically reason about code
operating on algebraic structures (products, trees,
etc.)

• Expresses intent more clearly

• Combination/fusion identities

8/24/2017 28

GPU LabWhat can be done with recursion schemes?

We started with the claim that recursion schemes makes
conversion of expressions from one formal system to another
simpler.

8/24/2017 29

Formal System 1. Formal System 2.

GPU LabWhat can be done with recursion schemes?

One research project at the
Wigner GPU Lab is dealing with
transforming formulas down to low
level GPU code automatically.

Obviously, the two formal systems
are quite different, and lots of
information need to be analysed and
synthetized in the transition.

8/24/2017 30

𝜕[𝛼𝐹𝛽𝛾] = 0 𝜕𝛼𝐹𝛼𝛽 = 𝜇0𝐽𝛽

How to get

there?

gpu.wigner.mta.hu

GPU LabWhat can be done with recursion schemes?

We are developing a library1 to transform linear algebraic
formulas into efficient GPU code

8/24/2017 31

data ExprF a =
Scalar { getValue :: Double }

| Addition { left :: a, right :: a }
| Multiplication{ left :: a, right :: a }
| VectorView { id :: String, dms :: [Int], strd :: [Int] }
| Apply { lambda :: a, value :: a}
| Lambda { varID :: String, varType :: Type, body :: a }
| Variable { id :: String, tp :: Type }
| Map { lambda :: a, vector :: a }
| Reduce { lambda :: a, vector :: a }
| ZipWith { lambda :: a, vector1 :: a, vector2 :: a }
deriving (Functor, Show)

1 LambdaGen, see András Leitereg’s github page.

https://github.com/leanil/LambdaGen

GPU LabWhat can be done with recursion schemes?

We are developing a library1 to transform linear algebraic
formulas into efficient GPU code

8/24/2017 32

1 LambdaGen, see András Leitereg’s github page.

https://github.com/leanil/LambdaGen

GPU LabWhat can be done with recursion schemes?

By using recursion schemes, it is really hard to create mistakes
in the code, as most of them can be caught by the type checker.

Recursion schemes also make the transition modular: we can
easily compose yet another traversal onto the pipeline

8/24/2017 33

GPU LabOne more use case for recursion schemes

Another seemingly different area where structured recursion
started to pop up is...

8/24/2017 34

GPU LabOne more use case for recursion schemes

Another seemingly different area where structured recursion
started to pop up is...

... Machine Learning

Especially the case of Neural Networks...

8/24/2017 35

GPU LabOne more use case for recursion schemes

Neural networks are no more than differentiable function
compositions optimized with automatic differentiation.

The interesting part is what kind of differentiable functions to
compose and how☺

8/24/2017 36

GPU LabOne more use case for recursion schemes

There is a type of Neural Network that looks like the following:

8/24/2017 37

Net

Input1

Net

Input2

Net

Input3

Net

Net
Final output

The same net with the

same weights operate

at each level at each

branch!

GPU LabOne more use case for recursion schemes

It is called Recursive
Neural Network that
works just like a
catamorphism...

Proved useful in
speech-, text
processing, scene
parsing, etc., where
structure is essential

8/24/2017 38

Socher, Richard & Chiung-Yu Lin, Cliff & Y. Ng, Andrew & Manning, Christoper. (2011).

Parsing Natural Scenes and Natural Language with Recursive Neural Networks.

Proceedings of the 28th International Conference on Machine Learning, ICML 2011. 129-136.

GPU LabFunctional Programming and Neural Networks

In fact, it turns out that neural network layer types correspond
to functional programming primitives (see here)

This opens an interesting new field where category theoretical
results prove valuable.

8/24/2017 39

http://colah.github.io/posts/2015-09-NN-Types-FP/

GPU LabSummary

• Structured Recursion Schemes are useful tools for
manipulating generic trees and expressing analysis,
transformation and evaluation of them.

• They connect algebra, type theory and functional
programming, and are backed up by category theoretical
identities.

• Hopefully they will soon power the tools of researchers of all
kinds☺

8/24/2017 40

GPU LabReferences

8/24/2017 41

See the online paper for more references.

Erik Meijer, J. Hughes, M.M. Fokkinga, Ross Paterson
Functional Programming with Bananas, Lenses, Envelopes and Barbed Wire

Ralf Hinze, Nicolas Wu, Jeremy Gibbons

Unifying Structured Recursion Schemes

Edward Kmett’s blog posts

Patrick Thomson’s blog posts

Bartosz Milewski’s blog posts

Tim Willams’ talk

Recursive Neural Networks

Pollack, J. B. Recursive distributed

representations. Artificial Intelligence

Vol 46 (1990)

Bottou, L. arXiv.1102.1808. 401 (2011)

Frasconi, P., et. al. A general

framework for adaptive processing of

data structures. IEEE Transactions on

Neural Networks , (1998).

Thank you!

http://www.renyi.hu/conferences/lrb17/pdf/Berenyi--Leitereg--Lehel.pdf
https://www.google.hu/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwi-2qDG-qnJAhVJBiwKHRAFBzEQFggfMAA&url=http://eprints.eemcs.utwente.nl/7281/01/db-utwente-40501F46.pdf&usg=AFQjCNFPFhD-q-LO6GEes1o0nZZluhZR2g&sig2=kR0ZYQqmBvK0sowN8k0LCw
http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/urs.pdf
http://comonad.com/reader/2009/recursion-schemes/
http://blog.sumtypeofway.com/an-introduction-to-recursion-schemes/
https://bartoszmilewski.com/2013/06/10/understanding-f-algebras/
https://github.com/willtim/recursion-schemes/blob/master/slides-final.pdf

