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From now on, unless otherwise indicated, n is fixed to be a finite
ordinal > 2.



I While the classical Orey-Henkin OTT holds for Lω,ω, it is known
[2] that the OTT fails for Ln in the following (strong) sense.
For every 2 < n ≤ l < ω, there is a countable and complete Ln
atomic theory T , and a single type, namely, the type consisting
of co-atoms of T , that is realizable in every model of T , but
cannot be isolated by a formula using l variables.



I We prove stronger negative OTTs for Ln when types are re-
quired to be omitted with respect to certain (much wider) gen-
eralized semantics, called m-flat and m–square with 2 < n <
m < ω.



I We use so-called blow up and blur constructions. Such subtle
constructions may be applied to any two classes L ⊆ K of com-
pletely additive BAOs. One takes an atomic A /∈ K (usually
but not always finite), blows it up, by splitting one or more of
its atoms each to infinitely many subatoms, obtaining an (in-
finite) countable atomic Bb(A) ∈ L, such that A is blurred in
Bb(A) meaning that A does not embed in Bb(A), but A em-
beds in the Dedekind-MacNeille completion of Bb(A), namely,
CmAtBb(A).



I Then any class M say, between L and K that is closed under
forming subalgebras will not be atom–canonical. We say, in
this case, that L is not atom–canonical with respect to K.



This method is applied to K = SRaCAl , l ≥ 5 and L = RRA in
[3] and to K = RRA and L = RRA ∩ RaCAk for all k ≥ 3 in [2],
and will applied below to K = SNrnCAn+k , k ≥ 3 and L = RCAn,
where Ra denote the operator of forming relation algebra reducts,
respectively, [4, Definition 5.2.7].



I Using variations on several blow up and blur constructions, we
obtain negative results of the form: There exists a countable,
complete and atomic Ln theory T such that the type Γ consist-
ing of co–atoms is realizable in every m–square model, but Γ
cannot be isolated using ≤ l variables, where n ≤ l < m ≤ ω.
Call it Ψ(l ,m), short for VT fails at (the parameters) l and m.

Let VT(l ,m) stand for VT holds at l and m, so that by definition
Ψ(l ,m) ⇐⇒ ¬VT(l ,m). We also include l = ω in the
equation by defining VT(ω, ω) as VT holds for Lω,ω: Atomic
countable first order theories have atomic countable models.
It is well known that VT(ω, ω) is a direct consequence of the
Orey-Henkin OTT.



I We provide strong evidence that VT fails everywhere in the
sense that for the permitted values n ≤ l ,m ≤ ω, namely, for
n ≤ l < m ≤ ω and l = m = ω, VT(l ,m) ⇐⇒ l = m = ω.

From known algebraic results such as non-atom–canonicity of
RCAn and non-first order definability of the class of completely
representable CAns, it can be easily inferred that VT(n, ω) is
false, that is to say, VT fails for Ln with respect to (usual)
Tarskian semantics [5].



I From sharper algebraic results, we prove many other special
cases for specific values of l and m, with l < m, that support the
last equivalence. For example, from the non–atom canonicity of
RCAn with respect to the variety of CAns having n + 3–square
representations (⊇ SNrnCAn+3), we prove Ψ(n, n+k) for k ≥ 3
and from the non–atom canonicity of NrnCAn+k ∩ RCAn with
respect to RCAn for all k ∈ ω, we prove Ψ(l , ω) for all finite
l ≥ n.



I Both results are obtained by blowing up and blurring finite alge-
bras; a rainbow CAn in the former case, and a finite RA (whose
number of atoms depend on k) in the second case. In this case,
we say (and prove) that VT fails almost everywhere.



I The non atom–canonicity of NrnCAm−1 ∩ RCAn with respect
to the variety of CAns having m–square representations (⊇
SNrnCAm) for all 2 < n < m < ω, implies that Ψ(l ,m) holds
for all 2 < n ≤ l < m ≤ ω, in which case VT fails everywhere.



I This is reduced to (finding then) blowing up and blurring a
finite relation algebra having a so-called strong m− 1 blur and
no m-dimensional relational basis for each 2 < n < m < ω.



Figuratively speaking, VT holds only at the limit when l →∞ and
m→∞. So we can express the situation (using elementary Calculas
terminology) as follows: For 2 < n ≤ l < m < ω, VT(l ,m) is false,
but as l and m gets larger, VT(l ,m) gets closer to VT, in symbols,
liml ,m→∞VT(l ,m) = VT(liml→∞l , limm→∞m) = VT(ω, ω).



From now on, unless otherwise indicated, n is fixed to be a finite
ordinal > 2.

Definition 1.

Let A ∈ CAn be atomic. Assume that m, k ≤ ω. The atomic game
Gm
k (AtA), or simply Gm

k , is the game played on atomic networks
of A using m nodes and having k rounds. The ω–rounded game
Gm(AtA) or simply Gm is like the game Gm

ω (AtA) except that ∀ has
the advantage to reuse the m nodes in play.



Let A, B be two relational structures. Let 2 < n < ω. Then the
colours used are:

I greens: gi (1 ≤ i ≤ n − 2), gi0, i ∈ A,

I whites : wi : i ≤ n − 2,

I reds: rij (i , j ∈ B),

I shades of yellow : yS : S a finite subset of B or S = B.



A coloured graph is a graph such that each of its edges is labelled
by the colours in the above first three items, greens, whites or reds,
and some n−1 hyperedges are also labelled by the shades of yellow.
Certain coloured graphs will deserve special attention.

Definition 2.
Let i ∈ A, and let M be a coloured graph consisting of n nodes
x0, . . . , xn−2, z . We call M an i - cone if M(x0, z) = gi0 and for
every 1 ≤ j ≤ n − 2, M(xj , z) = gj , and no other edge of M is
coloured green. (x0, . . . , xn−2) is called the base of the cone, z the
apex of the cone and i the tint of the cone.



The rainbow algebra depending on A and B, from the class K con-
sisting of all coloured graphs M such that:



The rainbow algebra depending on A and B, from the class K con-
sisting of all coloured graphs M such that:

1. M is a complete graph and M contains no triangles (called
forbidden triples) of the following types:

(g, g
′
, g∗), (gi , gi ,wi ) any 1 ≤ i ≤ n − 2, (1)

(gj0, g
k
0 ,w0) any j , k ∈ A, (2)

(rij , rj ′k ′ , ri∗k∗) unless i = i∗, j = j ′ & k ′ = k∗ (3)

and no other triple of atoms is forbidden.



The rainbow algebra depending on A and B, from the class K con-
sisting of all coloured graphs M such that:

2. If a0, . . . , an−2 ∈ M are distinct, and no edge (ai , aj) i < j < n
is coloured green, then the sequence (a0, . . . , an−2) is coloured
a unique shade of yellow. No other (n − 1) tuples are coloured
shades of yellow. Finally, if D = {d0, . . . , dn−2, δ} ⊆ M and
M � D is an i cone with apex δ, inducing the order d0, . . . , dn−2
on its base, and the tuple (d0, . . . , dn−2) is coloured by a unique
shade yS then i ∈ S .



Let A and B be relational structures as above. Take the set J
consisting of all surjective maps a : n → ∆, where ∆ ∈ K and
define an equivalence relation on this set relating two such maps
iff they essentially define the same graph; the nodes are possibly
different but the graph structure is the same. Let At be the set of
equivalences classes. We denote the equivalence class of a by [a].
Then define, for i < j < n, the accessibility relations corresponding
to ijth–diagonal element, ith–cylindrifier, and substitution operator
corresponding to the transposition [i , j ], as follows:

(1) [a] ∈ Eij iff a(i) = a(j),

(2) [a]Ti [b] iff a � n r {i} = b � n r {i},
(3) [a]Sij [b] iff a ◦ [i , j ] = b.



Lemma 3.

If A ∈ ScNrnCAm be atomic, then ∃ has a winning strategy in
Gm(AtA).

Theorem 4.

1. The variety RRA is not atom-canonical with respect to
SRaCAk , for any k ≥ 6,

2. Let m ≥ n + 3. Then RCAn is not-atom canonical with
respect to SNrnCAm.



Proof

Blowing up and blurring An+1,n forming a weakly representable
atom structure At:



Proof

Blowing up and blurring An+1,n forming a weakly representable
atom structure At:

Take the finite rainbow CAn, An+1,n where the reds R is the complete
irreflexive graph n, and the greens are {gi : 1 ≤ i < n − 1} ∪ {gi0 :
1 ≤ i ≤ n+ 1}, so that G = n+ 1. Denote the finite atom structure
of An+1,n by Atf . One then replaces the red colours of the finite
rainbow algebra of An+1,n each by infinitely many countable reds
(getting their superscripts from ω), obtaining this way a weakly
representable atom structure At.



Proof

Blowing up and blurring An+1,n forming a weakly representable
atom structure At:

The atom structure At is like the weakly (but not strongly) rep-
resentable atom structure of the atomic and countable and simple
A ∈ Csn as defined in [2, Definition 4.1]; the sole difference is that
we have n + 1 greens and not ω–many as is the case in [2]. We de-
note the resulting term CAn, TmAt by Bb(An+1,n, r, ω) short hand
for blowing up An+1,n by splitting each red graph (atom) into ω
many.



Proof

Blowing up and blurring An+1,n forming a weakly representable
atom structure At:

It can be shown exactly like in [2] that ∃ can win the rainbow ω–
rounded game and build an n–homogeneous model M by using a
shade of red ρ outside the rainbow signature, when she is forced a
red; [2, Proposition 2.6, Lemma 2.7]. Using this, one proves like in
op.cit that Bb(An+1,n, r, ω) is representable as a set algebra having
top element nM.



Proof (continuation)

Embedding An+1,n into Cm(At(Bb(An+1,n, r, ω))):



Proof (continuation)

Embedding An+1,n into Cm(At(Bb(An+1,n, r, ω))):

Let CRGf be the class of coloured graphs on Atf and CRG be the
class of coloured graph on At. Write Ma for the atom that is the
(equivalence class of the) surjection a : n→ M, M ∈ CGR. We de-
fine the (equivalence) relation ∼ on At by Ma ∼ Nb, (M,N ∈ CGR)
⇐⇒ they are identical everywhere except at possibly at red edges:
Ma(a(i), a(j)) = rl ⇐⇒ Nb(b(i), b(j)) = rk , for some l , k ∈ ω.



Proof (continuation)

Embedding An+1,n into Cm(At(Bb(An+1,n, r, ω))):

We say that Ma is a copy of Nb if Ma ∼ Nb. Define the map Θ from
An+1,n = CmAtf to CmAt, by specifing first its values on Atf , via

Ma 7→
∨

j M
(j)
a where M

(j)
a is a copy of Ma. So each atom maps to

the suprema of its copies. This map is well-defined because CmAt
is complete. Furthermore, it can be checked that Θ is an injective
a homomorphism.



Proof (continuation)

∀ has a winning strategy in Gn+3At(An+1,n):

For him to win, ∀ lifts his winning strategy from the private Ehren-
feucht–Fräıssé forth game EFn+1

n+1(n + 1, n) (in n + 1 rounds), to
the graph game on Atf = At(An+1,n) orcing a win using n + 3
nodes. He bombards ∃ with cones having common base and dis-
tinct green tints until ∃ is forced to play an inconsistent red triangle
(where indicies of reds do not match). By Lemma 3, An+1,n /∈
ScNrnCAn+3. Since An+1,n is finite, then An+1,n /∈ SNrnCAn+3,
for else A+

n+1,n = An+1,n ∈ ScNrnCAn+3. But An+1,n embeds
into CmAtA, hence CmAt = Cm(AtBb(An+1,n, r, ω)) is outside
the variety SNrnCAn+3, as well. We have proved that TmAt ∈
Csn(⊆ RCAn), while (its Dedekind-MacNeille completion) CmAt /∈
SNrnCAn+3, thereby proving the desired result.



I Fix 2 < n ≤ l < m ≤ ω. We turn to the statement Ψ(l ,m)
as defined in the introduction. By an m–square model M of
a theory T we understand an m–square representation of the
algebra FmT with base M.

Let VT(l ,m) = ¬Ψ(l ,m), short for VT holds ‘at the parameters
l and m’ where by definition, we stipulate that VT(ω, ω) is just
VT for Lω,ω. For 2 < n ≤ l < m ≤ ω and l = m = ω, we
investigate the plausability of the following statement which we
abbreviate by (**): VT(l ,m) ⇐⇒ l = m = ω.

In other words: Vaught’s Theorem holds only in the limiting
case when l →∞ and m = ω and not ‘before’.



In the next Theorem several conditions are given implying Ψ(l ,m)f
for various values of the parameters l and m where Ψ(l ,m)f is the
formula obtained from Ψ(l ,m) replacing square by flat.

Theorem 5.
Let 2 < n ≤ l < m ≤ ω. Then every item implies the immediately
following one.

1. There exists a finite relation algebra R with a strong l–blur
and no infinite m–dimensional hyperbasis,

2. There is a countable atomic A ∈ NrnCAl ∩ RCAn such that
CmAtA does not have an m–flat representation,

3. There is a countable atomic A ∈ NrnCAl ∩ RCAn such that
CmAtA /∈ SNrnCAm,

4. There is a countable atomic A ∈ NrnCAl ∩ RCAn such that A
has no complete infinitary m–flat representation,

5. Ψ(l ′,m′)f is true for any l ′ ≤ l and m′ ≥ m.



The same implications hold upon replacing infinite m–dimensional
hyperbasis by m–dimensional relational basis (not necessarily infi-
nite), m–flat by m–square and SNrnCAm by SNrnDm. Furthermore,
in the new chain of implications every item implies the corresponding
item in Theorem 5. In particular, Ψ(l ,m) =⇒ Ψ(l ,m)f .



Proof

(1) =⇒ (2):

Let R be as in the hypothesis with strong l–blur (J,E ). The idea
is to ‘blow up and blur’ R in place of the Maddux algebra Ek(2, 3)
blown up and blurred in [2, Lemma 5.1], where k < ω is the number
of non–identity atoms and k depends recursively on l , giving the
desired strong l–blurness, cf. [2, Lemmata 4.2, 4.3]. Let 2 < n ≤
l < ω. The relation algebra R is blown up by splitting all of the
atoms each to infinitely many giving a new infinite atom structure
At denoted in [2, p.73] by At. One proves that the blown up and
blurred atomic relation algebra Bb(R, J,E ) (as defined in [2]) with
atom structure At is representable; in fact this representation is
induced by a complete representation of its canonical extension, cf.
[2, Item (1) of Theorem 3.2].



Proof

(1) =⇒ (2):

Because (J,E ) is a strong l–blur, then, by its definition, it is a strong
j–blur for all n ≤ j ≤ l , so the atom structure At has a j–dimensional
cylindric basis for all n ≤ j ≤ l , namely, Matj(At). For all such j ,
there is an RCAj denoted on [2, Top of p. 9] by Bbj(R, J,E ) such
that TmMatj(At) ⊆ Bbj(R, J,E ) ⊆ CmMatj(At) and AtBbj(R, J,E )
is a weakly representable atom structure of dimension j , cf. [2,
Lemma 4.3].



Proof

(1) =⇒ (2):

Take A = Bbn(R, J,E ). We claim that A is as required. Since R
has a strong j–blur (J,E ) for all n ≤ j ≤ l , then A ∼= NrnBbj(R, J,E )
for all n ≤ j ≤ l as proved in [2, item (3) p.80]. In particular, taking
j = l , A ∈ RCAn∩NrnCAl . We show that CmAtA does not have an
m–flat representation. Assume for contradicton that CmAtA does
have an m–flat representation M. Then M is infinite of course.
Since R embeds into Bb(R, J,E ) which embeds into RaCmAtA,
then R has an m–flat representation with base M. But since R is
finite, R = R+, so by [3, Theorem 13.46, (7) ⇐⇒ (11)] R has an
infinite m–dimensional hyperbasis, contradiction.



Proof (continuation)

(2) =⇒ (3):

An algebra A has an m-flat representation ⇐⇒ A ∈ SNrnCAm.



Proof (continuation)

(3) =⇒ (4):

A complete m–flat representation of (any) B ∈ CAn induces an m–
flat representation of CmAtB which implies that CmAtB ∈ SNrnCAm.
To see why, assume that B has an m–flat complete representation
via f : B → D, where D = ℘(V ) and the base of the representa-
tion M =

⋃
s∈V rng(s) is m–flat. Let C = CmAtB. For c ∈ C , let

c ↓= {a ∈ AtC : a ≤ c} = {a ∈ AtB : a ≤ c}; the last equality
holds because AtB = AtC. Define, representing C, g : C → D by
g(c) =

∑
x∈c↓ f (x), then g is a homomorphism into ℘(V ) having

base M.



Proof (continuation)

(4) =⇒ (5):

By [4, §4.3], we can (and will) assume that A = FmT for a count-
able, simple and atomic theory Ln theory T . Let Γ be the n–type
consisting of co–atoms of T . Then Γ is realizable in every m–flat
model, for if M is an m–flat model omitting Γ, then M would be
the base of a complete infinitary m–flat representation of A, and
so A ∈ ScNrnCAm which is impossible. But A ∈ NrnCAl , so using
an argument similar to that used in [2, Theorem 3.1] we get that
any witness isolating Γ needs more than l–variables. Spelling out
more details, suppose for contradiction that φ is an l witness, so
that T |= φ → α, for all α ∈ Γ, where (recall that) Γ is the set
of coatoms. Then since A is simple, we can assume without loss of
generality, that it is set algebra with a countable base.



Proof (continuation)

(4) =⇒ (5):

Let M = (M,Ri )i∈ω be the corresponding model (in a relational
signature) to this set algebra in the sense of [4, section 4.3]. Let φM

denote the set of all assignments satisfying φ in M. We have M |= T
and φM ∈ A, because A ∈ NrnCAl . But T |= ∃xφ, hence φM 6= 0,
from which it follows that φM must intersect an atom α ∈ A (recall
that the latter is atomic). Let ψ be the formula, such that ψM = α.
Then it cannot be the case that T |= φ → ¬ψ, hence φ is not a
witness, contradiction and we are done.



Proof (continuation)

(4) =⇒ (5):

For squareness the proofs are essentially the same undergoing the
obvious modifications In the first implication ‘infinite’ in the hy-
pothesis is not needed because any finite relation algebra having an
infinite m–dimensional relational basis has a finite one, cf. [3, The-
orem 19.18] which is not the case with hyperbasis, cf. [3, Prop.
19.19].



Summary of results on VT:

VT(n, ω) no, [2] and Theorem 4

VT(n, n + 3) no, Theorem 4

VT(n, n + 2)f no, if ∃ R with n–blur and no n + 2-hyp

VT(l , ω) no, Ek(2, 3) has strong l-blur, and no ω-hyp

VT(l ,m)f , l ≤ m − 1 no, if ∃ R with strong l-blur, and no m-hyp

VT(l ,m), l ≤ m − 1 no, if ∃ R with strong l-blur, and no m-bases

VT(ω, ω) yes, VT for Lω,ω.



Definition 6.

Let λ be a cardinal. Assume that A ∈ RCAn. If X = (Xi : i < λ)
is a family of subsets of A, we say that X is omitted in C ∈ Gsn,
if there exists an isomorphism f : A → C such that

⋂
f (Xi ) = ∅

for all i < λ. If X ⊆ A and
∏

X = 0, then we refer to X as a
non-principal type of A.



Theorem 7.

Let A ∈ ScNrnCAω be countable. Let λ < 2ω and let X = (Xi : i <
λ) be a family of non-principal types of A. Then the following hold:

1. If A ∈ NrnCAω and the Xi s are non–principal ultrafilters, then
X can be omitted in a Gsn,

2. Every subfamily of X of cardinality < p can be omitted in a
Gsn. Furthermore, if A is simple, then every subfamily of X of
cardinality < covK can be omitted in a Csn.



Corollary 8.

Let n be any finite ordinal. Let T be a countable and consistent Ln
theory and λ be a cardinal < p. Let F = (Γi : i < λ) be a family
of non-principal types of T . Suppose that T admits elimination of
quantifiers. Then the following hold:

1. If φ is a formula consistent with T , then there is a model M
of T that omits F, and φ is satisfiable in M. If T is complete,
then we can replace p by covK,

2. If the non-principal types constituting F are maximal, then we
can replace p by 2ω.



Theorem 9.
For 2 < n < ω the following hold:

1. CRCAn ⊆ ScNrn(CAω ∩ At) ∩ At ⊆ ScNrnCAω ∩ At. At least
two of these three classes are distinct,

2. All reverse inclusions and implications in the previous item
hold, if algebras considered have countably many atoms,

3. All classes in the first item are closed under Sc (a fortiori
under Sd), P, but are not closed under S, nor H nor Ur.
Their elementary closure coincides with LCAn,

4. NrnCAω ( SdNrnCAω ⊆ ScNrnCAω ( ElScNrnCAω ( RCAn.
Furthermore, the strictness of inclusions are witnessed by
atomic algebras.



Theorem 10.

Any class K such that NrnCAω ∩CRCAn ⊆ K ⊆ ScNrnCAn+3, K is
not elementary.



Proof

One takes a rainbow –like algebra based on the ordered structure Z
and N, that is similar but not identical to CAZ,N; call this (complex)
algebra C. The reds R is the set {rij : i < j < ω(= N)} and the green
colours used constitute the set {gi : 1 ≤ i < n − 1} ∪ {gi0 : i ∈ Z}.
In complete coloured graphs the forbidden triples are like in usual
rainbow constructions; more specifically the following are forbidden
triangles in coloured graphs.

(g, g
′
, g∗), (gi , gi ,wi ), any 1 ≤ i ≤ n − 2 (1)

(gj0, g
k
0 ,w0) any j , k ∈ G (2)

(rij , rj ′k ′ , ri∗k∗) unless i = i∗, j = j ′ and k ′ = k∗, (3)



Proof

but now the triple (gi0, g
j
0, rkl) is also forbidden if {(i , k), (j , l)} is not

an order preserving partial function from Z → N. It can be proved
that ∃ has a winning strategy ρk in the k–rounded game Gk(AtC)
for all k ∈ ω. Hence, using ultrapowers and an elementary chain
argument , one gets a countable (completely represenatble) algebra
B such that B ≡ A, and ∃ has a winning strategy in Gω(AtB).



Proof

On the other hand, one can show that ∀ has a winning strategy
in F n+3(AtC). The idea here, is that, as is the case with winning
strategy’s of ∀ in rainbow constructions, ∀ bombards ∃ with cones
having distinct green tints demanding a red label from ∃ to appexes
of succesive cones. The number of nodes are limited but ∀ has the
option to re-use them, so this process will not end after finitely many
rounds. The added order preserving condition relating two greens
and a red, forces ∃ to choose red labels, one of whose indices form
a decreasing sequence in N. In ω many rounds ∀ forces a win, so by
lemma 3 C /∈ ScNrnCAn+3.



Proof

Finally, we now construct two atomic algebras A,B ∈ CAn such
that, A ∈ NrnCAω, B /∈ SdNrnCAn+1 and A ≡ B. Thus B ∈
El(NrnCAω∩CRCAn) ∼ SdNrnCAω. Since El(NrnCAω∩CRCAn) *
SdNrnCAω ∩ CRCAn, there can be no elementary class between
NrnCAω ∩ CRCAn and SdNrnCAω ∩ CRCAn. Having already elimi-
nated elementary classes between SdNrnCAω∩CRCAn and ScNrnCAn+3,
we are done.



Algebras At-can. At. gen El. gen. Can. Str is el. CR is el. VT
RCAn , RRA no yes yes yes no no no
SNrnCAn+1 yes yes yes yes yes ? ?
SRaCA3, SRaCA4 yes yes yes yes yes yes yes
SNrnCAn+2 ? yes yes yes ? ? ?
SRaCA5 ? yes yes yes ? yes yes
SNrnCAn+k , SRaCAm no yes yes yes ? no no
Dn, Gn yes yes yes yes yes yes yes



In the next table we summarize the results obtained on non-first
order definability:

Algebras Elementary
NrnCAω ∩ CRCAn ⊆ K ⊆ SdNrnCAn+1 no
NrnCAω ∩ CRCAn ⊆ K ⊆ ScNrnCAn+3 no
At(NrnCAω ∩ CRCAn) ⊆ K ⊆ AtScNrnCAn+3 no
NrnCAω ⊆ K ⊆ NrnCAn+1 no
ScRaCAω ∩ CRRA ⊆ K ⊆ ScRaCA6 no
SdRaCAω ∩ CRRA ⊆ K ⊆ ScRaCA6 no
RaCAω ∩ CRRAn ⊆ K ⊆ ScRaCA6 ?
At(RaCAω ∩ CRRA) ⊆ K ⊆ AtScRaCA6 no
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