four criteria for theoretical equivalence

thomas barrett

princeton university

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

(1-3) General relativity

(3-1) General relativity

・ロト ・ 通 ト ・ 注 ト ・ 注 ・ うへの

Hamiltonian mechanics

Lagrangian mechanics

Newtonian Gravitation

Geometrized Newtonian Gravitation

- 4 日 > 4 日 > 4 日 > 4 日 > - 日 - つへで

Philosophers of science have proposed a number of formal criteria for theoretical equivalence.

logical ? definitional ? Morita ? categorical equivalence ? equivalence equivalence ? equivalence

logical equivalence ? definitional ? Morita ? categorical equivalence ? equivalence ? equivalence

A signature Σ is a set of sort symbols, predicate symbols, function symbols, and constant symbols.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

$$\Sigma = \{s_1, s_2, p, q\}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 - のへの

A Σ -structure is an interpretation of these symbols.

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

A Σ -structure.

A Σ -theory T is a set of sentences in the signature Σ .

 \bullet there is a unique x of sort s_1 that is p.

• there is a unique y of sort s_2 that is q.

A Σ -theory T.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

A model of a Σ -theory T is a Σ -structure in which all of the sentences in T are true.

A model of the Σ -theory T.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Two theories are **logically equivalent** if they have the same class of models.

 \bullet there is a unique x of sort s_1 that is p and there is a unique y of sort s_2 that is q.

A Σ -theory T' that is logically equivalent to T.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

SQC

logical ? **definitional** ? Morita ? categorical equivalence ? equivalence equivalence ? equivalence

There are many pairs of theories that are not logically equivalent, but are nonetheless intuitively equivalent.

A theory with signature $\{s, \cdot, {}^{-1}\}$. A theory with signature $\{s, \cdot, e\}$.

We need a more general criterion for theoretical equivalence than logical equivalence.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

A **definitional extension** of a theory T is a theory T^+ obtained by adding to T definitions of new predicate symbols, function symbols, and constant symbols.

<ロト 4 目 ト 4 日 ト 4 日 ト 1 日 9 9 9 9</p>

A theory with signature $\{s, \in\}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A definitional extension of ZFC to $\{s, \in, \subseteq\}$.

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Two theories are **definitionally equivalent** if they have a common definitional extension.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 - のへの

シック・ 川 ・山・山・山・・山・

logical
$$\longrightarrow$$
 definitional ? Morita ? categorical
equivalence $\xleftarrow{}$ equivalence ? equivalence equivalence

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 - のへの

logical
$$\longrightarrow$$
 definitional ? **Morita** ? categorical
equivalence \longleftarrow equivalence ? equivalence ? equivalence

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 - のへの

There are some pairs of theories that are not definitionally equivalent, but are nonetheless intuitively equivalent.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Euclidean geometry with lines

Euclidean geometry with points

< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ♡ < ♡

Category theory with objects and arrows

Category theory with arrows

We need a more general criterion for theoretical equivalence than definitional equivalence.

Kiiti Morita

<ロ> <目> <目> <目> <目> <目> <日> <日> <日> <日> <日</p>

A **Morita extension** of a theory T is a theory T^+ obtained by adding to T definitions of new *sort* symbols, predicate symbols, function symbols, and constant symbols.

Two theories are **Morita equivalent** if they have a common Morita extension.

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ 三三 - のへの

シック・ 川 ・ 山 ・ 山 ・ 山 ・ 山 ・

logical \longrightarrow definitional \longrightarrow Morita equivalence \longleftarrow equivalence ? categorical equivalence ? equivalence

Morita equivalence is a difficult concept to apply to physical theories.

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

Jim Weatherall

Hans Halvorson

< □ > < □ > < □ > < □ > < □ > < □ > = □ ≥

First-order theories have categories of models.

The category of models for the theory of $groups_1$.

E

=

Physical theories have categories of models too.

・ロト < 団ト < 三ト < 三ト < 三 ・ のへぐ

The category of models for general relativity.

イロト イポト イヨト イヨト

E

Two theories are **categorically equivalent** if they have equivalent (structurally identical) categories of models.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

The category of models for the theory of $groups_1$.

E

=

The category of models for the theory of groups₂.

-

500

I

Categorical equivalence captures a sense in which pairs of theories are equivalent.

Theorem 1. If two theories are Morita equivalent, then they are categorically equivalent.

Theorem 2. There are categorically equivalent theories that are not Morita equivalent.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

(1-3) General relativity

(3-1) General relativity

・ロト ・ 通 ト ・ 注 ト ・ 注 ・ うへの

Hamiltonian mechanics

Lagrangian mechanics

Newtonian Gravitation

Geometrized Newtonian Gravitation

- 4 日 > 4 日 > 4 日 > 4 日 > - 日 - つへで

thank you.