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Understanding Gauge

Physicists and philosophers of physics often speak of “gauge theories”
(also: “gauge quantities”; “gauge freedom”; “gauge symmetries”; etc.).

What does “gauge” mean?
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First strand

“Gauge” is (reflects, corresponds to):

“Surplus structure” (Redhead 2001; Healey 2007);
“Superfluous structure” (Ismael and van Fraassen 2001);
“Descriptive fluff” (Earman 2004)

A gauge theory is a theory that posits strictly more structure than is
necessary.
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Second strand

A gauge theory is a theory that bears a certain historical relationship
to electromagnetism.
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Second strand

For me, a gauge theory is any physical theory of a dynamic
variable which [sic], at the classical level, may be identified
with a connection on a principal bundle.

-Trautman 1980, p. 306
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Second strand

Examples of gauge theories in this sense:

Yang-Mills theory (including electromagnetism)
General relativity
Einstein-Cartan theory
Newton-Cartan theory
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Today’s talk

Big Question:

What is the relationship between these strands?

Sub-big Question: Are gauge theories in the second sense
(necessarily) gauge theories in the first sense? (I say: No.)

Preliminary Question: Can categorial methods help make a notion of
“surplus structure” precise? (I say: Yes.)
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Talk Overview

1 A motivating example

2 Comparing structure

3 Gauge theories and surplus structure
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Classical electromagnetism

Consider electromagnetism in Minkowski spacetime.1

There are two ways of characterizing models of this theory.

1R4 endowed with a flat Lorentzian metric ηab s.t. the resulting spacetime is
geodesically complete.
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EM1

Dynamical variable: Faraday tensor, Fab.

Equations of motion: ∇[aFbc] = 0 and ∇aF ab = Jb.

Models: (M, ηab,Fab).
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EM2

Dynamical variable: 4-vector potential, Aa.

Equations of motion: ∇a∇aAb −∇b∇aAa = Jb.

Models: (M, ηab,Aa).
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Relating these formulations

These formulations are systematically related.

Given a 4-vector potential Aa, we define a Faraday tensor
Fab = ∇[aAb].

Given a Faraday tensor Fab, there always exists a 4-vector potential Aa
s.t. Fab = ∇[aAb].
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An asymmetry in the relationship

A 4-vector potential determines a unique Faraday tensor.

A Faraday tensor is determined by many 4-vector potentials.

If ∇[aAb] = Fab, then ∇[aÃb] = Fab, where Ãa = Aa +∇aψ for any
smooth ψ. (Gauge Transformation)
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Surplus structure

We believe that EM1 has the resources to represent all classical
electromagnetic phenomena.

But there are distinct models of EM2 that correspond to a single
model of EM1.

Thus, whatever structure distinguishes these distinct models of EM2 is
surplus structure.
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Talk Overview
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2 Comparing structure

3 Gauge theories and surplus structure
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More structure?

Some mathematical gadgets have more structure than others.

Examples:

Sets < topological spaces
Smooth manifolds < Lie groups
Vector spaces < inner product spaces
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More structure?

This idea can be made precise using the notion of a forgetful functor.
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More structure?

Let C and D be categories. A functor F : C→ D is a map that:

Takes objects to objects;
Takes arrows to arrows;
Preserves domain and codomain;
Preserves identity; and
Preserves composition.
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Forgetful functors

A forgetful functor is a functor that takes objects of a category and
forgets something about them.

Example: There is a functor F : Top→ Set that takes a topological
space (X , τ) to the set X , and takes continuous functions g : X → X ′

to functions g : X → X ′.
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Forgetful functors

How do we know a functor is forgetful?
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Forgetful functors

A functor F : C→ D is full if (f : A→ B) 7→ (F (f ) : F (A)→ F (B)) is
surjective for all A and B.

F is faithful if (f : A→ B) 7→ (F (f ) : F (A)→ F (B)) is injective for all A
and B.

F is essentially surjective if for every object X of D, there is an object
A of C such that F (A) is isomorphic to X .
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Forgetful functors

Baez-Dolan-Bartels-Barrett classification:

A functor forgets:

Nothing if it is full, faithful, and essentially surjective.
(Equivalence of categories)
Only structure if it is faithful and essentially surjective.
Only properties if it is full and faithful.
Only stuff if it is full and essentially surjective.
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Examples

The functor from Top to Set that takes topological spaces to their
underlying sets and continuous functions to their underlying functions
forgets only structure.

The functor from AbGrp to Grp that takes Abelian groups and group
homomorphisms to themselves forgets only properties.

The functor from Set to 1 that takes every set to the unique object •
and every arrow to 1• forgets only stuff.
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Making “surplus structure” precise

We can think of EM1 and EM2 as categories.

EM1: Objects are models (M, ηab,Fab), where Fab satisfies Maxwell’s
Equations; Arrows are isometries that preserve Fab.

EM2: Objects are models (M, ηab,Aa), where Aa satisfies the required
equation; Arrows are isometries that preserve Aa.
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Making “surplus structure” precise

The map Aa 7→ ∇[aAb] = Fab determines a functor F : EM2 → EM1. (F
acts trivially on arrows.)

This functor is essentially surjective and faithful but not full.

F forgets (only) structure.
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Making “surplus structure” precise

Thus EM2 has surplus structure in the sense that one can forget
structure without affecting empirical adequacy.
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Another example

Newtonian gravitation has surplus structure in the same sense.
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Gauge transformations

What role do gauge transformations play?

The functor F : EM2 → EM1 is not full.

Thus, there is a sense in which EM2 is “missing” arrows.

There are non-isomorphic models of EM2 that map to the same
model of EM1.
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A diagnostic tool

Rule of Thumb
A theory (or formulation of a theory) has “surplus structure” if and only
if there are non-isomorphic models that have the same
representational capacities.
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A diagnostic tool

Suppose you are given a theory and a collection of maps taking
models to physically equivalent models.

(That is, suppose you are given a candidate “gauge theory” and class
of “gauge transformations”.)

Ask: Are these maps isomorphisms of the models? Yes⇒ no
surplus structure.
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Diagnoses

Patient:

Yang-Mills theory (models (P, Γ)), with gauge transformations
given by vertical principal bundle automorphisms ϕ : P → P relating
models (P, Γ) and (P, ϕ∗(Γ)).

Verdict: No surplus structure!
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Today’s talk

Big Question:

What is the relationship between these strands?

Preliminary Question: Can categorial methods help make a notion of
“surplus structure” precise? (I have argued: Yes.)

Sub-big Question: Are gauge theories in the second sense
(necessarily) gauge theories in the first sense? (I have argued: No.)
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The End

Thank you!
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Newtonian gravitation

A model of Newtonian gravitation is a structure (M, ta,hab,∇, ϕ), where
∇ is flat and ϕ satisfies Poisson’s equation.

A model of Newton-Cartan theory is a structure (M, ta,hab,∇), where
∇ satisfies the geometrized Poisson equation.
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Newtonian gravitation

Fact: Given any model of Newtonian gravitation, there exists a unique
corresponding model of Newton-Cartan theory.

Fact: Given any model of Newton-Cartan theory, there exists a
corresponding model of Newtonian gravitation.

Asymmetry! Again, the natural functor forgets structure.
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