Understanding "Gauge"

James Owen Weatherall

Logic and Philosophy of Science University of California Irvine, CA USA

Logic, Relativity, and Beyond 11 August 2015

nan

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 1 / 37

-

Image: A math a math

Understanding Gauge

Physicists and philosophers of physics often speak of "gauge theories" (also: "gauge quantities"; "gauge freedom"; "gauge symmetries"; etc.).

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 2 / 37

Understanding Gauge

Physicists and philosophers of physics often speak of "gauge theories" (also: "gauge quantities"; "gauge freedom"; "gauge symmetries"; etc.).

What does "gauge" mean?

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 2 / 37

200

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 3 / 37

< - > < - >

E

Э

"Gauge" is (reflects, corresponds to):

500

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 3 / 37

-

"Gauge" is (reflects, corresponds to):

• "Surplus structure" (Redhead 2001; Healey 2007);

nan

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 3 / 37

"Gauge" is (reflects, corresponds to):

- "Surplus structure" (Redhead 2001; Healey 2007);
- "Superfluous structure" (Ismael and van Fraassen 2001);

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 3 / 37

"Gauge" is (reflects, corresponds to):

- "Surplus structure" (Redhead 2001; Healey 2007);
- "Superfluous structure" (Ismael and van Fraassen 2001);
- "Descriptive fluff" (Earman 2004)

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 3 / 37

"Gauge" is (reflects, corresponds to):

- "Surplus structure" (Redhead 2001; Healey 2007);
- "Superfluous structure" (Ismael and van Fraassen 2001);
- "Descriptive fluff" (Earman 2004)

A **gauge theory** is a theory that posits strictly more structure than is necessary.

Second strand

200

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 4 / 37

< - > < - >

Ξ

Э

A **gauge theory** is a theory that bears a certain historical relationship to electromagnetism.

J. O. Weatherall (UCI)

Understanding Gauge

Image: A matrix

LRB2015 4 / 37

For me, a gauge theory is any physical theory of a dynamic variable which [sic], at the classical level, may be identified with a connection on a principal bundle.

-Trautman 1980, p. 306

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 5 / 37

Second strand

Examples of gauge theories in this sense:

nan

J. O. Weatherall (UCI)

Understanding Gauge

< □ > < @

LRB2015 6 / 37

• Yang-Mills theory (including electromagnetism)

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 6 / 37

- Yang-Mills theory (including electromagnetism)
- General relativity

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 6 / 37

- Yang-Mills theory (including electromagnetism)
- General relativity
- Einstein-Cartan theory

- Yang-Mills theory (including electromagnetism)
- General relativity
- Einstein-Cartan theory
- Newton-Cartan theory

Big Question:

500

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 7 / 37

Big Question: What is the relationship between these strands?

nan

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 7 / 37

O > <
 O >

Big Question: What is the relationship between these strands?

Sub-big Question:

200

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 7 / 37

I I > I A

Big Question: What is the relationship between these strands?

Sub-big Question: Are gauge theories in the second sense (necessarily) gauge theories in the first sense?

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 7 / 37

Big Question: What is the relationship between these strands?

Sub-big Question: Are gauge theories in the second sense (necessarily) gauge theories in the first sense? (I say: **No**.)

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 7 / 37

Big Question: What is the relationship between these strands?

Sub-big Question: Are gauge theories in the second sense (necessarily) gauge theories in the first sense? (I say: **No**.)

Preliminary Question:

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 7 / 37

Big Question: What is the relationship between these strands?

Sub-big Question: Are gauge theories in the second sense (necessarily) gauge theories in the first sense? (I say: **No**.)

Preliminary Question: Can categorial methods help make a notion of "surplus structure" precise?

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 7 / 37

A D > A D > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Big Question: What is the relationship between these strands?

Sub-big Question: Are gauge theories in the second sense (necessarily) gauge theories in the first sense? (I say: **No**.)

Preliminary Question: Can categorial methods help make a notion of "surplus structure" precise? (I say: **Yes**.)

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 7 / 37

Talk Overview

1 A motivating example

2 Comparing structure

3 Gauge theories and surplus structure

nan

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 8 / 37

O > <
 O >

Classical electromagnetism

Consider electromagnetism in Minkowski spacetime.¹

¹ \mathbb{R}^4 endowed with a flat Lorentzian metric η_{ab} s.t. the resulting spacetime is geodesically complete.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 9 / 37

Classical electromagnetism

Consider electromagnetism in Minkowski spacetime.¹

There are two ways of characterizing models of this theory.

 ${}^{1}\mathbb{R}^{4}$ endowed with a flat Lorentzian metric η_{ab} s.t. the resulting spacetime is geodesically complete.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 9 / 37

Dynamical variable: Faraday tensor, Fab.

Equations of motion: $\nabla_{[a}F_{bc]} = \mathbf{0}$ and $\nabla_{a}F^{ab} = J^{b}$.

Models: (M, η_{ab}, F_{ab}) .

10 A

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 10 / 37

Dynamical variable: 4-vector potential, A_a.

Equations of motion: $\nabla_a \nabla^a A^b - \nabla^b \nabla_a A^a = J^b$.

Models: (M, η_{ab}, A_a) .

10 A

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 11 / 37

Relating these formulations

These formulations are systematically related.

QC

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 12 / 37

Relating these formulations

These formulations are systematically related.

Given a 4-vector potential A_a , we define a Faraday tensor $F_{ab} = \nabla_{[a}A_{b]}$.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 12 / 37

Image: A math a math

Relating these formulations

These formulations are systematically related.

Given a 4-vector potential A_a , we define a Faraday tensor $F_{ab} = \nabla_{[a}A_{b]}$.

Given a Faraday tensor F_{ab} , there always exists a 4-vector potential A_a s.t. $F_{ab} = \nabla_{[a}A_{b]}$.

An asymmetry in the relationship

500

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 13 / 37

< 口 > < 同 >

An asymmetry in the relationship

A 4-vector potential determines a unique Faraday tensor.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 13 / 37

An asymmetry in the relationship

A 4-vector potential determines a **unique** Faraday tensor.

A Faraday tensor is determined by many 4-vector potentials.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 13 / 37

An asymmetry in the relationship

A 4-vector potential determines a **unique** Faraday tensor.

A Faraday tensor is determined by **many** 4-vector potentials.

If $\nabla_{[a}A_{b]} = F_{ab}$, then $\nabla_{[a}\tilde{A}_{b]} = F_{ab}$, where $\tilde{A}_{a} = A_{a} + \nabla_{a}\psi$ for **any** smooth ψ .

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 13 / 37

An asymmetry in the relationship

A 4-vector potential determines a **unique** Faraday tensor.

A Faraday tensor is determined by many 4-vector potentials.

If $\nabla_{[a}A_{b]} = F_{ab}$, then $\nabla_{[a}\tilde{A}_{b]} = F_{ab}$, where $\tilde{A}_{a} = A_{a} + \nabla_{a}\psi$ for any smooth ψ . (Gauge Transformation)

J. O. Weatherall (UCI)

Understanding Gauge

200

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 14 / 37

We believe that EM_1 has the resources to represent all classical electromagnetic phenomena.

nan

J. O. Weatherall (UCI)

Understanding Gauge

We believe that EM_1 has the resources to represent all classical electromagnetic phenomena.

But there are **distinct** models of EM_2 that correspond to a **single** model of EM_1 .

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 14 / 37

We believe that EM_1 has the resources to represent all classical electromagnetic phenomena.

But there are **distinct** models of EM_2 that correspond to a **single** model of EM_1 .

Thus, whatever structure distinguishes these distinct models of EM_2 is **surplus** structure.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 14 / 37

< ロ > < 同 > < 三 >

Talk Overview

A motivating example



3 Gauge theories and surplus structure

nan

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 15 / 37

< A

-

Some mathematical gadgets have more structure than others.

QC

J. O. Weatherall (UCI)

Understanding Gauge

Some mathematical gadgets have more structure than others.

Examples:

QC

J. O. Weatherall (UCI)

Understanding Gauge

Some mathematical gadgets have more structure than others.

Examples:

Sets < topological spaces</p>

J. O. Weatherall (UCI)

Understanding Gauge

Some mathematical gadgets have more structure than others.

Examples:

- Sets < topological spaces
- Smooth manifolds < Lie groups

J. O. Weatherall (UCI)

Understanding Gauge

Some mathematical gadgets have more structure than others.

Examples:

- Sets < topological spaces</p>
- Smooth manifolds < Lie groups
- Vector spaces < inner product spaces

J. O. Weatherall (UCI)

Understanding Gauge

This idea can be made precise using the notion of a forgetful functor.

00

J. O. Weatherall (UCI)

Understanding Gauge

Let **C** and **D** be categories. A functor $F : \mathbf{C} \to \mathbf{D}$ is a map that:

nan

J. O. Weatherall (UCI)

Understanding Gauge

< - > < -

-

Let **C** and **D** be categories. A functor $F : \mathbf{C} \to \mathbf{D}$ is a map that:

Takes objects to objects;

nan

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 18 / 37

< A

-

Let **C** and **D** be categories. A functor $F : \mathbf{C} \to \mathbf{D}$ is a map that:

- Takes objects to objects;
- Takes arrows to arrows;

0 a a

J. O. Weatherall (UCI)

Understanding Gauge

Let **C** and **D** be categories. A functor $F : \mathbf{C} \to \mathbf{D}$ is a map that:

- Takes objects to objects;
- Takes arrows to arrows;
- Preserves domain and codomain;

J. O. Weatherall (UCI)

Understanding Gauge

Let **C** and **D** be categories. A functor $F : \mathbf{C} \to \mathbf{D}$ is a map that:

- Takes objects to objects;
- Takes arrows to arrows;
- Preserves domain and codomain;
- Preserves identity; and

Let **C** and **D** be categories. A functor $F : \mathbf{C} \to \mathbf{D}$ is a map that:

- Takes objects to objects;
- Takes arrows to arrows;
- Preserves domain and codomain;
- Preserves identity; and
- Preserves composition.

A **forgetful functor** is a functor that takes objects of a category and forgets something about them.

nan

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 19 / 37

I I > I A

A **forgetful functor** is a functor that takes objects of a category and forgets something about them.

Example: There is a functor $F : \mathbf{Top} \to \mathbf{Set}$ that takes a topological space (X, τ) to the set X, and takes continuous functions $g : X \to X'$ to functions $g : X \to X'$.

イロト イヨト イヨト

How do we know a functor is forgetful?

nan

J. O. Weatherall (UCI)

Understanding Gauge

< 口 > < 同

A functor $F : \mathbf{C} \to \mathbf{D}$ is **full** if $(f : A \to B) \mapsto (F(f) : F(A) \to F(B))$ is surjective for all *A* and *B*.

nan

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 21 / 37

-

Image: A math a math

A functor $F : \mathbf{C} \to \mathbf{D}$ is **full** if $(f : A \to B) \mapsto (F(f) : F(A) \to F(B))$ is surjective for all A and B.

F is **faithful** if $(f : A \rightarrow B) \mapsto (F(f) : F(A) \rightarrow F(B))$ is injective for all *A* and *B*.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 21 / 37

< □ > < 同 > < 三 >

A functor $F : \mathbf{C} \to \mathbf{D}$ is **full** if $(f : A \to B) \mapsto (F(f) : F(A) \to F(B))$ is surjective for all A and B.

F is **faithful** if $(f : A \rightarrow B) \mapsto (F(f) : F(A) \rightarrow F(B))$ is injective for all *A* and *B*.

F is **essentially surjective** if for every object *X* of **D**, there is an object *A* of **C** such that F(A) is isomorphic to *X*.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 21 / 37

<ロト <同ト < 国ト < 国ト

Baez-Dolan-Bartels-Barrett classification:

QC

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 22 / 37

< A

Baez-Dolan-Bartels-Barrett classification:

A functor forgets:

QC

J. O. Weatherall (UCI)

Understanding Gauge

Baez-Dolan-Bartels-Barrett classification:

A functor forgets:

• Nothing if it is full, faithful, and essentially surjective. (Equivalence of categories)

J. O. Weatherall (UCI)

Understanding Gauge

Baez-Dolan-Bartels-Barrett classification:

A functor forgets:

- Nothing if it is full, faithful, and essentially surjective. (Equivalence of categories)
- Only structure if it is faithful and essentially surjective.

J. O. Weatherall (UCI)

Understanding Gauge

Baez-Dolan-Bartels-Barrett classification:

A functor forgets:

- Nothing if it is full, faithful, and essentially surjective. (Equivalence of categories)
- Only structure if it is faithful and essentially surjective.
- Only properties if it is full and faithful.

J. O. Weatherall (UCI)

Understanding Gauge

Baez-Dolan-Bartels-Barrett classification:

A functor forgets:

- Nothing if it is full, faithful, and essentially surjective. (Equivalence of categories)
- Only structure if it is faithful and essentially surjective.
- Only **properties** if it is full and faithful.
- Only stuff if it is full and essentially surjective.

J. O. Weatherall (UCI)

Understanding Gauge

Examples

The functor from **Top** to **Set** that takes topological spaces to their underlying sets and continuous functions to their underlying functions forgets only **structure**.

0 a a

Examples

The functor from **Top** to **Set** that takes topological spaces to their underlying sets and continuous functions to their underlying functions forgets only **structure**.

The functor from **AbGrp** to **Grp** that takes Abelian groups and group homomorphisms to themselves forgets only **properties**.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 23 / 37

Examples

The functor from **Top** to **Set** that takes topological spaces to their underlying sets and continuous functions to their underlying functions forgets only **structure**.

The functor from **AbGrp** to **Grp** that takes Abelian groups and group homomorphisms to themselves forgets only **properties**.

The functor from **Set** to 1 that takes every set to the unique object • and every arrow to 1. forgets only **stuff**.

イロト イポト イラト イラト

Talk Overview

1 A motivating example

2 Comparing structure

3 Gauge theories and surplus structure

200

J. O. Weatherall (UCI)

Understanding Gauge

Making "surplus structure" precise

We can think of EM_1 and EM_2 as categories.

QC

J. O. Weatherall (UCI)

Understanding Gauge

We can think of EM_1 and EM_2 as categories.

EM₁: Objects are models (M, η_{ab} , F_{ab}), where F_{ab} satisfies Maxwell's Equations; Arrows are isometries that preserve F_{ab} .

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 25 / 37

We can think of EM_1 and EM_2 as categories.

EM₁: Objects are models (M, η_{ab} , F_{ab}), where F_{ab} satisfies Maxwell's Equations; Arrows are isometries that preserve F_{ab} .

EM₂: Objects are models (M, η_{ab} , A_a), where A_a satisfies the required equation; Arrows are isometries that preserve A_a .

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 25 / 37

The map $A_a \mapsto \nabla_{[a}A_{b]} = F_{ab}$ determines a functor $F : \mathbf{EM}_2 \to \mathbf{EM}_1$. (*F* acts trivially on arrows.)

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 26 / 37

□ > < 同 >

The map $A_a \mapsto \nabla_{[a}A_{b]} = F_{ab}$ determines a functor $F : \mathbf{EM}_2 \to \mathbf{EM}_1$. (*F* acts trivially on arrows.)

This functor is essentially surjective and faithful but not full.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 26 / 37

The map $A_a \mapsto \nabla_{[a}A_{b]} = F_{ab}$ determines a functor $F : \mathbf{EM}_2 \to \mathbf{EM}_1$. (*F* acts trivially on arrows.)

This functor is essentially surjective and faithful but not full.

F forgets (only) structure.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 26 / 37

Thus EM_2 has **surplus structure** in the sense that one can **forget** structure without affecting empirical adequacy.

J. O. Weatherall (UCI)

Understanding Gauge

Another example

Newtonian gravitation has surplus structure in the same sense.

QC

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 28 / 37

< A

What role do gauge transformations play?

QC

J. O. Weatherall (UCI)

Understanding Gauge

< □ > < 向

LRB2015 29 / 37

What role do gauge transformations play?

The functor $F : EM_2 \rightarrow EM_1$ is not full.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 29 / 37

∃ >

What role do gauge transformations play?

The functor $F : EM_2 \rightarrow EM_1$ is not full.

Thus, there is a sense in which EM_2 is "missing" arrows.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 29 / 37

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

What role do gauge transformations play?

The functor $F: EM_2 \rightarrow EM_1$ is not full.

Thus, there is a sense in which EM_2 is "missing" arrows.

There are **non-isomorphic** models of EM_2 that map to the **same** model of EM_1 .

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 29 / 37

Rule of Thumb

A theory (or formulation of a theory) has "surplus structure" if and only if there are **non-isomorphic** models that have the same representational capacities.

J. O. Weatherall (UCI)

Understanding Gauge

Suppose you are given a theory and a collection of maps taking models to physically equivalent models.

nan

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 31 / 37

< ⊡ >

Suppose you are given a theory and a collection of maps taking models to physically equivalent models.

(That is, suppose you are given a candidate "gauge theory" and class of "gauge transformations".)

J. O. Weatherall (UCI)

Understanding Gauge

Suppose you are given a theory and a collection of maps taking models to physically equivalent models.

(That is, suppose you are given a candidate "gauge theory" and class of "gauge transformations".)

Ask: Are these maps isomorphisms of the models?

J. O. Weatherall (UCI)

Understanding Gauge

Suppose you are given a theory and a collection of maps taking models to physically equivalent models.

(That is, suppose you are given a candidate "gauge theory" and class of "gauge transformations".)

Ask: Are these maps isomorphisms of the models? Yes \Rightarrow no surplus structure.

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 31 / 37

< □ > < 同 > < 三 >

Diagnoses

Patient:

200

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 32 / 37

< - > < - >

문 🕨 🗧 문

Patient: Yang-Mills theory (models (P, Γ)), with gauge transformations given by vertical principal bundle automorphisms $\varphi : P \to P$ relating models (P, Γ) and $(P, \varphi^*(\Gamma))$.

< D > < P > < E >

Patient: Yang-Mills theory (models (P, Γ)), with gauge transformations given by vertical principal bundle automorphisms $\varphi : P \to P$ relating models (P, Γ) and $(P, \varphi^*(\Gamma))$.

Verdict:

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 32 / 37

< D > < P > < E >

Patient: Yang-Mills theory (models (P, Γ)), with gauge transformations given by vertical principal bundle automorphisms $\varphi : P \to P$ relating models (P, Γ) and $(P, \varphi^*(\Gamma))$.

Verdict: No surplus structure!

J. O. Weatherall (UCI)

Understanding Gauge

Diagnoses

Patient:

200

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 33 / 37

< - > < - >

문 🕨 🗧 문

Patient: General Relativity (models (M, g_{ab})), with gauge transformations given by diffeomorphisms $\varphi : M \to M$ relating models (M, g_{ab}) and $(M, \varphi^*(g_{ab}))$.

LRB2015 33 / 37

< <p>I <

Patient: General Relativity (models (M, g_{ab})), with gauge transformations given by diffeomorphisms $\varphi : M \to M$ relating models (M, g_{ab}) and $(M, \varphi^*(g_{ab}))$.

Verdict: No surplus structure!

J. O. Weatherall (UCI)

Understanding Gauge

Big Question:

200

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 34 / 37

Big Question: What is the relationship between these strands?

QC

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 34 / 37

< A

Big Question: What is the relationship between these strands?

Preliminary Question:

00

J. O. Weatherall (UCI)

Understanding Gauge

Big Question: What is the relationship between these strands?

Preliminary Question: Can categorial methods help make a notion of "surplus structure" precise?

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 34 / 37

I I > I A

Big Question: What is the relationship between these strands?

Preliminary Question: Can categorial methods help make a notion of "surplus structure" precise? (I have argued: **Yes**.)

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 34 / 37

Big Question: What is the relationship between these strands?

Preliminary Question: Can categorial methods help make a notion of "surplus structure" precise? (I have argued: **Yes**.)

Sub-big Question:

J. O. Weatherall (UCI)

Understanding Gauge

Big Question: What is the relationship between these strands?

Preliminary Question: Can categorial methods help make a notion of "surplus structure" precise? (I have argued: **Yes**.)

Sub-big Question: Are gauge theories in the second sense (necessarily) gauge theories in the first sense?

J. O. Weatherall (UCI)

Understanding Gauge

Big Question: What is the relationship between these strands?

Preliminary Question: Can categorial methods help make a notion of "surplus structure" precise? (I have argued: **Yes**.)

Sub-big Question: Are gauge theories in the second sense (necessarily) gauge theories in the first sense? (I have argued: **No**.)

J. O. Weatherall (UCI)

Understanding Gauge

The End

Thank you!

200

J. O. Weatherall (UCI)

Understanding Gauge

LRB2015 35 / 37

< - > < - >

< E ► < E

A model of Newtonian gravitation is a structure $(M, t_a, h^{ab}, \nabla, \varphi)$, where ∇ is flat and φ satisfies Poisson's equation.

J. O. Weatherall (UCI)

Understanding Gauge

A model of Newtonian gravitation is a structure $(M, t_a, h^{ab}, \nabla, \varphi)$, where ∇ is flat and φ satisfies Poisson's equation.

A model of Newton-Cartan theory is a structure (M, t_a, h^{ab}, ∇) , where ∇ satisfies the geometrized Poisson equation.

Fact: Given any model of Newtonian gravitation, there exists a unique corresponding model of Newton-Cartan theory.

J. O. Weatherall (UCI)

Understanding Gauge

Fact: Given any model of Newtonian gravitation, there exists a unique corresponding model of Newton-Cartan theory.

Fact: Given any model of Newton-Cartan theory, there exists a corresponding model of Newtonian gravitation.

J. O. Weatherall (UCI)

Understanding Gauge

Fact: Given any model of Newtonian gravitation, there exists a **unique** corresponding model of Newton-Cartan theory.

Fact: Given any model of Newton-Cartan theory, there exists a corresponding model of Newtonian gravitation.

Asymmetry!

J. O. Weatherall (UCI)

Understanding Gauge

Fact: Given any model of Newtonian gravitation, there exists a **unique** corresponding model of Newton-Cartan theory.

Fact: Given any model of Newton-Cartan theory, there exists a corresponding model of Newtonian gravitation.

Asymmetry! Again, the natural functor forgets structure.

J. O. Weatherall (UCI)

Understanding Gauge