Fragments of monadic second-order theories of the chronological accessibility relation

Sándor Vályi¹

¹College of Nyíregyháza, Hungary valyis@nyf.hu

Logic, Relativity and Beyond 2015

Outline

- 2 Earlier results
- Monadic second-order theories
- Temporal logic and monadic second-order logic

Spacetime $\mathbb{F}^n (n \ge 2)$

$$\mathbb{F} \in \{\mathbb{R}, \mathbb{Q}\}$$
. Elements of \mathbb{F}^n denoted by (r_1, \ldots, r_n) .

time dimension is 1 space dimension is n-1

Life line, light line, speed of light

Life lines of pointlike bodies are straight lines of slope less then the speed of light(c). Assume c = 1.

case \mathbb{Q} : $c \in \mathbb{Q}$

Upper light cone

On
$$\mathbb{F}^n$$
 $(n > 1)$, $(r_1, ..., r_n) \blacktriangleleft (q_1, ..., q_n) :\Leftrightarrow$
 $(r_1 - q_1)^2 > (r_2 - q_2)^2 + ... + (r_n - q_n)^2 \land r_1 < q_1.$

 (q_1, \ldots, q_n) is in the upper light-cone of (r_1, \ldots, r_n) \blacktriangleleft is called chronological accessibility relation

Other relations related to possible causality

 $r \ll q$: Robb's after, q is in or on the upper light cone of r

 $r = \triangleleft q$, r = << q: reflexive closure of \triangleleft and <<, resp.

First-order theories of causality relations

Robb(1914) $FOTH(\mathbb{R}^n, <<)$ is finitely axiomatizable explicit axiomatization, far from transparent (source: Suppos (1973))

Brett Mundy (1986)

James P. Ax (1978)

Rob Goldblatt (1988): spacetime geometry can be built up by explicit first-order definitions starting from Robb's binary relation << (not like in Euclidean case)

Higher-order axiomatizations – selection

Walker (1959)

Schutz (2002)

logical expressive power to follow a classical physics book word-by-word (real numbers, quantification over mappings)

First-order axiomatization for the full playground

Andréka, Németi, Madarász ...

not only for the geometry: axioms talk about bodies, coordinates, observers, world view functions

conceptual analysis

The presented results support avoiding higher-order logic in the axiomatization process

Universal fragment of monadic second-order theory of $(\mathbb{F}^n, \blacktriangleleft)$ is rec. enumerable if and only if $\mathbb{F} = \mathbb{Q}$ and n = 2.

This case is too restricted to do relativity theory

Monadic second-order theories

standard version of the monadic second-order theory of a structure ($\mathcal{T},<)$

syntax: variables (x, y, ...) for individuals and for subsets (X, Y, ...) x < y, $x \in X$

interpretation: the *standard model* \mathcal{M}_n of this language on $(\mathbb{Q}^n, \blacktriangleleft)$ (n > 1)when the domain is \mathbb{Q}^n and the interpretation of < is \blacktriangleleft , further, the variables of the second sort range over *all* subsets of \mathbb{Q}^n and the interpretation of \in is the standard inclusion variable valuation, satisfaction is defined in the expected way

Monadic second-order theories II.

The monadic second-order theory of $(\mathbb{Q}^n, \blacktriangleleft)$ is the set of true closed formulae of \mathcal{M}_n . Denoted by $MSOTH(\mathbb{Q}^n, \blacktriangleleft)$.

We define its $\forall \exists$ -fragment as the set of the formulae in this theory of form $\forall V_1 \dots \forall V_n \exists W_1 \dots \exists W_m B$, where $n \ge 0$, $m \ge 0$, V_1, \dots, V_n and W_1, \dots, W_m are subset variables and *B* itself is free from subset quantifiers, that is, one measure only the complexity of subset quantifications. $MSOTH_{\forall \exists}(T, <)$.

If m = 0 we obtain the definition of the \forall -fragment. $MSOTH_{\forall}(T, <).$

Propositional temporal logic

model: time-dependent truth valuation of propositional variables

time-dependent truth value of formulae ($M, t \models a$)

logical operators to refer to truth values of formulae in another time points

For example, the rule for the evaluation of binary connective *Until*: $M, t \models Until(A, B) :\Leftrightarrow$ $\exists x(t < x \land M, x \models A \land \forall u(t < u < x \rightarrow M, u \models B))$ Translation of temporal formulae into monadic second-order ones

 $Until(A, B)^{mso} = \forall A \forall B \exists x (t < x \land x \in A \land \forall u (t < u < x \rightarrow u \in B))$

well known: a temporal formula ϕ is temporal logical law over a time flow (T,<) if and only if ϕ^{mso} is in MSOTH(T,<).

not need to formalize more exactly here, mentioned only for motivation

Burgess and Gurevich (1985) have decided linear temporal logic by this translation $MSOTH(\mathbb{Q}, <)$ decidable $MSOTH(\mathbb{R}, <)$ undec. but $MSOTH_{\forall}(\mathbb{R}, <)$ is dec.

Theorems

For any n > 1, $MSOTH_{\forall \exists}(\mathbb{F}^n, \blacktriangleleft)$ is not rec. enumerable.

 $MSOTH_{\forall}(\mathbb{Q}^n, \blacktriangleleft)$ is rec. enumerable iff n = 2

 $MSOTH_{\forall}(\mathbb{R}^n, \blacktriangleleft)$ is not rec. enumerable

will see what is the difference

Spatio-temporal logics

temporal logic with time flow $(\mathbb{F}^n, \blacktriangleleft)$ or other causality related relation

С

oined by A. Dragalin (source: V. Shehtman) first axiomatizations: V. Shehtman, R.Goldblatt (S4.2) (1980) Shapirovsky Robin Hirsch and Mark Reynolds – at this conf.

Proof for the only positive rec. enumerability result

Rather routine.

Johan van Benthem (1983): $FOTH(\mathbb{Q}^2, \blacktriangleleft)$ is ω -categorical and finitely aximatized

My remark: if the first-order theory of a countably infinite structure (T, <) is ω -categorical and rec. enumerable, then $MSOTH_{\forall}(T, <)$ is also rec. enumerable.

Idea: to take the first-order theory as an axiom set in a signature for (T, \prec) extended by a finite number of unary predicate symbols.

Proof for not rec. enum., $MSOTH_{\forall\exists}(\mathbb{Q}^n, \blacktriangleleft)$

Abbreviations

$$(x \triangleleft y) \rightleftharpoons \forall z(y \blacktriangleleft z \rightarrow x \blacktriangleleft z) \land \neg x \blacktriangleleft y \land \neg x = y$$

y is on the boundary of the upper light-cone of x (directed optical accessibility)

 $\cup (x,y;z) \rightleftharpoons (x \triangleleft z \land y \triangleleft z)$

existence and uniqueness of this upper bound *z* for *x* and *y* is not guaranteed, except for the case n = 2 – the intersection of light-cones of two rational points may not include rational points, if n > 2

ν_1 is the monadic second-order formula expressing

For each $i \in \{1, 2\}$: (i) N_i is discretely linear ordered by <, minimum n_i , no maximum (ii) Every lower Dedekind-cut Y (with respect to ⊲) of the light-like line *M* through N_i has the following property: there exist two consecutive points x, y in N_i such that $x \in Y \land y \notin Y$ holds.

 ν_1 makes (N_i , \triangleleft) isomorphic to (\mathbb{N} , <).

ν describes a situation similar to

Subset N_{12} is like a grid and subset N pairs the elements of N_1 with the elements of N_2

this is expressible in universal monadic second-order logic Universal fragment of dyadic second-order theory of $(\mathbb{N}, <)$

universally quantified variables for binary relations on $\ensuremath{\mathbb{N}}$

not recursively enumerable

a recursive translation *m* is given from this language into our monadic second-order language

Proved

for all closed dyadic formulae *A* and *n* > 1, *A* is in the dyadic second-order theory of $(\mathbb{N}, <)$ iff $\forall N_1, N_2, N_{12}, N, n_1, n_2(\nu \rightarrow A^m) \in MSOTH(\mathbb{Q}^n, \blacktriangleleft)$ Case n > 2: why the \forall -fragment is also not rec. enumerable over \mathbb{Q} ?

definable betweenness and equidistance also for rationals

Goldblatt's method did not work, new method was developed

the new definition working also for rationals

 $\beta_{\sigma}(x, z, y) \rightleftharpoons \sigma(x, y) \land \forall u(x \blacktriangleleft u \land y \blacktriangle u \to z \blacktriangleleft u) \land \forall u(u \blacktriangle x \land u \blacktriangleleft y \to u \blacktriangleleft z)$

proof: elementary but lengthy

Dedekind-cut formula can be eliminated

Implications

in FOTH($\mathbb{Q}^2,\blacktriangleleft)$ there is no definition for equidistance of betweenness

there exists an ω -categorical structure whose $MSOTH_{\forall\exists}$ -fragment monadic second-oder theory is not rec. enumerable

 $FOTH(\mathbb{Q}^n, \blacktriangleleft)$ is not ω -categorical or is not rec. enumerable – the wet can prove

Thank you for your attention.