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Introduction
In this talk we present results on the meet of two fields — 
modal logic and algebraic logic. The third participant is game 
theory.

Applications of games to algebraic logic: 
● R. Hirsch, I. Hodkinson. Relation algebras by games. Elsevier, 

2002.

Games have also got closer to modal logic in recent years
● J. Van Benthem. Logic in games. MIT Press, 2013. 

The presented research continues this trend

 



  

Relation algebras

Binary relations on a set constitute a boolean algebra with

extra operations: composition, inversion, and an extra 
constant, the diagonal relation.

A dream of describing properties of these operations in a 
nice way exists since the middle of 19th century (De 
Morgan).

In 1941 Alfred Tarski proposed a list of extra axioms that 
should be added to axioms of boolean algebras.
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Tarski’s axioms

a ◦ (b ∪ c) = (a ◦ b)∪ (a ◦ c) 

a ◦ δ = a

(a-1)-1= a

(a∪b)-1 = a-1∪b-1 

(a ◦ b)-1 = b-1 ◦ a-1

 a-1 ◦ (-(a ◦ b)) ≤ - b



  

 Rel(W) = (2W2
, ◦ ,IW,-1),

where W is a set, 

2W2 
is the full boolean algebra of binary relations on W, 

◦  is the composition of relations,

IW is the diagonal,  

-1 is the converse.

Full relation algebras



  

Relation algebras-2

RA is the variety of relation algebras.

Its subvariety of representable relation algebras RRA  is generated 

by full relation algebras.

1. RA ≠ RRA (Lyndon, 1950).

2. Moreover, the equational theory Eq(RRA) is not finitely 

axiomatizable (Monk, 1964).

Unlike the boolean case, the equational theories are undecidable:

3. Eq(RA) is undecidable (Tarski, 1941).

4. Eq(RRA) is undecidable, and moreover, for finite relation algebras

representability is undecidable (Hirsch&Hodkinson, 1999).  



  

Relation algebras-3

5. Eq(RAfin), Eq(RRAfin) are also undecidable.

(Tarski's problem solved by Andréka & Givant & Németi, 

1997) 

      How about fragments of these theories?

      6.  In the signature (◦, ∩ ) the variety generated by 

representable algebras is finitely axiomatizable 

(Andréka & Mikulász, 2011)  



  

Relation algebras-4

7. In the signature (◦, ∩, -1) the variety generated by 

representable algebras is not f.a. (Hodkinson & 

Mikulász, 2011)

Question What happens in the signature (Boolean, ◦)?

Our approach: we do not restrict the signature, but 

the term formation rules. This means that we extract 

other operations from relation algebras.



  

Modal algebras from relation algebras

A (normal) n-modal algebra  is a boolean algebra
with extra n unary operations ◇

1 
,..., ◇

n
distributing over

∪  and preserving 0. 

In relation algebras we have
              a ◦ (b ∪ c) = (a ◦ b)∪ (a ◦ c), 
 so every fixed a gives us a modal algebra.

But we also have
              (b ∪ c) ◦ a = (b ◦ a)∪ (c ◦ a).
Different left and right multiplications generate a polymodal 

algebra with nontrivial identities. This leads us to products
of modal logics.



  

Modal propositional language
N-modal formulas are built from a countable set of 

proposition letters PL={p
1
,p

2
,...} using boolean connectives 

and unary modal connectives   ⃞ 
1 
,...,   ⃞ 

N 
;as usual ◇

i 
= ⅂   ⃞ 

i
⅂ 

If N=1 we denote the modalities just by   ⃞  and ◇.

The modal depth md(A) is defined by induction:

md(p
i
)=0, md(⅂ A)=md(A), 

md(A∨B)= md(A∧B) = max(md(A),md(B)),

md(  ⃞ 
i
A)=md(A)+1

  



  

Kripke frames and models-1

An N-modal Kripke frame  is a nonempty set with N binary 

relations F = (W,R
1
,...,R

N
).

A valuation in F  is a function θ:PL → 2W (so θ(p
i
) ⊆ W). 

(F,θ) is a Kripke model over F. 

In k-weak Kripke models only the letters p
1
,...,p

k

are evaluated.



  

Kripke frames and models-2

The inductive truth definition (M,x ⊨ А) is standard.  

● M,x ⊨ p
i 
iff x∈θ(p

i
)

● M,x ⊨   ⃞ 
i
 А 

 
iff  ∀y(xR

i
y ⇒ M,y ⊨ А)

● M,x ⊨  ◇
i
А 

 
iff  ∃y(xR

i
y & M,y ⊨ А)

A formula A is valid in a frame F (in symbols, F ⊨ A) if A is 

true at all points in every Kripke model over F.



  

Logics-1
An N-modal logic is a set of N-modal formulas L with the 

following properties:

● L contains all boolean tautologies

● L is closed under Modus Ponens: if A, A→B ∈L, then B∈L.

● L is closed under Substitution: 

if A(p
1
,...,p

n
)∈L, then A(B

1
,...,B

n
) (for any formulas B

1
,...,B

n
)

● if A∈L, then   ⃞ 
i
A∈L

●   ⃞ 
i
(A→B) → (   ⃞ 

i
A →   ⃞ 

i
B)∈L

The minimal logic K
N
 is the smallest such set; K denotes K

1
. 



  

Logics-2

For a set Г of formulas  in the language of L  and a  logic L

L+Г denotes the smallest modal (intermediate) logic 

containing (L∪Г).

Logics of the form K+Г (or H+Г), where Г  is finite, are 

called finitely axiomatizable.



  

Logics-4

Proposition (Soundness theorem) For a Kripke frame F

L(F) := { A | F ⊨ A} is a modal logic (the logic of  F).

●  L(C ) := ∩{L(F)|F∈C } (the logic of a class of frames C ).
Logics of the form L(C ) are called Kripke complete.

● If F is finite, L(F) is called  tabular (or finite)

●  If C  consists of finite frames, L(C ) has the finite model 

property (FMP). Or:  

L has the FMP iff L is an intersection of tabular logics.

Proposition (Harrop's theorem) If L is finitely axiomatizable 

and has the FMP, then L is decidable.  

  



  

Products of frames

Def. The product of two Kripke frames (W,R
1
,...,R

n
) ×(V,S

1
,...,S

m
):= 

(W×V,R
11

,...,R
n1

,S
12

,...,S
m2

), where 

(x
1
,y

1
)R

i1
(x

2
,y

2
) iff x

1
R

i
x

2
 & y

1
=y

2

(x
1
,y

1
)S

 j2
(x

2
,y

2
) iff x

1
=x

2
 & y

1
S

j
y

2
  



  

Products of modal logics

Def. The product of two modal logics

L
1
×L

2 
:= L({F

1
×F

2 
| F

1
⊨L

1
, F

2
⊨L

2
})

AXIOMATIZATION PROBLEM: to find axioms of L
1
×L

2
  given the axioms 

of  L
1
, L

2

Def. The fusion of two modal logics with disjoint modalities

L
1
✻L

2  
:= the smallest logic containing L

1 
and L

2

Def. The commutative join of two modal logics with disjoint modalities

□
i
 (1≤i≤n),   ■

j
 (1≤j≤m) 

 [L
1
, L

2
] := L

1
✻L

2  
+ □

i
■

j
 p ↔ ■

j □i
 p  +  ◇

i
■

j
 p → ■

j ◇i
p (for any i, j)

Remark. If the modalities are not disjoint, we can change them.



  

Product of modal logics-2

These are Sahlqvist formulas expressing the following properties of 

the relations in the product frame

◇
i
■

j
 p → ■

j ◇i
p:



  

Products of modal logics-3

□
i
■

j
 p ↔ ■

j □i
 p

R
i1
◦S

k2
 = S

k2
◦R

i1
 (commutativity)

Def. Logics L
1
, L

2 
are product-matching if  L

1
×L

2
 = [L

1
,L

2 
].



  

Squares

For a class of frames C put  

C2:= {F × F | F ⊨ C}.

For a modal logic Λ put

Λ2:= Λ×Λ 

Proposition 1 [Gabbay,Sh 2000]

(1) Λ2 = L({F×F | F ⊨Λ})

(Squares of logics are determined by squares of frames)

(2) L
1
×L

2
 is embeddable in (L

1
✻ L

2
)2.

(Products are reducible to squares)



  

Segerberg squares

These are square frames with additional functions. Krister 
Segerberg (1973) studied a special type - squares of frames 
with the universal relation.

He considered the following functions on squares.

      σ
0
:  (x,y) ↦ (y,x)  (the diagonal symmetry)

      σ
1
: (x,y) ↦ (y,y)  (the first diagonal projection)

σ
2
: (x,y) ↦ (x,x)  (the second diagonal projection)

These functions can be associated with extra modal operators 
, 

1
, 

2
. So in square frames  they are interpreted as follows:

(x,y) ⊨ A  iff  (y,x) ⊨A

(x,y)⊨ 
1 
A  iff  (y,y) ⊨A

(x,y)⊨ 
2 
A  iff  (x,x) ⊨A



  

Segerberg squares-2

Formally we can define the Segerberg square of a frame 
F=(W, R

1
,..., R

n
) as the (2n+3)-frame F2

Sg
:= (F2, σ

0
, σ

1
, σ

2
)

 (where σ
i 
are the functions on W2 described above).

Respectively, the Segerberg square of an n-modal logic Λ is the logic 
of the Segerberg squares of its frames 

Λ2
Sg

:= L({F2
Sg

 
| F⊨Λ}).

z

σ
0
(z)

σ
1
(z)

σ
2
(z)



  

TOMORROW (OR SUCCESSOR) LOGIC

SL:= K + ◇p ↔ □p

This well-known logic is also due to Segerberg (1967). It is 
complete w.r.t. the frame

(the successor relation on natural numbers). 

Every logic of a frame with a functional accessibility relation is 
an extension of SL. 



  

Axiomatizing Segerberg squares

Soundness  Here are some formulas valid in  Segerberg 
squares. The corresponding semantic conditions for an arbitrary 
(2n+3)-frame (V,X

1
,...,X

n
, Y

1
,...,Y

n
, f

0
, f

1
, f

2
)

are in the right column; here fg denotes the composition of 
functions: (fg)(x)=f(g(x))

● The SL-axioms for the circles , 
1
, 

2
.

(Sg1) p ↔ p f
0 
f

0
 = 1

V
 (the identity function on V)

i.e., f
0
 is an involution 

(Sg2) 
1


1
p ↔ 

1
p             f

1
f

1
 = f

1   

i.e., the image of f
1
 consists of fixed points

(In Segerberg squares this image is the diagonal)



  

Axiomatizing Segerberg squares-2

(Sg3) 
1
p ↔ 

2
p f

1 
f

0
 = f

2

This axiom  allows us  to eliminate 
2
  

(Sg4) 
1
p ↔ 

1
p f

0 
f

1
 = f

1

The image of  f
1
 consists of fixed points of f

0
 

(in Segerberg squares: every diagonal point is self-symmetric). 



  

Axiomatizing Segerberg squares-3

(Sg5) □
i
p ↔ ■

i
p aX

i
b ⇒ f

0
(a)Y

i
f
0
(b)

In Segerberg squares: the diagonal symmetry is an 
isomorphism between Ri1 and Ri2. This axiom allows us to 

eliminate ■
i



  

Axiomatizing Segerberg squares-4

(Sg6) 
1
□

i
(■

i
p → 

2
p) f

1
(a)RX

i
b ⇒ bRY

i
f
2
(b)

In Segerberg squares: If (y,y)Ri1(x,y) (i.e. yRix), then (x,y)Ri2(x,x).

b



  

Axiomatizing Segerberg squares-4

(Sg7) 
1
p → □

i


1
p aX

i
b ⇒ f

1
(a) = f

1
(b)

In Segerberg squares: horizontally accessible points are in the same 

horizontal row.



  

Axiomatizing Segerberg squares-5

(Sg8) ■
i 


1
p ↔ 

1
■

i 


1
p   f

1
[Y

i
(a)]= f

1
[Y

i
(f

1
(a))] 

In Segerberg squares: the rows vertically accessible  from a=(x,y) 
and f

1
(a)=(y,y)   are the same.



  

Axiomatizing Segerberg squares-6

Further on we regard a Segerberg square F2
Sg

 of a frame 

F=(W, R
1
,..., R

n
) as the (2n+3)-frame

(W2,R
11

,..., R
n1

,σ
0
, σ

1
)

Respectively the Segerberg square Λ2
Sg 

of an n-modal logic Λ is an 

(n+2)-modal logic in the language  □
1
 ,..., □

n
 , , 

1

Def.  For a modal logic Λ, put

[Λ, Λ]⦿:= [Λ, Λ] + SL*SL (for , 
1
) + 

{(Sg1),(Sg2),(Sg4), (Sg6), (Sg7), (Sg8)}. 

Now (Sg3), (Sg5) become definitions



  

Examples of product-matching logics

Def. A Horn sentence is a classical first-order sentence of the 

form "x"y"z (φ(x,y,z) → R(x,y)),

where φ  is positive,  R(x,y) is atomic. A modal formula A is Horn if 

the class of its frames V(A) is axiomatizable by a Horn sentence.

Examples:  (◇…◇)p → (…) p



  

Completeness theorems 

Def. A modal logic is Horn axiomatizable if if it is 
axiomatizable by formulas that are either variable-free or 
correspond to Horn sentences. 
Completeness theorem for products 
[BOOK03>>Gabbay,Sh 1998] 

If two modal logics are Horn axiomatizable and Kripke 
complete, then they are product-matching.

    Completeness theorem for Segerberg squares 

    [Sh2011, 2012] 

    If a logic Λ is Horn axiomatizable, then Λ2
Sg=[Λ, Λ]⦿



  

Remark on Segerberg's logic

 Segerberg (1973) axiomatized 

the logic of Segerberg squares of universal frames  (W,W×W). 
In this case (Sg8) becomes trivial and (Sg6) should be replaced 
with a stronger axiom: □p → 

1
p

This logic is not a Segerberg square in our sense; it is a proper 

extension of S52
Sg



  

The finite model property 

Def. QT-formulas: 


i
p→

i

kp (generalized transitivity) 

◇
i


i
p→p (symmetry)

QTC-logic is axiomatizable by formulas that are either variable-
free or QT-formulas.

K.t
n
 is the minimal  n-temporal logic 

(axiomatized by ◇i□-ip → p for i = ±1,..., ±n).



  

The finite model property-2

Theorem on the fmp for products [Sh 2005]

If L
2
 is a QTC-logic, then K.t

n 
× L

2
 = [K.t

n
, L

2
]  has the fmp.

Theorem on the fmp for Segerberg squares [Sh 2014]  

(K.tn)2
Sg

 has the fmp.



  

Product and square fmp

Def. A product logic L
1 
× L

2
 has the product fmp if it

is complete w.r.t product of finite frames.

A Segerberg square L2
Sg

 has the square fmp if it

is complete w.r.t Segerberg squares of finite frames.

Theorems on the product fmp 

1. K
n
2

 
 , D

n
2 , T

n
2 have the product fmp [Gabbay&Sh 2000]

2. K.t
n 
× K

n
 has the product fmp  [Gabbay&Sh 2002]

Conjecture (very probable) (K.tn)2 has the product fmp. 



  

Square fmp

Theorems on the square fmp

1. (K
n
2)

Sg
  has the square fmp  [Sh 2011,2012]

2. (T
n
2)

Sg
 , (D

n
2)

Sg
 have the square fmp [Sh 2015]

Problems   Does (K.tn)2
Sg

 have the product fmp?

                 Does (KB)2
Sg

 have the product fmp?  

Note that KB is embeddable in K.t by interpreting

              □p as (□
1
p ∧□

-1
 p) 

We may suppose that both answers are negative.



  

From modal formulas to relation algebra terms

We define the translation of a modal formula A in the 
language of (K.t

n
2)

Sg
 into a relational term A∇ by 

induction (for k=1,2,...;i=1,...,n)

 p
k

∇ = p
k
  for a proposition letter p

k
    ,  ⊥∇ = 0,     

(A → B)∇ = A∇ → B∇  

(◇
i
A)∇ = r

i
◦ A∇,    (◇

-i
A)∇ = (r

i
)-1◦ A∇,     

(◆
i
A)∇ = A∇ ◦ (r

i
)-1, (◆

-i
A)∇ = A∇ ◦ r

i
,

(A)∇ = (A∇)-1, (
1
A) = 1◦ (A∇ ∩ δ)



  

From modal logics to relation algebras

Embedding theorem 1 [Sh 2015]
The following conditions are equivalent
1.  (K.t

n
2)

Sg
  ⊢ A  

2.  RA  ⊨ A∇ = 1
3.  RRA  ⊨ A∇ = 1
 
Embedding theorem 2 [Sh 2015]
The following conditions are equivalent
1.  (K

n
2)

Sg
  ⊢ A  

2.  RA  ⊨ A∇ = 1
3.  RRA  ⊨ A∇ = 1 
4.  RA

fin
  ⊨ A∇ = 1 

5.  RRA
fin

  ⊨ A∇ = 1 



  

From modal logics to relation algebras

Embedding theorem 2 [Sh 2015]
The following conditions are equivalent
1.  (T

n
2)

Sg
  ⊢ A  

2.  RA  ⊨ 1≤r
1

 ∩ ... ∩ r
n
 → A∇ = 1

3.  RRA  ⊨ 1≤r
1

 ∩ ... ∩ r
n
 → A∇ = 1

4.  RA
fin

  ⊨ 1≤r
1

 ∩ ... ∩ r
n
 → A∇ = 1

5.  RRA
fin

  ⊨ 1≤r
1

 ∩ ... ∩ r
n
 → A∇ = 1



  

Bisimulation games-1

Def   For a k-weak Kripke model M=(W,R
1
,...,R

N
,θ)

consider the 0-equivalence relation between points

x
 
≡

0 y := ∀j ≤ k (M,x ⊨ p
j
 ⇔ M,y ⊨p

j
)

Given M and two points x
0 

≡
0 y0 

we can play the r-round  
bisimulation game BG

r
(M,x

0
,y

0
).

Players: Spoiler (Abelard) vs Duplicator (Eloïse). 



  

Bisimulation games-2

 The initial position  in BG
r
(M,x

0
,M',y

0
) is (x

0
,y

0
).

y

'

SiRi

n+1n+1

n
nx y

x

Round (n+1) 
● Spoiler  chooses i, xn+1 [or yn+1] such that xn Rixn+1 [ynR iyn+1]
● Duplicator chooses yn+1 [xn+1] such that yn Riyn+1 [xn Rixn+1]  

and xn+1 ≡0 yn+1

● A player loses if he/she cannot move.
● Duplicator wins after r rounds. 



  

Bisimulation games-3 

Def Formula and game n-equivalence relations (on M)

● x ≡
n y := for any A(p

1
,...,p

k
) of modal depth ≤ n

  M,x ⊨ A ⇔ M',y ⊨A
● x ∼

n y := Duplicator has a winning strategy in BG
n
(M,x,y)

Main Theorem on finite bisimulation games 

 
≡

n = 
∼

n 

 



  

The modal depth of a formula A  in a modal logic L

md
L
(A):= min{md(B)|L ⊢ A↔B}

The modal depth of a logic L

md(L):= min{md
L
(A)| A is in the language of L}

 

Formula depth-1



  

Formula depth-2

Canonical model theorem For any modal logic L (weak or 

not) one can construct the canonical model M
L
 such that 

for any A in the language of L

M
L
 ⊨ A iff L ⊢ A

In every model we have a decreasing sequence ≡
0 ⊇ ≡

1
... 

≡
∞

:= ⋂
n
≡

n



  

Formula depth-3

Lemma 1 Every set W/≡
n
 (= W/∼

n
) is finite. 

Lemma 2  x ≡
∞
 y iff for any A(p

1
,...,p

k
) (M,x ⊨ A ⇔ M,y ⊨A)

Lemma 3  In canonical models: x ≡
∞
 y iff x=y.

Stabilization theorem If  ≡
n = ≡

n+1
  in every M

L⌈k (bisimulation 

games stabilize at n), then md(L) ≤ n.



  

Local tabularity-1

L⌈k denotes the restriction of a logic L to formulas in 

variables p
1
,...,p

k
. The sets L⌈k are called weak modal logics

Def A modal logic L is locally tabular (or locally finite)  

if for any k there are finitely many formulas in p
1
,...,p

k 
up to 

equivalence in L.

Equivalently: A modal logic L is locally tabular if all its weak 

fragments L⌈k are tabular.



  

 Equivalent definitions of local tabularity for a modal logic L:

● The variety of L-algebras is locally finite : every finitely 

generated L-algebra is finite

● For every finite k, the free k-generated L-algebra (the 

Lindenbaum algebra of L⌈k)  is finite

● Every weak canonical model ML⌈k is finite.

Proposition Every modal logic of finite modal depth is locally 

tabular.

Local tabularity-2



  

Lemma on repeating positions

Let M be a Kripke model, x, y ∈ M. Suppose x ≡n y and

moreover, the Duplicator has a winning strategy s in BGn(x; y) 
such that every play controlled by s has at least two repeating 
positions. Then x ≡n+1 y.

x = x0 y = y0

xm ym



  

Correlation between properties of logics

TABULARITY ⇒ FMD  ⇒ LOCAL TABULARITY ⇒ FMP

1.  Theorem  If F is finite, then md(L(F)) ≤ |F|2+1.

Proof: The Pigeonhole principle gives repeating positions.

3. Well-known

2. Easy: there are finitely many k-formulas of bounded 

modal depth up to equivalence in the basic modal logic. 

PROBLEM 1 Does every locally tabular logic have the finite 

modal depth? (Conjecture:no)

PROBLEM 2  Is there a better upper bound for modal depth 

of tabular logics? (Conjecture:yes)



  

Examples of FMD-logics-1

md(K + □n⊥) = n-1
and more generally,

md(K
N
 + □n⊥) = n-1

where

□ A := □
1
A ∧... ∧ □

N
A.

The axiom □n⊥  forbids paths of length n in Kripke frames:

x1Rx2...Rxn , where R = R
1
 ∪...∪ R

N
Proof for the upper bound: every play of a bisimulation game 
 contains at most (n-1) rounds.
An earlier result: K

N
 + □n⊥ is locally tabular (Gabbay & Sh, 

1998; a routine proof by induction).

 



  

Modal depth of Segerberg squares

Theorem  md((K
n
+□n⊥)2)

Sg
 ≤ m(m+1)+1.

Corollary   (K
n
2)

Sg 
is the intersection of all these logics, so it 

has the fmp.
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