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Criterion: Theories T1 and T2 are equivalent if the category C1 of
models of T1 is either equivalent or dual to the category C2 of
models of T2.



1 Category of Relativistic Spacetimes (GR)

2 Category of Einstein Algebras (EA)
Smooth Algebras
Duality of SmoothMan and SmoothAlg
Metrics on Smooth Algebras

3 Duality of GR and EA

4 Concluding Remarks



Category of Relativistic Spacetimes (GR)

Objects: (M, g)

Arrows: Isometric embeddings: smooth maps ϕ : (M, g)→ (M ′, g ′)
s.t. ϕ∗(g ′) = g



• An algebra A is a real vector space with a commutative,
associative product and a multiplicative identity.

• An (algebra) homomorphism is a map between algebras that
preserves the vector space operations, product, and
multiplicative identity.

• |A| denotes the collection of homomorphisms from A to R,
called the points of A.

• A is geometric if
⋂

p∈|A| ker(p) = {0}.



• Ã = {f̃ : |A| → R | ∃f ∈ A s.t. f̃ (x) = x(f )∀x ∈ |A|}
• Operations on Ã:

(f̃ + αg̃)(x) = f̃ (x) + αg̃(x) = x(f ) + αx(g)

(f̃ · g̃)(x) = f̃ (x) · g̃(x) = x(f ) · g(f )

• A geometric ⇒ τ : A→ Ã as f 7→ f̃ is an isomorphism.



• The weak topology on |A| is the coarsest topology on |A| s.t.
every f̃ ∈ Ã ∼= A is continuous.

• Given alg. homomorphism ψ : A→ B, the map
|ψ| : |B| → |A| as x 7→ x ◦ ψ is continuous in the weak
topology.



• A is complete if for every function f : |A| → R which is s.t.
for every p ∈ |A| there is a neighborhood O of p in |A| and an
element f̄ ∈ A such that f �O ≡ f̄ �O , f ∈ Ã ∼= A.

• A smooth algebra is a complete, geometric algebra with a
countable open covering {Uk} s.t. each Uk is isomorphic to a
subset of C∞(Rn).

• n is the dimension of A.



F : SmoothMan→ SmoothAlg

• Given a smooth manifold M, F (M) = C∞(M).

• Given a smooth map ϕ : M → N, F (ϕ) is the map
ϕ̂ : C∞(N)→ C∞(M) as ϕ̂(f ) = f ◦ ϕ for any f ∈ C∞(N).



G : SmoothAlg→ SmoothMan

• Given a smooth algebra A, G (A) = |A|, with charts given by
smoothness structure of A.

• Given an algebra homomorphism ψ : A→ B, G (ψ) is the map
|ψ| : |B| → |A| between the manifolds G (B) and G (A).



• Correspondence θ : M → G ◦ F (M) = |C∞(M)| as

θ(p)(f ) = f (p)

for all p ∈ M, f ∈ C∞(M).

• Correspondence η : A→ F ◦ G (A) = C∞(|A|) as

η(f )(p) = p(f )

for all f ∈ A, p ∈ |A|.



Theorem
SmoothMan and SmoothAlg are dual.



Idea: F and G are contravariant functors and “up to isomorphism”
inverses of one another.

Upshot:

A ↔ G (A) = |A|
M ↔ F (M) = C∞(M)

ψ : A→ B ↔ G (ψ) = |ψ| : |B| → |A|
ϕ : M → N ↔ F (ϕ) = |ϕ̂| : C∞(N)→ C∞(M)



Derivations on Smooth Algebras

• A derivation on A is an R-linear map X̂ : A→ A that satisfies
the Leibniz rule,

X̂ (fg) = f X̂ (g) + gX̂ (f ) ∀f , g ∈ A.

• Derivations at a point:

X̂p : A→ R as X̂p(f ) = X̂ (f )(p)

• Correspond to vector fields X on G (A) = |A| as

X̂p(f ) = Xp(f )

for f ∈ Ã ∼= A and p ∈ |A|.



Metrics on Smooth Algebras

• The space of derivations on A is a module Γ(A) over A, with
dual module Γ∗(A).

• A metric on A is a module isomorphism ĝ : Γ(A)→ Γ∗(A) s.t.
ĝ(X̂ )(Ŷ ) = ĝ(Ŷ )(X̂ ) for all X̂ , Ŷ ∈ Γ(A).

• The signature of ĝ is the pair (m, n −m), where m is unique
s.t. there exists a basis ξ1, . . . , ξn for the tangent space TpA
such that

ĝ(ξi , ξi ) = +1 if 1 ≤ i ≤ m
ĝ(ξj , ξj) = −1 if m < j ≤ n
ĝ(ξi , ξj) = 0 if i 6= j



Definition
An Einstein algebra is a pair (A, ĝ) where A is a smooth algebra
and ĝ is a (1, n − 1) metric on A.



Category of Einstein Algebras (EA)

Objects: Einstein algebras (A, ĝ)

Arrows: Smooth algebra homomorphisms that preserve the metric.



Lemma

(1) g a (1, n − 1) metric on M ⇒ ĝ a (1, n − 1) metric on
F (M) = C∞(M), where ĝ(X̂ )(Ŷ ) := g(X ,Y );

(2) ĥ a (1, n − 1) metric on A ⇒ |ĥ| a (1, n − 1) metric on
G (A) = |A|, where |ĥ|(X ,Y ) := ĥ(X̂ )(Ŷ );

(3) |ĝ | = g ;

(4) |̂ĥ| = ĥ.



J : GR→ EA

• J(M, g) = (C∞(M), ĝ), where ĝ is given by Lemma.

• Given an isometric embedding ϕ : (M, g)→ (M ′, g ′),

J(ϕ) = F (ϕ) = ϕ̂ : C∞(M ′)→ C∞(M).



K : EA→ GR

• K (A, ĝ) = (|A|, |ĝ |), where |ĝ | is given by Lemma.

• Given an EA homomorphism ψ : (A, ĝ)→ (A′, ĝ ′),

K (ψ) = G (ψ) = |ψ| : |A′| → |A|.



Theorem
The categories EA and GR are dual



Idea: J and K are contravariant functors and “up to isomorphism”
inverses of one another.

Upshot:

(A, ĝ) ↔ K (A, ĝ) = (|A|, ĝ)

(M, g) ↔ J(M, g) = (C∞(M), ĝ)

ψ : (A, ĝ)→ (B, ĝ ′) ↔ K (ψ) = |ψ| : (|B|, |ĝ ′|)→ (|A|, |ĝ |)
ϕ : (M, g)→ (N, g ′) ↔ J(ϕ) = |ϕ̂| : (C∞(N), ĝ ′)→ (C∞(M), ĝ)



Overview

• Criterion of theoretical equivalence that allows for categorical
duality.

• Case Study: Einstein algebras and relativistic spacetimes.

• Claim: Duality of EA and GR shows how they are empirically
equivalent.



Thank you.
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