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István Rácz (Wigner RCP, Budapest) many faces of constraints 9 August, 2015 2 / 28



GR has a predictive power

Janus-faced GR:

The arena and the phenomena :

All the pre-GR physical theories provide a distinction between the arena in which
physical phenomena take place and the phenomena themselves.

arena: phenomena:

classical mechanics phase space: δab dynamical trajectories

electrodynamics Minkowski spacetime: ηab evolution of Fab
general relativity curved spacetime: gab evolution of gab

Such a clear distinction between the arena and the phenomenon is simply not
available in general relativity

the metric plays both roles.

GR is more than merely a field theoretic description of gravity.
It is a certain body of universal rules:

modeling the space of events by a four-dimensional differentiable manifold
the use of tensor fields and tensor equations to describe physical phenomena
use of the (otherwise dynamical) metric in measuring of distances, areas,
volumes, angles ...
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István Rácz (Wigner RCP, Budapest) many faces of constraints 9 August, 2015 3 / 28



GR has a predictive power

Janus-faced GR:

The arena and the phenomena :

All the pre-GR physical theories provide a distinction between the arena in which
physical phenomena take place and the phenomena themselves.

arena: phenomena:

classical mechanics phase space: δab dynamical trajectories

electrodynamics Minkowski spacetime: ηab evolution of Fab
general relativity curved spacetime: gab evolution of gab

Such a clear distinction between the arena and the phenomenon is simply not
available in general relativity

the metric plays both roles.

GR is more than merely a field theoretic description of gravity.
It is a certain body of universal rules:

modeling the space of events by a four-dimensional differentiable manifold
the use of tensor fields and tensor equations to describe physical phenomena
use of the (otherwise dynamical) metric in measuring of distances, areas,
volumes, angles ...
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GR has a predictive power

The predictive power of GR:

The Cauchy problem in GR (in full generality only ∼six decades ago):

Choquet-Bruhat Y & Geroch R (1969): there always exists a maximal Cauchy
development that is unique up to spacetime diffeomorphisms.

there exists a continuous “one-to-one” mapping

the space of

a continuous and one−to−one
the space of
initial data

mapping

EVOLUTION

solutions

this mapping is also causal

[S]J

p

(p)

S

(p) UΣ   i
nitial data surface

J

J
Σ   

+

− 

− 

future
Cauchy development

D
+
[Σ]
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GR has a predictive power

The main conceptual issue:

Assume that suitable initial data is given on some initial data surface Σ:

As a fixed background/arena does not exist in GR neither the base manifold M
(where the solution manifest itself) nor the metric gab (satisfying the Einstein
equations) is know in advance to solving the pertinent Cauchy problem

Initial data surface: Spacetime:
(Σ, hij ,Kij) (M, gab)

(satisfying the constraints) (satisfying the Einstein equations)

n

n
n

a

a

a

n
a

n
a

n
a

Σ ϕ[Σ]

ϕ

(hij ,Kij) −→ ϕ∗ −→ (ϕ∗hij , ϕ∗Kij)
(induced metric, extrinsic curvature)
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GR has a predictive power

The initial value problem starts by solving the constraints:
Constraints in the 4-dimensional Lorentzian vacuum case:

initial data (hij ,Kij) metric and symmetric tensor on Σ0

(3)

R+
(
Kj

j

)2 −KijK
ij = 0 & DjK

j
i −DiKj

j = 0

Di denotes the covariant derivative operator associated with hij .

The conformal (elliptic) method Lichnerowicz A (1944) and York J W (1972):

the constraints are solved by transforming them into a semilinear elliptic system
replace the fields hij and Kij − 1

3
hij τ (where τ = Kl

l = hklKkl) by h̃ij and K̃ij as

hij = φ4 h̃ij and Kij − 1
3
hij τ = φ−2 K̃ij

Lichnerowicz equation: D̃lD̃lφ− 1
8
R̃ φ+ 1

8
K̃ijK̃

ij φ−7 − 1
12
τ2 φ5 = 0

York equation: D̃lD̃lXi + D̃l Uli − 2
3
φ6(D̃iτ) = 0

where Uij is an arbitrary traceless tensor, and K̃ij reads as

K̃ij =
(
D̃iXj + D̃jXi − 2

3
h̃ijD̃

lXl

)
+ Uij
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GR has a predictive power

Some aspects of the conformal method:

The strong points:

the conformal method developed by Lichnerowicz and York could, in principle,
determine all the possible initial data configurations in general relativity

there has been derived a great number of existence, non-existence, or uniqueness
theorems for the pertinent semilinear elliptic system

Some of the weak points:

almost all of these theorems require the constancy of τ = Kl
l

the method is highly implicit due to the elliptic character of the basic equations and
the replacements hij = φ4 h̃ij and Kij − 1

3
hij τ = φ−2 K̃ij =⇒

no direct control of the physical parameters of the initial data specifications
non-negligible spurious gravitational wave content of the spacetimes evolved
from Bowen-York type initial data specifications (h̃ij is flat, τ is constant)

“... no way singles out precisely which functions (i.e., which of the 12 metric or
extrinsic curvature components or functions of them) can be freely specified, which
functions are determined by the constraints, and which functions correspond to
gauge transformations. Indeed, one of the major obstacles to developing a
quantum theory of gravity is the inability to single out the physical degrees of
freedom of the theory. ” R.M. Wald: General Relativity, Univ. Chicago Press, (1984)
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GR has a predictive power

The main messages:

1 n + 1-dimensional (n ≥ 3) Riemannian and Lorentzian spaces satisfying the
Einstein equations, and some mild topological assumptions, will be considered

2 many of the arguments and techniques developed originally and applied so far
exclusively only in the Lorentzian case do also apply to Riemannian spaces

the constraints propagate: they hold everywhere if ...
contrary to the folklore: a new evolutionary approach is introduced—as an
alternative of the elliptic conformal method—to solve the constraints

momentum constraint as a first order symmetric hyperbolic system
the Hamiltonian constraint as a parabolic or an algebraic equation

the coupled set of constraints can be put into the form of evolutionary
systems to which (local) existence and uniqueness of solutions is guaranteed.

3 !!! regardless whether the primary space is Riemannian or Lorentzian

Based on some recent papers

I. Rácz: Is the Bianchi identity always hyperbolic?, Class. Quantum Grav. 31 (2014) 155004

I. Rácz: Cauchy problem as a two-surface based ‘geometrodynamics’, Class. Quantum Grav. 32 (2015) 015006

I. Rácz: Dynamical determination of the gravitational degrees of freedom, submitted to Class. Quantum Grav. (2015)

I. Rácz: Constraints as evolutionary systems, submitted to Class. Quantum Grav. (2015)

I. Rácz and J. Winicour: Black hole initial data without elliptic equations, Phys. Rev. D 91, 124013 (2015)
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I. Rácz and J. Winicour: Black hole initial data without elliptic equations, Phys. Rev. D 91, 124013 (2015)
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GR has a predictive power

Assumptions:

The primary space: (M, gab)

M : n+ 1-dimensional (n ≥ 3), smooth, paracompact, connected,
orientable manifold
gab: smooth Lorentzian(−,+,...,+) or Riemannian(+,...,+) metric

Einstein’s equations: restricting the geometry

Gab − Gab = 0

with source term Gab having a vanishing divergence ∇aGab = 0

or, in a more conventionally looking setup

[Rab − 1
2
gabR] + Λ gab = 8π Tab

with matter fields satisfying their field equations with energy-momentum
tensor Tab and with cosmological constant Λ

Gab = 8π Tab − Λ gab
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Foliations and splittings puts the basic variables in new dress

The primary foliation:

No restriction on the topology by Einstein’s equations! (local PDEs)

Assume that (apart from centers) M can be foliated by a one-parameter family of
homologous codimension-one surfaces. More precisely, we shall assume the
existence of a smooth function σ : M → R such that its gradient ∇aσ does not
vanish except at centers which are isolated non-degenerate critical points of σ with
zero Morse index, i.e. where σ has its local extremum.

S
n
 = [a,b] × S

n-1

S
n
 = [a,b] × S

n-1

R
n
 = R

+
 × S

n-1

R
n
 = R

+
 × S

n-1

S
1
 × S

n-1

S
1
 × S

n-1

R × S
n-1

R × S
n-1

Apart from these centers the σ = const level surfaces—they will also be denoted by
Σσ—are supposed to be orientable either compact and without boundary in M or
non-compact and infinite.
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István Rácz (Wigner RCP, Budapest) many faces of constraints 9 August, 2015 10 / 28



Foliations and splittings puts the basic variables in new dress

The primary foliation:

No restriction on the topology by Einstein’s equations! (local PDEs)

Assume that (apart from centers) M can be foliated by a one-parameter family of
homologous codimension-one surfaces. More precisely, we shall assume the
existence of a smooth function σ : M → R such that its gradient ∇aσ does not
vanish except at centers which are isolated non-degenerate critical points of σ with
zero Morse index, i.e. where σ has its local extremum.

S
n
 = [a,b] × S

n-1

S
n
 = [a,b] × S

n-1

R
n
 = R

+
 × S

n-1

R
n
 = R

+
 × S

n-1

S
1
 × S

n-1

S
1
 × S

n-1

R × S
n-1

R × S
n-1

Apart from these centers the σ = const level surfaces—they will also be denoted by
Σσ—are supposed to be orientable either compact and without boundary in M or
non-compact and infinite.
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Foliations and splittings puts the basic variables in new dress

The primary splitting:

Rephrasing:

... (apart from centers) M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M ' R× Σ, for some codimension one manifold Σ

known to hold for globally hyperbolic spacetimes (Lorentzian case)
in either case: it is only a mild restriction on the topology of M

... there exists a smooth function σ : M → R with non-vanishing gradient
∇aσ such that (apart from centers) the σ = const level surfaces

Σσ = {σ} × Σ comprise the one-parameter foliation of M =⇒ na ∼ ∇aσ

Σσ

n
a n

a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a
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Foliations and splittings puts the basic variables in new dress

The primary projection operator:

na the ‘unit norm’ vector field that is normal to the Σσ level surfaces

nana = ε

the sign ε of the norm of na is not fixed
takes the value −1 or +1 for Lorentzian or Riemannian metric gab, resp.

the projection operator

hab = δab − ε nanb

to the level surfaces of σ : M → R
the induced metric on the σ = const level surfaces

hab = heah
f
b gef

while Da denotes the covariant derivative operator associated with hab.
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Foliations and splittings puts the basic variables in new dress

The decomposition of various fields:

Examples:

a form field: La = δea Le = (hea + ε nena)Le = λna + La

where λ = ε ne Le and La = hea Le

“time evolution vector field”

σa : σe∇eσ = 1

σa = σa⊥ + σa‖ = N na +Na

n
a n

a

n
a

n
a

n
a n

a

n
a

na

na

n
a

n
a

na

n
a

σσ

σ

σ

σ
σ

aa

a

a

a

a

σ

σa
a

σ
a

σ
a

N
an

a
N

where N and Na denotes the ‘laps’ and ‘shift’ of σa = (∂σ)a:

N = ε (σene) and Na = hae σ
e
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Foliations and splittings puts the basic variables in new dress

Decompositions of various fields:

Any symmetric tensor field Pab can be decomposed

in terms of na and fields living on the σ = const level surfaces as

Pab = π nanb + [na pb + nb pa] + Pab

where π = nenf Pef , pa = ε hean
f Pef , Pab = heah

f
b Pef

It is also rewarding to inspect the decomposition of the contraction ∇aPab:

ε (∇aPae)ne = Lnπ +Depe + [π (Ke
e)− εPefKef − 2 ε ṅepe]

(∇aPae)heb = Lnpb +DePeb + [(Ke
e)pb + ṅb π − ε ṅePeb]

ṅa := ne∇ena = −εDa lnN

back:∇aEab = 0 back:mom.constr.
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(∇aPae)heb = Lnpb +DePeb + [(Ke
e)pb + ṅb π − ε ṅePeb]

ṅa := ne∇ena = −εDa lnN

back:∇aEab = 0 back:mom.constr.
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Foliations and splittings puts the basic variables in new dress

Decompositions of various fields:

Examples:

the metric
gab = ε nanb + hab

the “source term”
Gab = nanb e + [na pb + nb pa] + Sab

where e = nenf Gef , pa = ε hean
f Gef , Sab = heah

f
b Gef

the l.h.s. of our basic field equation Eab = Gab − Gab

Eab = nanbE
(H)

+ [naE
(M)

b + nbE
(M)

a ] + (E
(EVOL)

ab + habE
(H)

)

E
(H)

= nenf Eef , E
(M)

a = ε hean
f Eef , E

(EVOL)

ab = heah
f
bEef − habE

(H)
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Foliations and splittings puts the basic variables in new dress

The explicit forms:

The various projections of Eab = Gab − Gab:

E
(H)

= nenfEef = 1
2 {−ε

(n)

R+ (Ke
e)

2 −KefK
ef − 2 e}

E
(M)

a = hean
fEef = DeK

e
a −DaK

e
e − ε pa

E
(EVOL)

ab =
(n)

Rab + ε
{
−LnKab − (Ke

e)Kab + 2KaeK
e
b − εN−1DaDbN

}
+ 1+ε

(n−1) habE
(H)

−
(
Sab − 1

n−1 hab [Sef h
ef + ε e]

)
where

e = nenf Gef , pa = ε hean
f Gef , Sab = heah

f
b Gef

and the extrinsic curvature Kab is defined as

Kab = hea∇enb = 1
2 Lnhab

here Ln stands for the Lie derivative with respect to na
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Foliations and splittings puts the basic variables in new dress

The decomposition of ∇aEab = 0 where Eab = Gab−Gab:
Relations between various parts of the Einstein equations:

LnE
(H)

+DeE
(M)

e + [E
(H)

(Ke
e)− 2 ε (ṅeE

(M)

e ) back:∇aPab

− εKae (E
(EVOL)

ae + haeE
(H)

) ] = 0

LnE
(M)

b +Da(E
(EVOL)

ab + habE
(H)

) + [ (Ke
e)E

(M)

b + E
(H)

ṅb

− ε (E
(EVOL)

ab + habE
(H)

) ṅa ] = 0

when writing them out explicitly in some local coordinates (σ, x1, . . . , xn) adopted to the

vector field σa = N na +Na: σe∇eσ = 1 and the foliation {Σσ}, read as{(
1
N

0
0 1

N
hij

)
∂σ +

(
− 1
N
Nk hik

hjk − 1
N
Nk hij

)
∂k

}(
E

(H)

E
(M)

i

)
=

(
E
E j

)

the source terms E and E j are linear and homogeneous in E
(H)

and E
(M)

i =⇒
if the metric hab is Riemannian it is a first order symmetric hyperbolic system

for (E
(H)

, E
(M)

i )T , and it is linear and homogeneous in these variables

its characteristic cone (apart from Σσ with niξi = 0) is (hij − 2ninj) ξiξj = 0
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Foliations and splittings puts the basic variables in new dress

The propagation of the constraints:

Theorem

Let (M, gab) be as specified above and assume that the metric hab induced on the
σ = const level surfaces is Riemannian. Then, regardless whether gab is of
Lorentzian or Euclidean signature, any solution to the reduced equations

E
(EVOL)

ab = 0 is also a solution to the full set of field equations Gab − Gab = 0

provided that the constraint expressions E
(H)

and E
(M)

a vanish on one of the
σ = const level surfaces.

Σσ

n
a n

a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a
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Constraints form evolutionary systems

The secondary foliation and splittings:

Assume that on one of the σ = const level surfaces (say on Σ0) there exists a
smooth function ρ : Σ0 → R gradient of which does not vanish (except at centers)

the ρ = const level surfaces Sρ are suppose to be homologous to each other and
assume (for simplicity) that they are orientable compact without boundary in Σ0

n
a n

a

n
a

na

Σ 0

n
i

n
i

n
i

n
i

ni

n
i

n i

n

n

i

i

n
i

The metric hij on Σ0 can be decomposed as

hij = γ̂ij + n̂in̂j

in terms of the positive definite metric γ̂ij , induced on the Sρ level surfaces

the unit norm field, normal to the Sρ level surfaces, can be decomposed as

n̂i = N̂
−1

[ (∂ρ)
i − N̂ i ]

where N̂ and N̂ i denotes the ‘laps’ and ‘shift’ of an ‘evolution’ vector field
ρi = (∂ρ)

i on Σ0
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Constraints form evolutionary systems

One needs various secondary splittings:

The momentum constraint:

E
(M)

a = hean
fEef = DeK

e
a −DaK

e
e − ε pa = 0 back: ∇aPab

The splitting of the extrinsic curvature Kij :

Kij = κ n̂in̂j + [n̂i kj + n̂j ki] + Kij

where

κ = n̂kn̂lKkl , ki = γ̂kin̂
lKkl and Kij = γ̂kiγ̂

l
j Kkl

the trace and trace free parts of Kij

Kl
l = γ̂klKkl and

◦
Kij = Kij − 1

n−1 γ̂ijK
l
l

the independent components of (hij ,Kij) may be represented by the

variables
(N̂, N̂ i, γ̂ij ;κ,ki,K

l
l,
◦
Kij)
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Constraints form evolutionary systems

Constraints in new dress:

The momentum constraint:

E
(M)

a = hean
fEef = DeK

e
a −DaK

e
e − ε pa = 0

(K̂l
l)ki + D̂l ◦Kli + κ ˙̂ni + Ln̂ki − ˙̂nlKli − D̂iκ− n−2

n−1 D̂i(K
l
l)− ε pl γ̂li = 0

κ (K̂l
l) + D̂lkl −KklK̂

kl − 2 ˙̂nl kl −Ln̂(Kl
l)− ε pl n̂l = 0

where
˙̂nk = n̂lDln̂k = −D̂k(ln N̂)

and D̂i denotes the covariant derivative operator of γ̂ij

The extrinsic curvature of the secondary foliation Sρ:

K̂ij = γ̂liDl n̂j = 1
2 Ln̂γ̂ij

with trace

K̂l
l = γ̂ijK̂ij = 1

2 γ̂
ijLn̂γ̂ij
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Constraints form evolutionary systems

First order symmetric hyperbolic system:

The momentum constraint in local coordinates:

Ln̂ki − n−2
n−1

D̂i(K
l
l)− D̂iκ + D̂l ◦Kli + (K̂l

l)ki + κ ˙̂ni − ˙̂nlKli − ε pl γ̂li = 0 (1)

back: str.hyp.sys. Ln̂(Kl
l)− D̂lkl − κ (K̂l

l) + KklK̂
kl + 2 ˙̂nl kl + ε pl n̂

l = 0 (2)

notably, n−1
n−2

N̂ γ̂ij times of (1) and N̂ times of (2) when writing them out in (local)

coordinates (ρ, x2, . . . , xn), adopted to the foliation Sρ and the vector field ρi,

{(
n−1
n−2

γ̂AB 0

0 1

)
∂ρ +

(
−n−1
n−2

N̂K γ̂AB −N̂ γ̂AK

−N̂ γ̂BK −N̂K

)
∂K

} kB

KE
E

+

(
BA

(k)

B(K)

)
= 0

indep. of ε: a first order symmetric hyperbolic system for the vector valued variable

(kB ,K
E
E)T

where the ‘radial coordinate’ ρ plays the role of ‘time’.

... with characteristic cone (apart from the surfaces Sρ with n̂iξi = 0)

[γ̂ij − (n− 1) n̂in̂j ] ξiξj = 0
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Ln̂ki − n−2
n−1

D̂i(K
l
l)− D̂iκ + D̂l ◦Kli + (K̂l

l)ki + κ ˙̂ni − ˙̂nlKli − ε pl γ̂li = 0 (1)

back: str.hyp.sys. Ln̂(Kl
l)− D̂lkl − κ (K̂l

l) + KklK̂
kl + 2 ˙̂nl kl + ε pl n̂

l = 0 (2)

notably, n−1
n−2

N̂ γ̂ij times of (1) and N̂ times of (2) when writing them out in (local)

coordinates (ρ, x2, . . . , xn), adopted to the foliation Sρ and the vector field ρi,

{(
n−1
n−2

γ̂AB 0

0 1

)
∂ρ +

(
−n−1
n−2

N̂K γ̂AB −N̂ γ̂AK

−N̂ γ̂BK −N̂K

)
∂K

} kB

KE
E

+

(
BA

(k)

B(K)

)
= 0

indep. of ε: a first order symmetric hyperbolic system for the vector valued variable

(kB ,K
E
E)T

where the ‘radial coordinate’ ρ plays the role of ‘time’.

... with characteristic cone (apart from the surfaces Sρ with n̂iξi = 0)

[γ̂ij − (n− 1) n̂in̂j ] ξiξj = 0

István Rácz (Wigner RCP, Budapest) many faces of constraints 9 August, 2015 22 / 28



Constraints form evolutionary systems

The Hamiltonian constraint:

The Hamiltonian constraint in new dress:

E
(H)

= nenfEef = 1
2
{−ε

(n)

R+ (Ke
e)

2 −KefK
ef − 2 e} = 0

using
(n)

R = R̂−
{

2 Ln̂(K̂l
l) + (K̂l

l)
2 + K̂klK̂

kl + 2 N̂
−1
D̂lD̂lN̂

}

−ε R̂+ ε

{
2 Ln̂(K̂l

l) +(K̂l
l)

2 + K̂kl K̂
kl + 2 N̂

−1
D̂lD̂lN̂

}
+ 2 κ Kl

l + n−2
n−1

(Kl
l)

2 − 2klkl −
◦
Kkl

◦
Kkl − 2 e = 0

R̂ denotes the scalar curvature of γ̂ij

Two alternative choices that yield evolutionary systems for constraints:

it is a parabolic equation for N̂ if 1
2
γ̂ijLργ̂ij − D̂jN̂ j does not vanish

it is an algebraic equation for κ provided that Kl
l does not vanish
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Constraints form evolutionary systems

The hyperbolic-parabolic system:

The Hamiltonian constraint:

−ε R̂+ ε

{
2 Ln̂(K̂l

l) +(K̂l
l)

2 + K̂kl K̂
kl + 2 N̂

−1
D̂lD̂lN̂

}
+ 2κKl

l + n−2
n−1

(Kl
l)

2 − 2klkl −
◦
Kkl

◦
Kkl − 2 e = 0

K̂l
l = γ̂ij K̂ij = N̂−1[ 1

2
γ̂ijLργ̂ij − D̂jN̂j ] = N̂−1

?
K

Ln̂(K̂l
l) = −N̂−3

?
K [ (∂ρN̂)− (N̂ lD̂lN̂) ] + N̂−2[ (∂ρ

?
K)− (N̂ lD̂l

?
K) ]

using
A = 2 [ (∂ρ

?
K)− N̂ l(D̂l

?
K) ] +

?
K

2
+

?
Kkl

?
Kkl

B = − R̂+ ε
[

2κ (Kl
l) + n−2

n−1
(Kl

l)
2 − 2klkl −

◦
Kkl

◦
Kkl − 2 e

]
it gets to be a Bernoulli-type parabolic partial differential equation provided that

?
K ...

2
?
K [ (∂ρN̂)− N̂ l(D̂lN̂) ] = 2 N̂2(D̂lD̂lN̂) +AN̂ +B N̂3

in highly specialized cases of “quasi-spherical” foliations with γ̂ij = r2 ◦γij and with time
symmetric initial data Kij ≡ 0 R. Bartnik (1993), R. Weinstein & B. Smith (2004)
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Constraints form evolutionary systems

The strongly hyperbolic system:

The Hamiltonian constraint as an algebraic equation for κ:

−ε R̂+ ε
{

2 Ln̂(K̂l
l) +(K̂l

l)
2 + K̂kl K̂

kl + 2 N̂
−1

D̂lD̂lN̂
}

+ 2 κ Kl
l + n−2

n−1
(Kl

l)
2 − 2klkl −

◦
Kkl

◦
Kkl − 2 e = 0

by eliminating D̂iκ from the momentum constraint mom. constr. one gets

Ln̂ki + (Kl
l)
−1[κ D̂i(K

l
l)− 2klD̂ikl ] + (2Kl

l)
−1D̂iκ0

+(K̂l
l)ki + [κ− 1

n−1
(Kl

l) ] ˙̂ni − ˙̂nl
◦
Kli + D̂l

◦
Kli − ε pl γ̂li = 0 ,

Ln̂(Kl
l)− D̂lkl − κ (K̂l

l) + KklK̂
kl + 2 ˙̂nl kl + ε pl n̂

l = 0

where κ = (2Kl
l)
−1[ 2klkl − n−2

n−1
(Kl

l)
2 − κ0 ] , κ0 = −ε(n)

R−
◦
Kkl

◦
Kkl − 2 e

the above system is a strongly hyperbolic one for (ki,K
l
l) provided that κ ·Kl

l < 0
κ is determined algebraically once a solution is known !!!

κ ·Kl
l < 0 ???: consider spaces in Kerr-Schild form: gab = ηab + 2H`a`b, (H smooth!

on R4, `a is null with respect to both gab and an implicit background Minkowski metric

ηab) for near Schwarzschild approximations with H ≈ M
r

and kA
κ
≈ 0 the relation

−Kl
l

κ
≈ 2(1+2H)

1+H
, i.e. κ ·Kl

l < 0 holds everywhere on t = const hypersurfaces !!!
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Constraints form evolutionary systems

Constraints as evolutionary systems:
Sorting the elements of the initial data:

the independent components of (hij ,Kij) may be represented by the variables

(N̂, N̂ i, γ̂ij ;κ,ki,K
l
l,
◦
Kij)

the coupled constraints can be put either to the form of:

a hyperbolic-parabolic system for (N̂,ki,K
l
l)

with freely specifiable variables on Σ0 and on S0:

(N̂ |S0
,N̂ i, γ̂ij ;κ,ki|S0

,Kl
l|S0

,
◦
Kij)

the positivity of
?
K = 1

2
γ̂ijLργ̂ij − D̂jN̂j can be guaranteed

a strongly hyperbolic system for (ki,K
l
l) and an algebraic relation for κ

with freely specifiable variables on Σ0 and on S0:

(N̂, N̂ i, γ̂ij ; κ ,ki|S0
,Kl

l|S0
,
◦
Kij)

by choosing the free data properly κ ·Kl
l < 0 can be guaranteed (locally)

!!! (local) existence and uniqueness of C∞ solutions is guaranteed I.R. (2015)

!!! some global results apply for the hyperbolic-parabolic formulation I.R. (2015)
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Summary and final remarks

Summary and final remarks:
Summary:

1 n + 1-dimensional (n ≥ 3) Riemannian and Lorentzian spaces satisfying the
Einstein equations, and some mild topological assumptions, were considered

2 many of the arguments and techniques developed originally and applied so far
exclusively only in the Lorentzian case do also apply to Riemannian spaces

the constraints propagate: they hold everywhere if ...
contrary to the folklore: a new evolutionary approach is introduced—as an
alternative of the elliptic conformal method—to solve the constraints

momentum constraint as a first order symmetric hyperbolic system
the Hamiltonian constraint as a parabolic or an algebraic equation

the coupled set of constraints can be put into the form of evolutionary
systems to which (local) existence and uniqueness of solutions is guaranteed.

3 !!! regardless whether the primary space is Riemannian or Lorentzian

Final remarks:

hyperbolicity and causality: ȟij = hij − (1 + α) n̂in̂j where α is a positive real function

linearity of the Hamiltonian constraint in κ : role (?) in canonical quantization of gravity

global existence and uniqueness—and, possibly, the asymptotically Euclidean character
and/or the regularity at centers—of solutions to the introduced evolutionary systems
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hyperbolicity and causality: ȟij = hij − (1 + α) n̂in̂j where α is a positive real function

linearity of the Hamiltonian constraint in κ : role (?) in canonical quantization of gravity

global existence and uniqueness—and, possibly, the asymptotically Euclidean character
and/or the regularity at centers—of solutions to the introduced evolutionary systems
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István Rácz (Wigner RCP, Budapest) many faces of constraints 9 August, 2015 27 / 28



Summary and final remarks

Summary and final remarks:
Summary:

1 n + 1-dimensional (n ≥ 3) Riemannian and Lorentzian spaces satisfying the
Einstein equations, and some mild topological assumptions, were considered

2 many of the arguments and techniques developed originally and applied so far
exclusively only in the Lorentzian case do also apply to Riemannian spaces

the constraints propagate: they hold everywhere if ...
contrary to the folklore: a new evolutionary approach is introduced—as an
alternative of the elliptic conformal method—to solve the constraints

momentum constraint as a first order symmetric hyperbolic system
the Hamiltonian constraint as a parabolic or an algebraic equation

the coupled set of constraints can be put into the form of evolutionary
systems to which (local) existence and uniqueness of solutions is guaranteed.

3 !!! regardless whether the primary space is Riemannian or Lorentzian

Final remarks:
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Thanks for your attention
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