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Definition
The guarded fragment GF (n, 6=) is a fragment of FOL(n, 6=)
with only guarded (bounded) quantification,

∃v̄(G(v̄) ∧ φ(v̄)) ∃v̄(G(v̄)→ φ(v̄))

Definition
The class Crsdf

n , of diagonal free relativized set algebra of
dimension n:

A ∼= B ⊆ 〈P(V ),∪,∩, \, ∅,V ,C[V ]
i 〉,

where V ⊆ nW and C[V ]
i (X ) = {y ∈ V : ∃x ∈ X (x ≡i y)}.
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Reducing the problem

We define F n,m
q , the set of normal forms of degree q, by

induction on q:
1. F n,m

0 is the set of terms
∏
{±xi : i ∈ m}.

2. F n,m
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{±xi : i ∈ m} ·
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⋃
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q : q ∈ ω}.

Normal Disjunctive Forms

I Crsdf
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q forms a partition of the unit.
I There is an algorithm to determine, for every term
τ ∈ Tmm,dfn , a finite set of normal forms of the same
degree such that Crsdf

n thinks that τ is zero or equals the
disjunction of these normal forms.
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Thanks!


