Guarded fragment of FOL without equality

Mohamed Khaled ^{1,2} Tarek Sayed Ahmed ¹

¹Department of Mathematics, Faculty of Science, Cairo University Giza, Egypt.

²Department of Mathematics and its applications, Central European University Budapest, Hungary.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Algebraization of logics

Algebraic Logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Algebraization of logics

Algebra



Algebraic Logic

Logic

ロ > < 個 > < 三 > < 三 > < 三 > < 回 > < < 回 >

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

< 口 > < 团 > < 臣 > < 臣 > < 臣 > < 臣 <</p>

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Variants of algebras

Fragments of logic

Variants of algebras

Fragments of logic

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Algebraic Logic

1. Better understanding of these algebraic structures!

Variants of algebras

Fragments of logic

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. Better understanding of these algebraic structures!
- 2. Better understanding of the properties of logic!

Variants of algebras

Fragments of logic

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. Better understanding of these algebraic structures!
- 2. Better understanding of the properties of logic!
 - FOL: van Benthem 1995? & Nemeti 1985(6)!

Variants of algebras

Fragments of logic

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. Better understanding of these algebraic structures!
- 2. Better understanding of the properties of logic!
 - FOL: van Benthem 1995? & Nemeti 1985(6)!
- 3. Well behaved logics: Guarded Fragment of FOL!

Variants of algebras

Fragments of logic

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. Better understanding of these algebraic structures!
- 2. Better understanding of the properties of logic!
 - FOL: van Benthem 1995? & Nemeti 1985(6)!
- 3. Well behaved logics: Guarded Fragment of FOL!
 - Computer Science, linguistics, etc!

Variants of algebras

Fragments of logic

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. Better understanding of these algebraic structures!
- 2. Better understanding of the properties of logic!
 - ► FOL: van Benthem 1995? & Nemeti 1985(6)!
 - Replace Undecidability by Gödel incompleteness property?
- 3. Well behaved logics: Guarded Fragment of FOL!
 - Computer Science, linguistics, etc!

Variants of algebras

Fragments of logic

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- 1. Better understanding of these algebraic structures!
- 2. Better understanding of the properties of logic!
 - ► FOL: van Benthem 1995? & Nemeti 1985(6)!
 - Replace Undecidability by Gödel incompleteness property?
- 3. Well behaved logics: Guarded Fragment of FOL!
 - Computer Science, linguistics, etc!
 - Expressive power!

▲ロト▲母ト▲ヨト▲ヨト ヨーのへで

Definition

The guarded fragment $GF(n, \neq)$ is a fragment of $FOL(n, \neq)$ with only guarded (bounded) quantification,

 $\exists \bar{\boldsymbol{\nu}}(\boldsymbol{G}(\bar{\boldsymbol{\nu}}) \land \phi(\bar{\boldsymbol{\nu}})) \qquad \exists \bar{\boldsymbol{\nu}}(\boldsymbol{G}(\bar{\boldsymbol{\nu}}) \to \phi(\bar{\boldsymbol{\nu}}))$

Definition

The guarded fragment $GF(n, \neq)$ is a fragment of $FOL(n, \neq)$ with only guarded (bounded) quantification,

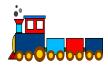
 $\exists \bar{\boldsymbol{\nu}}(\boldsymbol{G}(\bar{\boldsymbol{\nu}}) \land \phi(\bar{\boldsymbol{\nu}})) \qquad \exists \bar{\boldsymbol{\nu}}(\boldsymbol{G}(\bar{\boldsymbol{\nu}}) \to \phi(\bar{\boldsymbol{\nu}}))$

Definition

The class Crs_n^{df} , of diagonal free relativized set algebra of dimension n:

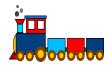
$$\mathfrak{A} \cong \mathfrak{B} \subseteq \langle \mathcal{P}(V), \cup, \cap, \backslash, \emptyset, V, C_i^{[V]} \rangle,$$

where $V \subseteq {}^{n}W$ and $C_{i}^{[V]}(X) = \{y \in V : \exists x \in X(x \equiv_{i} y)\}.$



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

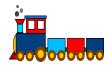
Theorem (Andreka, Nemeti, van Benthem)



Theorem (Andreka, Nemeti, van Benthem)

Crs^{df}

 $GF(n, \neq)$



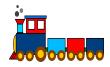
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Theorem (Andreka, Nemeti, van Benthem)

Crs^{df}

 Finitely axiomatizable.

GF(*n*, *≠*) ► St. sound and complete.



< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

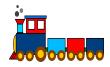
Theorem (Andreka, Nemeti, van Benthem)

Crs^{df}_n

- Finitely axiomatizable.
- Decidable eq. theory.

 $GF(n, \neq)$

- St. sound and complete.
- Decidable.



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Andreka, Nemeti, van Benthem)

Crs^{df}_n

- Finitely axiomatizable.
- Decidable eq. theory.
- Finite base property.

 $GF(n, \neq)$

- St. sound and complete.
- Decidable.
- Finite model property.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ Does $GF(n, \neq)$ have Gödel's incompleteness property?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

► Does GF(n, ≠) have Gödel's incompleteness property?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Let $m \in \omega$, is $\mathfrak{Fr}_m Crs_n^{df}$ atomic?

► Does GF(n, ≠) have Gödel's incompleteness property?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• Let $m \in \omega$, is $\mathfrak{Fr}_m Crs_n^{df}$ atomic?

Theorem

▶ Does $GF(n, \neq)$ have Gödel's incompleteness property?

(日) (日) (日) (日) (日) (日) (日)

• Let $m \in \omega$, is $\mathfrak{Fr}_m Crs_n^{df}$ atomic?

Theorem

• $\mathfrak{Fr}_0 Crs_n^{df}$ is finite, hence atomic.

Does GF(n, ≠) have Gödel's incompleteness property?

(日) (日) (日) (日) (日) (日) (日)

• Let $m \in \omega$, is $\mathfrak{Fr}_m Crs_n^{df}$ atomic?

Theorem

- $\mathfrak{Fr}_0 Crs_n^{df}$ is finite, hence atomic.
- $\mathfrak{Fr}_m Crs_n^{df}$ is atomless, for every finite $m \ge 1$.

▶ Does $GF(n, \neq)$ have Gödel's incompleteness property?

(日) (日) (日) (日) (日) (日) (日)

• Let $m \in \omega$, is $\mathfrak{Fr}_m Crs_n^{df}$ atomic?

Theorem

- ▶ 𝔅𝑘₀Crs^{df} is finite, hence atomic. Easy!
- $\mathfrak{Fr}_m Crs_n^{df}$ is atomless, for every finite $m \ge 1$.

Outline of the proof

Throughout the rest of the talk, we fix finite $m \in \omega$.

Throughout the rest of the talk, we fix finite $m \in \omega$. Let df_n be the similarity type of the algebras in Crs_n^{df} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Throughout the rest of the talk, we fix finite $m \in \omega$. Let df_n be the similarity type of the algebras in Crs_n^{df} . Let \mathfrak{Tm}_{m,df_n} be the term algebra of type df_n generated by *m*-many variables, $\{x_0, \ldots, x_{m-1}\}$.

Reducing the problem

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

We define $F_q^{n,m}$, the set of normal forms of degree q, by induction on q:

We define $F_q^{n,m}$, the set of normal forms of degree q, by induction on q:

1. $F_0^{n,m}$ is the set of terms $\prod \{\pm x_i : i \in m\}$.

We define $F_q^{n,m}$, the set of normal forms of degree q, by induction on q:

- 1. $F_0^{n,m}$ is the set of terms $\prod \{\pm x_i : i \in m\}$.
- 2. $F_{q+1}^{n,m}$ consists of the following terms

$$\prod\{\pm x_i: i \in m\} \cdot \prod\{\pm c_i \tau : i \in n, \tau \in F_q^{n,m}\}.$$

We define $F_q^{n,m}$, the set of normal forms of degree q, by induction on q:

1.
$$F_0^{n,m}$$
 is the set of terms $\prod \{\pm x_i : i \in m\}$.

2. $F_{a+1}^{n,m}$ consists of the following terms

$$\prod\{\pm x_i: i \in m\} \cdot \prod\{\pm c_i\tau : i \in n, \tau \in F_q^{n,m}\}.$$
3. $F^{n,m} = \bigcup\{F_q^{n,m}: q \in \omega\}.$

We define $F_q^{n,m}$, the set of normal forms of degree q, by induction on q:

1.
$$F_0^{n,m}$$
 is the set of terms $\prod \{\pm x_i : i \in m\}$.

2. $F_{a+1}^{n,m}$ consists of the following terms

$$\prod\{\pm x_i: i \in m\} \cdot \prod\{\pm c_i\tau: i \in n, \tau \in F_q^{n,m}\}.$$
3. $F^{n,m} = \bigcup\{F_q^{n,m}: q \in \omega\}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Normal Disjunctive Forms

We define $F_q^{n,m}$, the set of normal forms of degree q, by induction on q:

1.
$$F_0^{n,m}$$
 is the set of terms $\prod \{\pm x_i : i \in m\}$.

2.
$$F_{q+1}^{n,m}$$
 consists of the following terms

$$\prod\{\pm x_i: i \in m\} \cdot \prod\{\pm c_i\tau: i \in n, \tau \in F_q^{n,m}\}.$$
3. $F^{n,m} = \bigcup\{F_q^{n,m}: q \in \omega\}.$

Normal Disjunctive Forms

•
$$Crs_n^{df} \models F_q^{n,m}$$
 forms a partition of the unit.

We define $F_q^{n,m}$, the set of normal forms of degree q, by induction on q:

- 1. $F_0^{n,m}$ is the set of terms $\prod \{\pm x_i : i \in m\}$.
- 2. $F_{a+1}^{n,m}$ consists of the following terms

$$\prod\{\pm x_i: i \in m\} \cdot \prod\{\pm c_i\tau: i \in n, \tau \in F_q^{n,m}\}.$$
3. $F^{n,m} = \bigcup\{F_q^{n,m}: q \in \omega\}.$

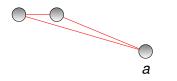
Normal Disjunctive Forms

- $Crs_n^{df} \models F_q^{n,m}$ forms a partition of the unit.
- ► There is an algorithm to determine, for every term τ ∈ 𝔅𝑘_{m,df_n}, a finite set of normal forms of the same degree such that Crs^{df}_n thinks that τ is zero or equals the disjunction of these normal forms.

deg. q + 1

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

G



G

deg. *q* deg. *q* + 1

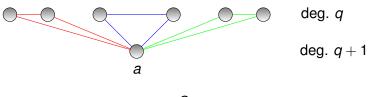
・ロト・(四ト・(日下・(日下・))への)



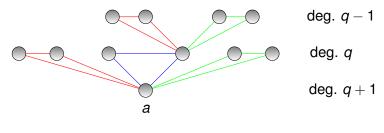
G

deg. *q* deg. *q* + 1

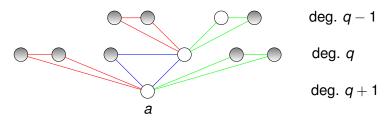
・ロト・四ト・ヨト・ヨト・日・ショウ



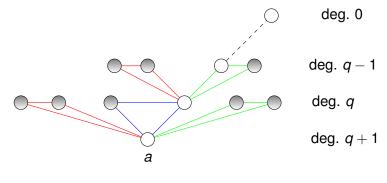
G



G



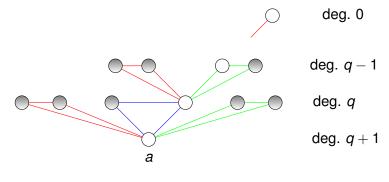
G



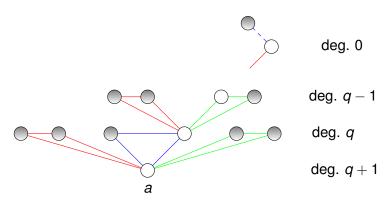
G

€ 940°

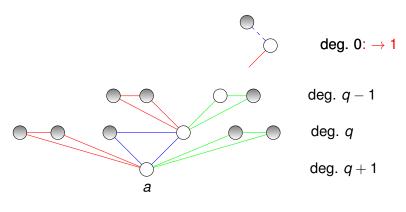
ヘロト 人間 とく ヨン 人 ヨン



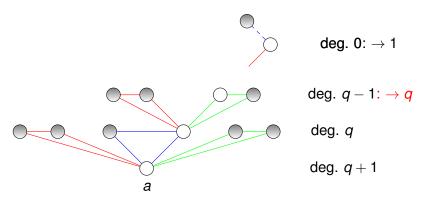
G



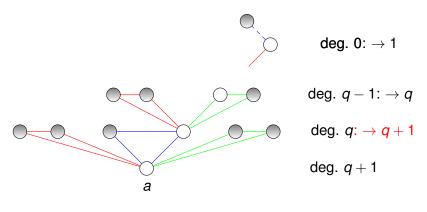
G and G_+



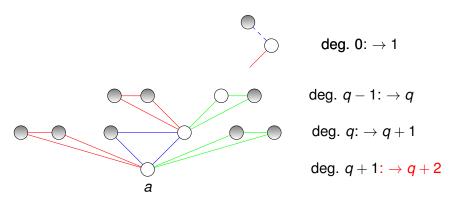
G and G_+



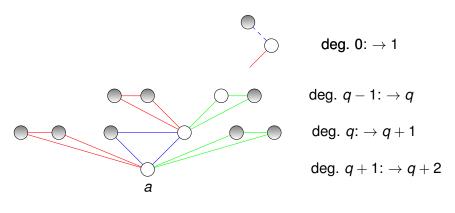
G and G_+



G and G_+



G and G_+



G and G_+

- Finitely axiomatizable.
- Finite base property.
- Decidability of the equational theory.
- Decidability of the universal theory.
- Super amalgamation property.
- $\mathfrak{Fr}_0 Crs_n^{df}$ is finite while $\mathfrak{Fr}_m Crs_n^{df}$ is atomless $(m \ge 1)$.

- Finitely axiomatizable.
- Finite base property.
- Decidability of the equational theory.
- Decidability of the universal theory.
- Super amalgamation property.
- $\mathfrak{Fr}_0 Crs_n^{df}$ is finite while $\mathfrak{Fr}_m Crs_n^{df}$ is atomless $(m \ge 1)$.

- Finitely axiomatizable.
- Finite base property.
- Decidability of the equational theory.
- Decidability of the universal theory.
- Super amalgamation property.
- $\mathfrak{Fr}_0 Crs_n^{df}$ is finite while $\mathfrak{Fr}_m Crs_n^{df}$ is atomless $(m \ge 1)$.

- Finitely axiomatizable.
- Finite base property.
- Decidability of the equational theory.
- Decidability of the universal theory.
- Super amalgamation property.
- $\mathfrak{Fr}_0 Crs_n^{df}$ is finite while $\mathfrak{Fr}_m Crs_n^{df}$ is atomless $(m \ge 1)$.

- Finitely axiomatizable.
- Finite base property.
- Decidability of the equational theory.
- Decidability of the universal theory.
- Super amalgamation property.
- $\mathfrak{Fr}_0 Crs_n^{df}$ is finite while $\mathfrak{Fr}_m Crs_n^{df}$ is atomless $(m \ge 1)$.

- Finitely axiomatizable.
- Finite base property.
- Decidability of the equational theory.
- Decidability of the universal theory.
- Super amalgamation property.
- $\mathfrak{Fr}_0 Crs_n^{df}$ is finite while $\mathfrak{Fr}_m Crs_n^{df}$ is atomless $(m \ge 1)$.

Thanks!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?