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Classifications of residuated lattices

Every Archimedean, naturally and totally ordered semigroup in which 
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(I)-Semigroups
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Figure 1: Minimum (left), product (center) and √Lukasiewicz t-norms (right)

invariant with respect to three reflections at the hyperplanes, given by {(x, y, z, v) 2 X4 | x = y},
{(x, y, z, v) 2 X4 | y = z}, and {(x, y, z, v) 2 X4 | z = x}, respectively.

Our aim in this paper is to develop a method for deciding associativity from the three-
dimensional graph of an operation. Thus, a geometrical characterization of associativity is
presented here. This provides a deeper understanding of associativity, which turns out to be
fruitful in conjecturing and proving algebraic results in the field of residuated lattices, and in
establishing results in the corresponding nonclassical logics. Moreover, this geometric description
has provided the intuition for a contribution to solving a long-standing open problem in the field
of associative functions [14].

2 Preliminaries

In the present paper we shall consider residuated operations only. On intervals of R binary
operations can be viewed as real functions of two variables, thus making it possible to speak
about analytic properties in addition to algebraic ones. Several algebraic properties have analytic
analogues in this setting. For example, being residuated corresponds to the left-continuity of a
two-place function.

2.1 Residuated groupoids

Let M be a nonempty set. (M, §±) is called a groupoid, if §± is a binary operation on M . A
groupoid is called commutative if §± is commutative. Let (M,∑) be a poset. A mapping of type
M ! M is called an involution if its composition with itself is the identity map of M .

Let (M, §±,∑) be a groupoid on a poset. The groupoid is called partially-ordered (po-groupoid)
if x§±y ∑ x§±z and y§±x ∑ z§±x holds whenever y ∑ z, (x, y, z 2 M). When the underlying universe
is a lattice, a groupoid is called lattice-ordered (l-groupoid) if §± is distributive over the join
operation of the lattice. The groupoid is called residuated ([4, 11]), if there exist two binary
operations !§± and √§± on M (called the left- and the right-residuum, respectively) such that
the following equivalences (called left- and right-adjointness property, respectively) hold:

x§±y ∑ z if and only if x ∑ y!§±z (x, y, z 2 M)
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Classifications of residuated lattices

BL-algebras are subdirect poset products of MV-chains and product chains.  
P. Jipsen, F. Montagna, Embedding theorems for classes of GBL-algebras, Journal 
of Pure and Applied Algebra, 214 vol. 9 (2010), 1559–1575

Our main theorem, for a more specific class of chains, and under the condition that 
the positive and the negative cones of the algebra are dually isomorphic  
S. Jenei, F. Montagna, Strongly Involutive Uninorm Algebras, Journal of Logic 
and Computation 23:(3) pp. 707-726. (2013)

Our main theorem, for a more specific class of chains  
S. Jenei, F. Montagna: A classification of certain group-like FLe-chains, Synthese,
(2014). doi:10.1007/s11229-014-0409-2 (papers from Logic and Relativity 2012, 
honoring István Németi's 70th birthday)



Residuated lattices

Residuated lattices are exactly the 0-free reducts of FL-algebras. 
(FL-algebras are residuated lattices with a constant f.)

FLe-algebra:   FL-algebra such that ⋅ is commutative.  
Notation y/x=x→y

t (truth) for 1, f (false) for 0



FLe-algebras

x’=x→f              

involutive:        x’’=x       ( f ’=t  follows)

group-like:        involutive    and    t=f 

All lattice-ordered groups are group-like FLe-algebras.

Absorbent continuity : For x ∈ X-, a(x)⨂x = x holds, 
where a(x) = inf { u∈X- :  u⨂x = x}



BL-algebras



Ordinal Sums

P. Aglianò, F. Montagna, Varieties of BL-algebras I: general properties, 
Journal of Pure and Applied Algebra, 181 (2–3), 2003, 105–129



Twin rotation

[S. Jenei, H. Ono, On involutive FLe-monoids, Archive for 
Mathematical Logic, 51:(7-8) pp. 719-738. (2012)]







If U is an absorbent-continuous, group-like FLe-algebra on a 
complete, order dense chain (with involution ʹ′) then U is the 
twin-rotation of a BL-algebra and its de Morgan dual  
x+y=(x’⋅y’)’ , where the BL-algebra has components, which are 
either cancellative or Boole-algebras over two elements, and the 
BL-algebra cannot have two consecutive cancellative components.  
 
[S. Jenei, Classification of absorbent-continuous, densely ordered, 
complete, group-like FLe-chains (submitted)]

Main Theorem of the talk



If U is an absorbent-continuous, group-like FLe-algebra on a 
complete, order dense chain (with involution ʹ′) then U is the 
twin-rotation of a BL-algebra and its de Morgan dual  
x+y=(x’⋅y’)’ , where the BL-algebra has components, which are 
either cancellative or Boole-algebras over two elements, and the 
BL-algebra cannot have two consecutive cancellative components.  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Absorbent-continuous, complete, order-
dense, group-like FLe-chains over [0,1]
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Fig. 1. (⊕P)r (left), its dual (⊙P)r (right), and (⊕P)s (bottom).

Definition 2. We say that ⊕ ∈ B is border-continuous, if for any y ∈ [t, 1] the function fy : [t, 1] → [t, 1],
fy(x) = x⊕y is continuous at t.

Lemma 1. For any ⊕ ∈ B which is border-continuous the following two statements hold true:

1. x ⊕s y

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

> t if x, y ∈]t, 1]
≤ t if x ∈ [t, 1] and y ∈ [0, t] and x ≤ y′

> t if x ∈ [t, 1] and y ∈ [0, t] and x > y′

≤ t if x ∈ [0, t] and y ∈ [t, 1] and x ≤ y′

> t if x ∈ [0, t] and y ∈ [t, 1] and x > y′

≤ t if x, y ∈ [0, t]

(11)

2. For any x ∈ [0, 1] the residual x→⊕s t exists and equals x
′.

If, in addition, ⊕s is associative then

3. we have that ⊕s is rotation-invariant with respect to ′, that is, for x, y, z ∈ [0, 1] we have

x ⊕s y ≤ z′ iff y ⊕s z ≤ x ′

and consequently,
4. ⊕s is residuated, that is, for all x, y ∈ [0, 1] the maximum of the set {z ∈ [0, 1] | x ⊕s z ≤ y} exists.
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Fig. 2. Illustration for items 2 and 3 of Theorem 5, see Example 1.
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Fig. 2. Illustration for items 2 and 3 of Theorem 5, see Example 1.
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Fig. 6. Rotations of ordinal sums.

6. Rotation–annihilation

The rotation–annihilation method was introduced in [18]. It produces left-continuous (but not
continuous) t-norms which have strong associated negations from a pair of connectives, as it is
given in the following de!nition. Again, we remark, that it is not possible to provide any further
generalization of the method (which still produces t-norms or t-subnorms).

De!nition 2 (Jenei [15]). Let N be a strong negation and t be its unique !xed point. Let d∈]t; 1].
Then Nd : [0; 1]→ [0; 1] de!ned by

Nd(x) =
N (x · (d− N (d)) + N (d)) − N (d)

d− N (d)

is a strong negation. Call Nd the zoomed d-negation of N .

De!nition 3. Let N be a strong negation, t its unique !xed point, ∈]t; 1[ and Nd be the zoomed
d-negation of N . Let T1 be a left-continuous t-subnorm.

i. If T1 has no zero divisors then let T2 be a left-continuous t-subnorm which admits the rotation
invariance property w.r.t. Nd. Further, let I− = [0; N (d)[; I 0 = [N (d); d] and I+ =]d; 1].

ii. If T1 has zero divisors then let T2 be a left-continuous t-norm which admits the rotation
invariance property w.r.t. Nd (it is equivalent to saying that T2 is a left-continuous t-norm with
strong associated negation equal with Nd, see [19]). Further, let I− = [0; N (d)]; I 0 =]N (d); d[ and
I+ = [d; 1].

Let T3 be the linear transformation of T1 into [d; 1], T4 be the linear transformation of T2 into
[N (d); d] and T5 : [N (d); d]2 → [N (d); d] be the annihilation of T4 given by

T5(x; y) =
{

0 if x; y ∈ [N (d); d] and x 6 N (y);
T4(x; y) if x; y ∈ [N (d); d] and x ¿ N (y):

S. Jenei / Fuzzy Sets and Systems 143 (2004) 27–45 37

Fig. 7. Geometrical explanation of the rotation–annihilation construction.
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Fig. 8. T-norms generated by the rotation–annihilation construction, see Example 5.
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Fig. 9. Other t-norms generated by the rotation–annihilation construction, see Example 5.
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Fig. 9. Other t-norms generated by the rotation–annihilation construction, see Example 5.
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Fig. 12. 3D plots of (TM)⟨+⟩ (left) and (Tos)⟨+⟩ (right).
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Fig. 13. (TP)⟨⊕x⟩ and (TP)⟨⊕x ;⊕x⟩.

Example 6. Let TM stands for the minimum operation on [0; 1]. De!ne an ordinal sum with one
 Lukasiewicz summand as follows:

Tos(x; y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
9 + 5

9 max
(

0;
x− 2

9
5
9

+
y− 2

9
5
9

− 1
)

;

if x; y ∈
[ 2

9 ;
5
9

]

;
min(x; y) otherwise:

For the 3D plots of (TM)⟨+⟩ and (Tos)⟨+⟩ see Fig. 12.

Example 7. Let the operation ⊕x on N be given by x ⊕x y= (x − 1) · (y − 1) + 1. The graphs of
(TP)⟨⊕x⟩ and (TP)⟨⊕x ;⊕x⟩ are presented in Figs. 13 and 14.

Example 8. For the sake of completeness we remark that the left-continuous t-norm which is
introduced by Smutn"a [28] (motivated by the original idea of Budin#cevi#c and Kurili#c [1]) can
be constructed by Theorem 10, see [21].
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Fig. 2. The triple rotation of TM based on N . (a) TM; (b) R3(TM, N ) = T nM; (c) contour plot of R3(TM, N )]; (d) R3(TM, N ); (e) R32(TM, N );
(f) contour plot of R32(TM, N ); (g) R32(TM, N ); (h) R33(TM, N ); (i) contour plot of R33(TM, N ).

Similarly to Fig. 2, we performed in Fig. 3 the triple rotation method on the algebraic product TP. As can be
seen from Figs. 3(b), (e) and (h), the t-norm R3(TP, N ) has a single discontinuity point (( 1

2 , 1
2 )), the t-norm R32(TP, N )

has exactly three discontinuity points (( 1
4 , 3

4 ), ( 3
4 , 3

4 ) and ( 3
4 , 1

4 )) and the t-norm R33(TP, N ) has 10 discontinuity
points (( n

8 , m
8 ), with (n, m) ∈ {1, 3, 5, 7}2 such that 8!n + m). Figs. 2(b) and 3(b) can also be constructed by

means of the rotation construction of Jenei [8,11]. Otherwise, Figs. 2(e), (h), 3(e) and (h) visualize t-norms that
cannot be described by the rotation construction nor by the rotation-annihilation construction of Jenei [9,12].
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Let T : [0; 1]2 → [0; 1] be a function satisfying (T3), and let N be a strong negation. We say that
T admits the rotation invariance property [19] with respect to N or rotation invariant w.r.t. N if
for all x; y; z ∈ [0; 1] we have T (x; y)6z ⇔ T (y; N (z))6N (x).

3. Annihilation

The nilpotent minimum t-norm TM0 is introduced in [4] in such a way that the values of the
minimum t-norm are replaced by 0 under the negation 1 − x. More formally, for x; y∈ [0; 1] let

TM0(x; y) =
{

0 if y 6 1 − x;
min(x; y) otherwise: (1)

For a visualization, see Fig. 2, and compare with the picture of TM. It is observed that the same
construction works for any strong negation instead of the standard one 1−x, and that the construction
does not result in a t-norm (in fact, the associativity property is violated) if the minimum t-norm is
replaced by the product t-norm.

Motivated by this observation the concept of N -annihilation (N being any strong negation) is
investigated in [15] and a characterization of those continuous t-norms where the annihilated operator
is a t-norm is given as follows:

Let T be a t-norm and N be a strong negation. De!ne the binary operation T(N ) (called the
N -annihilation of T ) as follows:
T(N ) : [0; 1]× [0; 1]→ [0; 1];

T(N )(x; y) =
{

0 if x 6 N (y);
T (x; y) otherwise: (2)
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Fig. 2. The nilpotent minimum TM0 (left), a continuous t-norm (center) and its annihilation TJ which is de!ned in (3)
(right).
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Fig. 12. 3D plots of (TM)⟨+⟩ (left) and (Tos)⟨+⟩ (right).
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Fig. 13. (TP)⟨⊕x⟩ and (TP)⟨⊕x ;⊕x⟩.

Example 6. Let TM stands for the minimum operation on [0; 1]. De!ne an ordinal sum with one
 Lukasiewicz summand as follows:

Tos(x; y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
9 + 5

9 max
(

0;
x− 2

9
5
9

+
y− 2

9
5
9

− 1
)

;

if x; y ∈
[ 2

9 ;
5
9

]

;
min(x; y) otherwise:

For the 3D plots of (TM)⟨+⟩ and (Tos)⟨+⟩ see Fig. 12.

Example 7. Let the operation ⊕x on N be given by x ⊕x y= (x − 1) · (y − 1) + 1. The graphs of
(TP)⟨⊕x⟩ and (TP)⟨⊕x ;⊕x⟩ are presented in Figs. 13 and 14.

Example 8. For the sake of completeness we remark that the left-continuous t-norm which is
introduced by Smutn"a [28] (motivated by the original idea of Budin#cevi#c and Kurili#c [1]) can
be constructed by Theorem 10, see [21].
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Fig. 3. TP0:5 and TL0:4 (left). A t-subnorm and a t-norm, which are ordinal sums of t-subnorms (right). See Examples 1
and 3.

the only thing we need to verify that the summand which is just below it (that is, TP) is a t-norm.
Fig. 3 (right) visualizes the latest two ordinal sums.

5. Rotation

The rotation method is introduced in [17] and a characterization theorem is given in [11]. As in
the ordinal sum theorem for t-subnorms, we remark, that it is not possible to provide any further
generalization of the method (which still produces t-norms or t-subnorms). The method produces
left-continuous (but not continuous) t-norms which have strong associated negations from any left-
continuous t-norm T1 which either has no zero divisors or all the zero values of its graph are in a
sub-square of the unit square (see Fig. 4). The construction of t-subnorms is as well possible, see
Remark 1.

Theorem 5. Let N be a strong negation, t its unique !xed point and T be a left-continuous t-norm.
Let T1 be the linear transformation of T into [t; 1], I+ = ]t; 1] and I− = [0; t]. De!ne TRot and ITRot
(of types [0; 1]× [0; 1]→ [0; 1]) by

TRot(x; y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

T1(x; y) if x; y ∈ I+;
N (IT1(x; N (y))) if (x; y) ∈ I+ × I−;
N (IT1(y; N (x))) if (x; y) ∈ I− × I+;
0 if x; y ∈ I−;

(6)

ITRot(x; y) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

IT1(x; y) if x; y ∈ I+;
N (T1(x; N (y))) if (x; y) ∈ I+ × I−;
1 if (x; y) ∈ I− × I+;
IT1(N (y); N (x)) if x; y ∈ I−:

(7)

TRot is a left-continuous t-norm if and only if either

C1. T has no zero divisors or
C2. there exists c∈ ]0; 1] such that for any zero divisor x of T we have IT (x; 0) = c.



The proof uses geometric aspects of 
associativity
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Main tool 1: Reflection-invariance
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Main tool 1: Reflection-invariance

(x’*y’)’=x*y

x’*y’=(x*y)’



S. Jenei
Classification of absorbent-continuous, densely ordered, 

complete, group-like FLe-chains (submitted)

Main Tool (x’*y’)’=x*y



Ongoing work

Main Theorem of the talk  
If U is an absorbent-continuous, group-like FLe-algebra on 
a complete, order dense chain, with involution ʹ′ then U is 
the twin-rotation of a BL-algebra and its de Morgan dual 
with respect to ʹ′, where the BL-algebra has components, 
which are either cancellative or MV-algebras over two 
elements, and the BL-algebra cannot have two consecutive 
cancellative components. 



Ongoing work

Uninorms can be viewed (as in Girard’s linear logic) as fusion 
operators suitable for interpreting combinations of premises or 
resources 

Uninorm logic UL is an extension of Multiplicative 
additive intuitionistic linear logic MAILL with the 
axiom ((A → B) ∧ t) ∨ ((B → A) ∧ t).  
- Proving or disproving the standard completeness of  IUL  
 

[G. Metcalfe, F. Montagna. Substructural fuzzy logics. Journal of 
Symbolic Logic, 7, 834–864, 2007. ]



Thank you for your attention.


