Decidability of Temporal Logic of Two Deimensional Minkowski Spacetime

Robin Hirsch and Mark Reynolds

August 9, 2015

Minkowski Spacetime

$$(x_0, x_1, \dots, x_n) \leq (y_0, y_1, \dots, y_n) \iff \sqrt{\sum_{i < n} (y_i - x_i)^2} \leq y_n - x_n$$
$$\mathcal{F}, \mathsf{x} \models \mathsf{F}\psi \iff (\exists \mathsf{y} \geq \mathsf{x}) \ \mathcal{F}, \mathsf{y} \models \psi$$
$$\mathcal{F}, \mathsf{x} \models \mathsf{P}\psi \iff (\exists \mathsf{y} \leq \mathsf{x}) \ \mathcal{F}, \mathsf{y} \models \psi$$

Two dimensional coordinates

 $(x,y) \le (x',y') \iff x \le x' \land y \le y'$

 $(x,y) < (x',y') \iff (x,y) \le (x',y') \land (x,y) \ne (x',y')$ $(x,y) \prec (x',y') \iff x < x' \land y < y'$ $(x,y) \triangleleft (x',y') \iff x \le x' \land y \ge y' \land (x,y) \ne (x',y')$

Modal Axioms S4.2

$$egin{aligned} \mathbf{G}(\psi o heta) & o (\mathbf{G}\psi o \mathbf{G} heta) \ \mathbf{G}\psi o \mathbf{G}\mathbf{G}\psi \ \mathbf{F}\mathbf{G}\psi o \mathbf{G}\mathbf{F}\psi \ \mathbf{G}\psi o \psi \end{aligned}$$

+ Duals + Temporal Axioms

$$\psi
ightarrow \mathbf{GP}\psi$$

 $\psi
ightarrow \mathbf{HF}\psi$
 $\mathbf{FP}\psi \leftrightarrow \mathbf{PF}\psi$

S4.2 is Sound and Complete for modal logic of ...

- Confluent partial orders
- (\mathbb{R}^n, \leq) (any $n \geq 2$)
- (\mathbb{Q}^n,\leq)

S4.2 + Temporal Axioms is complete for confluent partial orders. Proof, by filtration.

Problems

- 1. Axiomatise temporal logic of (\mathbb{R}^2, \leq) , $(\mathbb{R}^2, <)$, (\mathbb{Z}^2, \leq) , (\mathbb{Q}^3, \prec) ,...
- 2. Prove decidability of (\mathbb{R}^2, \leq) , (\mathbb{R}^2, \prec) , (\mathbb{R}^2, \prec) ,
- 3. Prove undecidability of $(\mathbb{R}^3, \leq), (\mathbb{R}^2, <),$
- 4. Find temporal formula distinguishing (\mathbb{R}^n, \leq) and (\mathbb{R}^m, \leq) for $2 \leq n < m$.

Rectangles

 $\mathbf{x}, \mathbf{y} \in R, \ \mathbf{x} \wedge \mathbf{y} \leq \mathbf{z} \leq \mathbf{x} \vee \mathbf{y} \rightarrow \mathbf{z} \in R$

Cartesian product of two convex intervals.

Topology

- 1. Boundary of S is closure minus interior a closed set.
- 2. If S, T are closed and bounded subsets of \mathbb{R}^2 and $\forall \epsilon > 0 \exists s \in S, t \in T \ d(s, t) \leq \epsilon$ then $S \cap T \neq \emptyset$.
- 3. R is a closed rectangle, say $[0,1] \times [0,1]$. If S is closed downward and has non-trivial boundary then boundary is homeomorphic to a closed line segment.
- 4. If open line segment is partitioned into closed line segments, then at least one is a single point.

Distinguishing Formulas

$$\Delta(\mathcal{P}) = \mathbf{G}\mathbf{H} \begin{bmatrix} \forall P & & & \\ & &$$

8

Filtration

 ϕ a fixed temporal formula.

 $Cl(\phi) = \{$ subformulas, single negations of subformulas of $\phi \}$. MCS is set of maximal consistent subsets of $Cl(\phi)$.

$$m \leq n \iff (\mathbf{G}\psi \in m \to \mathbf{G}\psi \in n \land \mathbf{H}\psi \in n \to \mathbf{H}\psi \in m)$$

 (MCS, \leq) is reflexive, transitive, confluent, but not antisymmetric. Cluster is equivalence class of MCSs. MCS/ \sim is a confluent partial order.

Trace

$$(c_0, m_0, c_1, m_1, \ldots, m_{k-1}, c_k)$$

where $c_i \leq m_i \leq c_{i+1}$ and $c_i < c_{i+1}$, for i < k.

Rectangle Model

 $h: R \to MCS$

- $\mathbf{x} \leq \mathbf{y} \in R \rightarrow h(\mathbf{x}) \leq h(\mathbf{y})$
- If $F\psi \in h(x)$ then either
 - $\exists \mathsf{y} \ge \mathsf{x} \ \psi \in h(\mathsf{y}),$
 - R includes boundary point y due East of x and $F\psi \in h(y)$, or
 - R includes boundary point y due North of x and $\mathbf{F}\psi \in h(y)$.

• Similar for $\mathbf{P}\psi$.

Defects

MCS $F\psi \in m, \ \psi \not\in m$,

Cluster $\mathbf{F}\psi \in \bigcup c, \ \psi \not\in \bigcup c$,

Trace $\mathbf{F}\psi$ is a defect of c_i but $\mathbf{F}\psi \notin m_i$.

Boundary Maps

 $\partial : \{-,+\} \cup \{\mathsf{b},\mathsf{t},\mathsf{l},\mathsf{r}\} \cup \{N,S,E,W\} \rightarrow \{\mathsf{clusters}\} \cup MCS \cup \{\mathsf{traces}\}$

Rectangle Model to Boundary Map

Rectangle model h determines boundary map ∂^h .

Simple boundary maps

 $\partial \in B_0$ if

- $\partial(-) = \partial(+),$
- No internal defects

Joining

 $\partial\oplus_N\partial'$

Limits

Suppose

- $\partial = \partial \oplus_W \partial$,
- \exists undecomposable rectangle model h where $\partial = \partial^h$
- ∂^* is identical to ∂ except $\partial^*(W)$ is either undefined or it can be a single cluster trace, such that there are no internal defects.

then ∂^* is a Western limit of ∂ .

Shuffles

B

B is closure of B_0 under joins, limits and shuffles.

Algorithm 1 Algorithm to compute *B*

1: $B = B_0$

- 2: while new elements can be found do
- 3: Add any joins of elements of B to B
- 4: Add any limits of elements of B to B
- 5: Add any suffles from B to B

Main Theorem

 $\partial \in B \iff (\exists h) \ \partial = \partial^h$

- \Rightarrow By induction on number of iterations of the while loop in algorithm for B.
- ⇐ By induction on maximum length of chain of distinct clusters from $\partial^h(-)$ up to $\partial^h(+)$,

Good sets

Let h be a rectangle model. Must show $\partial^h \in B$.

Def: $S \subseteq Cl(dom(h))$ is good if it is a finite union of rectangles and for every defined subrectangle R of S we have $\partial^{h|_R} \in B$

Main Proof

- $G(X), G(Y) \Rightarrow G(X \cup Y),$
- $(\forall i > 0G[x_i, y_0]) \Rightarrow G[x, y_0],$

Boundaries

Let Γ be boundary of $h^{-1}(\partial(-))$, let Δ be boundary of $h^{-1}(\partial(+))$.

• If $\Gamma \cap \Delta \cap Int(dom(h)) = \emptyset$ then dom(h) is good,

Equivalence Relation \approx over $\Gamma\cap\Delta$

Contains ⊲ successor relation, and closed under limits.

- $S \subseteq \Gamma \cap \Delta$ a \approx equiv. class, \triangleleft -bounded by x, y then $R(S) = [x \land y, x \lor y]$ is good,
- Union of the lower boundaries of the R(S)s (for S a \approx -class) is homeomorphic to a simple line segment,
- There is a singleton \approx class,
- ∂^h is a shuffle of $\partial^{h|_{R(S)}}$ s for $S \in E$.

References

G. Cantor. Über unendliche, lineare Punktmannigfaltigkeiten V [On infinite, linear point-manifolds (sets)] Mathematische Annalen, 21: 545–591, 1883.

R. Goldblatt. Diodorean modality in Minkowski space-time. *Studia Logica*, 39:219–236, 1980.

A. Prior. Past, Present and Future. Oxford University Press, 1967.

A. Prior. The notion of the present. *Studium Generale*, 23:245–248, 1970.

V. Shehtman. Modal logics of the real plane. *Studia Logica*, 42:63–80, 1983.

Ilya Shapirovsky and Valentin B. Shehtman. Chronological future modality in minkowski spacetime. In Philippe Balbiani, Nobu-Yuki Suzuki, Frank Wolter, and Michael Zakharyaschev, editors, *Advances in Modal Logic*, 437–460. King's College Publications, 2002.