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Exercises
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In this series of exercises we construct the Witt rings of perfect rings of characteristic p.
Let A be a commutative ring with 1 in which p = 1 + · · ·+ 1︸ ︷︷ ︸

p

∈ A is not a zero divisor and

the natural map A → lim←−n
A/pnA is an isomorphism (ie. A is p-adically complete). Further

suppose that R := A/pA is a perfect ring of characteristic p, that is the p-power Frobenius is
bijective: for all x ∈ R there exists uniquely a y := xp

−1 ∈ R with x = yp. These rings A are
called strict p-rings. For example A = Zp is a strict p-ring.

1. Show that on fields k of characteristic p the Frobenius is always injective and it is
surjective if and only if none of the irreducible polynomials over k have a multiple root.

2. Show that a ring R of characteristic p (ie. commutative and 1 + · · ·+ 1︸ ︷︷ ︸
p

= 0) is reduced

(ie. contains no nilpotent elements) if the Frobenius is injective.

3. Let A be a strict p-ring with R = A/pA perfect of characteristic p. For any x ∈ R
denote by x̂ an arbitrary lift of x to A (ie. x = x̂ + pA). We choose once and for all
such a lift for each x ∈ R. Show that the limit [x] := limn→∞(x̂p−n)p

n exists in A in the
p-adic topology. Moreover, verify that [xy] = [x][y]. The element [x] ∈ A is called the
multiplicative (or Teichmüller) representative of x.

4. Show that in a strict p-ring A any element x ∈ A can be uniquely written in the form

x =
∞∑
i=0

pi[xi]

where [xi] ∈ A are multiplicative representatives of elements xi ∈ R. Moreover, any
sum like that converges in the p-adic topology.

Let R be a perfect ring of characteristic p. Our goal is to construct a strict p-ring W (R)
such that R ∼= W (R)/pW (R). Further, we would like to do this functorially in R. Such
a W (R) will be unique up to a unique isomorphism and will be called the Witt ring of R.
The elements of W (R) will have the form

∑∞
i=0 p

i[xi] with xi ∈ R. Here [xi] denotes a formal
multiplicative representative of xi inW (R). In order to define the addition and multiplication

1



on these formal power series we first need to construct the Witt ring of a free perfect ring of
characteristic p on countably many generators. Let X0, X1, . . . , Y0, Y1, . . . be formal variables.
Moreover, let Xp−n

i and Y p−n

i denote a formal pnth root of these variables. Further let

Zp[X
p−∞

i , Y p−∞

i | i ≥ 0] :=
⋃
n

Zp[X
p−n

i , Y p−n

i | i ≥ 0] ;

S := lim←−
n

Zp[X
p−∞

i , Y p−∞

i | i ≥ 0]/(pn) .

5. Show that S is a strict p-ring. Therefore there exist polynomials Si, Pi ∈ S/pS =

Fp[X
p−∞

i , Y p−∞

i | i ≥ 0] for which(
∞∑
i=0

piXi

)
+

(
∞∑
i=0

piYi

)
=

∞∑
i=0

pi[Si](
∞∑
i=0

piXi

)(
∞∑
i=0

piYi

)
=

∞∑
i=0

pi[Pi] .

6. Determine the polynomials S0, S1, P0, P1 ∈ Fp[X
p−∞

i , Y p−∞

i | i ≥ 0].

7. Let R be a perfect ring of characteristic p and put W (R) = {r = (r0, r1, . . . ) | ri ∈
R, i ≥ 0} = RN as a set. Consider the following operations on W (R): (r + s)n :=
Sn(r0, r1, . . . , s0, s1, . . . ) and (rs)n := Pn(r0, r1, . . . , s0, s1, . . . ). Show that this equips
the set W (R) with a structure of a strict p-ring.

8. Prove the following universal property of W (R): if A is any strict p-ring and ϕ : R →
A/pA is a ring homomorphism then there exists a unique homomorphism ϕ̃ : W (R)→ A
lifting ϕ, ie. ϕ equals ϕ̃ modulo p). In particular, W is a functor from the category of
perfect rings of characteristic p to the category of strict p-rings. Remark: Frobp : R→ R
can also be lifted to W (R). We call this Frobenius-lift.

9. Show that the functors R 7→ W (R) and A 7→ A/pA are quasi-inverse equivalences of
categories between the category of strict p-rings and the category of perfect rings of
characteristic p.

10. Show that the field Cp := Q̂p is algebraically closed. (Here · stands for the algebraic
closure and ·̂ stands for the completion with respect to the p-adic absolute value.)

11. For a finite extension K/Qp (inside Qp) denote by GK = Gal(Qp/K) its absolute Galois
group. Since the action of GK is continuous (isometric) on Qp it extends to the com-
pletion Cp. Show that CGK

p = K, ie. there are no transcendental invariants.

12. (Hilbert 90 for GLn) Show that for any finite Galois extension L/K of fields we have

H1(Gal(L/K),GLn(L)) = {1} .

Note that for n > 1 this is just a pointed set, not a group. Recall that the nonabelian
group cohomology is defined as follows: if the group G acts on the group A via auto-
morphisms then H1(G,A) is the set of equivalence classes of 1-cocycles: a 1-cocycle is a
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map ϕ : G→ A with the property that ϕ(gh) = ϕ(g)·(gϕ(h)). Moreover, ϕ is equivalent
to ϕ′ if there exists an a ∈ A such that for all g ∈ G we have aϕ′(g) = ϕ(g) · (ga). The
distinguished element of the set H1(G,A) is the equivalence class of the constant 1 map.

13. (Thm. Ax–Sen–Tate) Prove that for any closed subgroup H ≤ GK we have CH
p = L̂

where L = Qp
H .

The following exercises are meant to be done after the course.

14. Let Λ be a finitely generated Zp-module equipped with a continuous representation by
GK = Gal(K/K) for the fraction field K of a complete discrete valuation ring. Let
ρ : GK → AutZp(Λ) be the associated homomorphism. Prove that Kerρ is a closed
normal subgroup in GK , and let K∞ be the corresponding fixed field; we call it the
splitting field of ρ. In case ρ is the Tate module representation of an elliptic curve
E over F with char(K) 6= p, prove that the splitting field of ρ is the field K(E[p∞])
generated by the coordinates of the p-power torsion points.

15. Let E be an elliptic curve over K with split multiplicative reduction, and consider the
representation space Vp(E) = Qp ⊗Zp Tp(E) ∈ RepQp

(GK). The theory of Tate curves
provides an exact sequence

0→ Qp(1)→ Vp(E)→ Qp → 0

that is non-split in RepQp
(GK′) for all finite extensions K ′/K inside of K. Show that

the exact sequence
0→ K(1)→ K ⊗Qp Vp(E)→ K → 0

is not split in the category RepK(GK) of semilinear representations of GK on K-vector
spaces either. However, the exact sequence

0→ Cp(1)→ Cp ⊗Qp Vp(E)→ Cp → 0

splits in RepCp
(GK).

16. Let η : GK → Z×p be a continuous character. Identify H1
cont(GK ,Cp(η)) with the set of

isomorphism classes of extensions

0→ Cp(η)→ W → Cp → 0

in RepCp
(GK) as follows: using the matrix description(

η ∗
0 1

)
of such a W , the homomorphism property for the GK-action on W says that the upper
right entry function is a 1-cocycle on GK with values in Cp(η), and changing the choice
of Cp-linear splitting changes this function by a 1-coboundary.
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17. Let R be a discrete valuation ring with maximal ideal m and residue field k, and let
A = Frac(R). There is a natural structure of a filtered ring on A via Ai = mi for i ∈ Z.
In this case the associated graded ring gr•(A) is a k-algebra that is non-canonically
isomorphic to a Laurent polynomial ring k[t, 1/t] upon choosing a k-basis of m/m2. Show
that canonically gr•(A) ∼= gr•(Â), where Â denotes the fraction field of the completion
R̂ of R.

18. Let the ring R be R := lim←−x7→xp
OCp/(p). Show that R has no zero divisiors and Frac(R)

is an algebraically closed field of characteristic p.

19. Show that B+
dR is not (Qp, GK)-regular.

20. Show that a 1-dimensional p-adic Galois-representation is deRham if and only if it is
Hodge-Tate.

21. Show that a p-adic Galois representation V is deRham (resp. Hodge-Tate) if and only
if all its Tate twists V (r) are deRham (resp. Hodge-Tate).

22. Calculate explicitely Dcris(Qp(r)).

23. Calculate explicitely Dst(Vp(E)) where E is an elliptic curve over K with split multi-
plicative reduction (you may assume it is a Tate curve).

4


