Horizons of Combinatorics Budapest 2006

The Erdős-Rényi Phase Transition

Joel Spencer

Working with Paul Erdős was like taking a walk in the hills. Every time when I thought that we had achieved our goal and deserved a rest, Paul pointed to the top of another hill and off we would go.

- Fan Chung

Paul Erdős and Alfred Rényi
On the Evolution of Random Graphs
Magyar Tud. Akad. Mat. Kutató Int. Közl
volume 8, 17-61, 1960

 $\Gamma_{n,N(n)}$: n vertices, random N(n) edges

[...] the largest component of $\Gamma_{n,N(n)}$ is of order $\log n$ for $\frac{N(n)}{n}\sim c<\frac{1}{2}$, of order $n^{2/3}$ for $\frac{N(n)}{n}\sim\frac{1}{2}$ and of order n for $\frac{N(n)}{n}\sim c>\frac{1}{2}$. This double "jump" when c passes the value $\frac{1}{2}$ is one of the most striking facts concerning random graphs.

The "Double Jump"

$$G(n,p)$$
, $p = \frac{c}{n}$ (or $\sim \frac{c}{2}n$ edges)

• *c* < 1

Biggest Component $O(\ln n)$

$$|C_1| \sim |C_2| \sim \dots$$

All Components simple (= tree/unicyclic)

• c = 1

Biggest Component $\Theta(n^{2/3})$

 $|C_1|n^{-2/3}$ nontrivial distribution

 $|C_2|/|C_1|$ nontrivial distribution

Complexity of C_1 nontrivial distribution

 \bullet c > 1

Giant Component $|C_1| \sim yn$, y = y(c) > 0

All other $|C_i| = O(\ln n)$ and simple

The Critical Window
$$p = \frac{1}{n} + \lambda n^{-4/3}$$

• $\lambda(n) \to -\infty$ Subcritical Biggest Component $o(n^{2/3})$ $|C_1| \sim |C_2| \sim \dots$

All Components simple

- λ constant. The Critical Window Biggest Component $\Theta(n^{2/3})$ $|C_1|n^{-2/3}$ nontrivial distribution $|C_2|/|C_1|$ nontrivial distribution Complexity of C_1 nontrivial distribution
- $\lambda(n) \to +\infty$ Supercritical Dominant Component $|C_1| \gg n^{2/3}$ High Complexity All other $|C_i| = o(n^{2/3})$ and simple

What is the Critical Window?

Difficult in General

When Dominant Component is Emerging

Subcritical: Biggest about same size

Supercritical: Biggest ≫ second

Susceptibility $\chi(G) = E[|C(0)|] = \frac{1}{n} \sum |C_i|^2$

Largest Component starts to dominate

Subcritical: $\frac{1}{n}|C_1|^2 \ll \chi(G)$

Critical: $\frac{1}{n}|C_1|^2 = O(\chi(G))$

Supercritical: $\frac{1}{n}|C_1|^2 \sim \chi(G)$

Computer Experiment (Try It!)

n = 50000 vertices. Start: Empty

Add random edges

Parametrize
$$e/\binom{n}{2}=(1+\lambda n^{-1/3})/n$$

Merge-Find for Component Size/Complexity

$$-4 \le \lambda \le +4$$
, $|C_i| = c_i n^{2/3}$

See biggest merge into dominant

A Strange Physics

Components $c_i n^{2/3}$, $c_j n^{2/3}$ $\lambda \leftarrow \lambda + d\lambda$, $p \leftarrow p + n^{-4/3} d\lambda$ Merge with probability $c_i c_j d\lambda$ Increment Complexity $\frac{1}{2} c_i^2 d\lambda$

Galton-Watson Birth Process

Root node "Eve"

Each node has Po(c) children

(Poisson:
$$Pr[Po(c) = k] = e^{-c}c^k/k!$$
)

 $T = T_c$ is total size

- *c* < 1
 - T finite
- c = 1

T finite

E[T] infinite (heavy tail)

• *c* > 1

$$\Pr[T = \infty] = y = y(c) > 0$$

Galton-Watson Exact

$$\Pr[T_c = u] = \frac{e^{-uc}(uc)^{u-1}}{u!}$$

$$\Pr[T_1 = u] = \frac{e^{-u}u^{u-1}}{u!} = \Theta(u^{-3/2})$$

For c > 1, $\Pr[T = \infty] = y = y(c) > 0$ where

$$1 - y = e^{-cy}$$

Duality: d < 1 < c with $de^{-d} = c^{-c}$

Conditioning on Po(c) process being finite gives the Po(d) process

Galton-Watson Near Criticality

$$Pr[T_1 > u] \sim cu^{-1/2}$$

$$\Pr[T_{1+\epsilon} = \infty] \sim 2\epsilon$$

Conditioning on finite, $T_{1+\epsilon}$ becomes $T_{1-\epsilon+o(\epsilon)}$

$$\Pr[T_{1-\epsilon} \ge u] \sim \Pr[\infty > T_{1+\epsilon} \ge u]$$

If $u = o(\epsilon^{-2})$ (can't see ϵ):

$$\Pr[\infty > T_{1+\epsilon} \ge u] \sim \Pr[T_1 \ge u] \sim cu^{-1/2}$$

If $u = \Theta(\epsilon^{-2})$ (somewhat see ϵ):

$$\Pr[\infty > T_{1+\epsilon} \ge u] = \Theta(\Pr[T_1 \ge u]) = \Theta(u^{-1/2})$$

If $u \gg \epsilon^{-2}$ (strong ϵ effect):

$$\Pr[\infty > T_{1+\epsilon} \ge u] \sim \Pr[T_1 \ge u]e^{-u\epsilon^2/2}$$

$$\frac{\Pr[T_{1\pm\epsilon} = u]}{\Pr[T_{1} = u]} = [e^{\mp\epsilon}]^{u} (1\pm\epsilon)^{u-1}$$

$$\sim [(1\pm\epsilon)e^{\mp\epsilon}]^{u}$$

$$= e^{(1+o(1))u\epsilon^{2}/2}$$

Galton-Watson as Walk

$$Z_i \sim Po(c), i = 1, 2, ...$$

$$Y_0 = 1 \text{ (Eve)}$$

$$Y_i = Y_{i-1} + Z_i - 1$$
 (Z_i children and dies)

Fictitious Continuation

 $T = \min t \text{ with } Y_t = 0$

(If no such t, $T = \infty$)

c < 1 negative drift, T finite

c>1 positive drift, maybe T infinite

c=1 zero drift, delicate

$$C(v)$$
 in $G(n,p)$ as BFS Walk

$$Y_0=1$$
 (Root v)
$$Y_i=Y_{i-1}+Z_i-1 \ (\text{pop queue/add}\ Z_i \ \text{new})$$
 where $Z_i\sim \text{BIN}[n-(i-1)-Y_{i-1},p]$ The Link:

When
$$p \sim \frac{c}{n}$$
 and $i-1+Y_{i-1}=o(n)$ Z_i is roughly $Po(c)$

|C(v)|, T_c similar while small Ecological Limitation: Success in BFS in G(n,p) is selflimiting. "Eating your seed corn"

Rough (but Accurate) Link

$$p = \frac{c}{n}, \ c > 1$$

C(v) like T_c if finite

With probability y, T_c infinite

Corresponding C(v) become large

All merge to form giant $\sim yn$ component

$$p = \frac{1+\epsilon}{n}$$
, $o(1) = \epsilon \gg n^{-1/3}$

With probability $\sim 2\epsilon$, T_c infinite

Corresponding C(v) become large

All merge to form dominant $\sim 2\epsilon n$ component

Finite T_c have small $|C(v)| < \epsilon^{-2+}$

 $\epsilon\gg n^{-1/3}$ small/dominant dichotomy

Why
$$\Theta(n^{2/3})$$
 at $p = \frac{1}{n}$

Ignore Ecological Limitation (so rough!)

$$\Pr[|C(v)| \ge u] \sim \Pr[T_1 \ge u] = \Theta(u^{-1/2})$$

 $X_u := \text{number } v \text{ with } |C(v)| \ge u$

$$E[X_u] = \Theta(nu^{-1/2})$$

$$X_u \neq 0 \Rightarrow X_u \geq u$$

$$\Pr[X_u \neq 0] = O(nu^{-3/2}) = O(1) \text{ when } u = \Theta(n^{2/3})$$

$$Y_t \sim 1 - t + \text{BIN}[n - 1, 1 - (1 - p)^t]$$

$$|C(v)| = t \Rightarrow Y_t = 0$$
 (Converse False!)

$$p = \frac{c}{n}$$
, $t = yn \Pr[Y_t = 0]$ tiny unless

$$1-t+(n-1)(1-(1-p)^t) \sim 0$$
 so $y=1-e^{-cy}$

whp either t = O(1) or $t \sim yn$

$$t = O(1)$$
 same as Galton-Watson \Rightarrow

$$\Pr[|C(v)| = O(\ln n)] \sim \Pr[T_c < \infty] = 1 - y$$

Karp Approach: Keep generating components

After O(1) tries get giant

Now
$$n' = n(1 - y)$$
, $p = d/n'$, $d < 1 < c$

Duality: G(n,c/n) minus giant component is like $G(n^\prime,d/n^\prime)$ (c,d) conjugate)

$$p = \frac{1+\epsilon}{n}$$
, $o(1) = \epsilon$, $\epsilon = \lambda n^{-1/3}$, $\lambda \to +\infty$

 $Pr[Y_t = 0]$ tiny unless

$$1 - t + (n - 1)(1 - (1 - p)^t) \sim 0$$
 so $t \sim 2\epsilon n$

whp either
$$t = O(\epsilon^{-2+})$$
 or $t \sim 2\epsilon n = 2\lambda n^{2/3}$

 $\lambda \to +\infty \Rightarrow$ small/dominant dichotomy

 $t = O(\epsilon^{-2+})$ same as Galton-Watson \Rightarrow

$$\Pr[|C(v)| = O(\epsilon^{-2+})] \sim \Pr[T_{1+\epsilon} < \infty] = 1 - 2\epsilon$$

Karp Approach: Keep generating components

After $O(\epsilon^{-1})$ tries get dominant

"Failures" $\sim T_{1-\epsilon}$ use ϵ^{-1} each

Total $\epsilon^{-2} = \lambda^{-2} n^{2/3}$ used before dominant

$$n' = n - \lambda^{-2} n^{2/3}$$

$$p = \frac{1}{n'} + (\lambda - \lambda^{-2})(n')^{-4/3}$$

 $\lambda \to +\infty \Rightarrow$ failures not too costly

Duality: Now $G(n', \frac{1-\epsilon}{n'})$

Evolution of n-Cube

Ajtai, Komlos, Szemeredi

Bollobas, Luczak, Kohayakawa

Borgs, Chayes, Slade, JS, van der Hofstad

$$p = c/n$$

c < 1 subcritical

c>1 giant $\Omega(2^n)$ component

Much more!

Achlioptas Processes

Each round random v, w, x, y.

Add $\{v, w\}$ if both isolated

Otherwise add $\{x,y\}$

JS-Wormald:

tn/2 rounds susceptibility $\chi(t)$

Diff Eq, $\chi(t) \to \infty$ at $t = t_0$

 $t < t_0$ all $|C_i| = O(\ln n)$

 $t > t_0$ giant $|C_1| = \Omega(n)$

Conjecture: Critical Window like Erdős-Rényi

Computer Simulation: Yes!

In Critical Window (e.g.:
$$p = \frac{1}{n}$$
)
$$\Pr[|C(v)| \ge u] = \Theta(u^{-1/2}) \text{ for } u = O(n^{2/3})$$

$$\Pr[|C(v)| \ge An^{2/3}] = \Theta(n^{-1/3}e^{-\Theta(A^3)})$$

A Conjecture of Yuval Peres

G any graph n vertices, regular degree d $p = \frac{1}{d-1} \; (\text{e.g.:} \; d = 3)$

$$\Pr[|C(v)| \ge An^{2/3}] \le c_1 n^{-1/3} e^{-c_2 A^3}$$
 (??)

Balaton Preview

$$G(n,p), p = \frac{c}{n}, c > 1$$

Vertices $\{v, 1, 2, ..., n-1\}$.

 $T_j^*=i$: Vertex j joins Breadth First Tree at i-th opportunity. Fictitious Continuation.

$$\Pr[T_j^* = i] = p(1-p)^{i-1}$$

$$\Pr[|C(v)| = s] = A_1 A_2$$

 A_1 : Prob. exactly s-1 of $T_j^* \leq s$.

Condition $T_j^* \le s$, $1 \le j \le s - 1$. (rest > s)

 $T_i^* \to T_j$ truncated exponential

Tilted Balls into Boxes

$$\Pr[T_j = i] = \frac{p(1-p)^{i-1}}{1 - (1-p)^s}, 1 \le i \le s$$

Ball j in Bin T_j . Bin i has Z_i balls Queue Walk:

$$Y_0 = 1, Y_i = Y_{i-1} + Z_i - 1, Y_s = 0$$

TREE: $Y_t > 0$ for $0 \le t < s$

 $A_2 = Pr[TREE]$

Asymptotic Analysis: Left and Right edges

It is six in the morning.

The house is asleep.

Nice music is playing.

I prove and conjecture.

Paul Erdős, in letter to Vera Sós