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The Annals of Statistics 
1977, Vol. 5, No. 2, 385-393 

ON ASYMPTOTICALLY OPTIMAL TESTS 

BY G. TUSNADY 
Mathematical Institute of the Hungarian 

Academy of Sciences 
Sequences of tests with error exp(-nA) of the first type are inves- 

tigated. It is shown that the error of the second type of such a sequence 
of tests is bounded by exp (-nB) where B is determined by the Kullback- 
Leibler information distance of the hypotheses tested. The information 
distance between the empirical measure and the null-hypothesis on a finite 
partition of the sample space is proposed to use as a test statistic. A suf- 
ficient condition is given which ensures that this test has error of the second 
type about exp(-nB) with the best possible B. The exact Bahadur slope 
of the proposed statistic is investigated. 

1. Introduction. Let S = (X, >V, <v) be a statistical space, and Sn (X(f), 
S/n, v?ln)) its nth power. Suppose that vJ consists of all probability measures 
on (X, _V), and it is desired to test the null-hypothesis Ho: P e 90 on S, where 

/0 is an arbitrary nonempty subset of &Y Let n = *..(x, * * x,) denote a 
randomized test function (6oD is the probability of the rejection of HO), and let 

(1.1) a, (P) = Sx(n) on dP(n , jf n(P) = 1 - a,(P) , a. = suppe 0o a,n(P) 

Several different ways have been proposed for defining the asymptotic op- 
timality of a sequence of tests ( In some of them a sequence of alternatives 
Qn is chosen in such a way that the probabilities iJ3(Qn) are bounded away from 
0 and 1. The speed of Qn approaching J0 is measured somehow and this speed 
is taken as a criterion of optimality. Another possibility is to fix an alternative 
Q and consider the rate of j3n(Q) tending to 0. The first method was investigated 
by Neyman (1937), the second by Bahadur (1960), Hoeffding (1965) and Brown 
(1971). The following definition is motivated by their results. 

DEFINITION 1. A sequence of tests is of rate A, 0 < A < oo, if 

(1.2) lim sup,,,-, a, < 1 , in case A = 0, 

(1.3) lim sup ,,_,1 loga,, < -A, in case A > O . 
n 

Let (DA be the set of sequences of tests of rate A, and let 

(1.4) B(A, Q, J) inf lim inf"O. _ log j3n(Q) 
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386 G. TUSNADY 

A sequence of tests (D ,A is called exponential rate optimal (ERO) at Q, if 

(1.5) lim , _log [3n(Q) = -B(A, Q, 7) 
n 

A sequence of statistics T. is ERO at Q, if the sequence of tests 

(1.6) 0=O if T, < A 
1 if T4 > A 

is of rate A and ERO at Q for any continuity point A > 0 of B(A, Q, S). O 
Although the above definition has a local character, our basic aim is to give 

statistics which depend only on 9, and are ERO at as many alternatives Q as 
possible. Brown (1971) gives sufficient conditions ensuring that the likelihood 
ratio is an ERO statistic. His conditions are of topological character, and are 
not fulfilled if 7 consists of all probability measures on (X, </)-except for the 
multinomial case, investigated by Hoeffding (1965). We shall extend Hoeffding's 
result using finite partitions of (X, 57). 

DEFINITION 2. The empirical measure pn is defined by 

(1.7) P Pn(Y; x, * *, x",) _ - n Xy(xi) n 
where Xy(x) = 1, if x e Y, and Xy(x) - 0 otherwise. For measuring the distance 
between pn and g9 we shall use a partition M. of (X, 6V). A sub-a-algebra A 
is called a partition of (X, 4/) if it is generated by disjoint sets Y1, * * , Y,, G 4v 
whose union is the whole space X. Throughout this paper, the sequence m = m(n) 
denotes the number of atoms in the partition ?. The Kullback-Leibler in- 
formation number for P, Q e 57 on < is 

(1.8) K%(PJ Q) = j1P(Yz) log P(Y%) 
Q(Y.) 

where 0 = 0, O log O = 0; and for any 6 c 5 

(1.9) K(P, ) = infQe. K7(P, Q); Kn(, P) = infQe. Kn(Q, P) 

Let L. denote the statistic 

(1.10) L? = Kn(pn, ) U0) 
DEFINITION 3. Given a family , c J of sets in X, we say that the sequence 

Pn 97 converges to the set function L on X if lim,-. P,(Y) =(Y) for any 
Y e . A monotone sequence of partitions ?7 is said to be adequate (wrt 0), 
if 0 is closed under convergence on aM= U?n?- A , and M7 generates V. [ 

In Section 2 we investigate the function B(A, Q, 5?-). Section 3 contains our 
main result (cf. Corollary 2): if the sequence --W is adequate, and the sequence 
m(n) satisfies 

(1.11) lim m(n)logn = 0, 
n 
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ON ASYMPTOTICALLY OPTIMAL TESTS 387 

then the sequence of statistics Ln is ERO. (It is easy to see that any monotone 
n generating sV is adequate, if 9 is dominated and the set of densities is 
compact in L,-norm. This condition fulfills trivially if 90 is simple, or at least 
finite.) The relation of ERO statistics and the exact slope introduced by Bahadur 
is investigated in Section 4. Some concluding remarks, examples and problems 
are collected in Section 5. 

This work was initiated by a survey paper of Bahadur (1971). We shall mostly 
use the notation introduced there, and refer to known results through that paper. 

2. The best exponent. The investigation of the function B(A, Q, 9) (cf. 
Definition 1) will be based on a lemma of Stein (cf. Lemma 6.1 in Bahadur 
(1971)). This lemma states that 

(2.1) B(O, Q,{P}) = K(P, Q), 

for any P, Q e :, where K is defined by 

dP (2.2) K(P, Q) = xlog d dP if P < Q, 
dQ 

= oo otherwise. 

For any & c 9 let 

(2.3) K(P, ??) = infQ eK(P, Q); K(6Z, P) = infQ eaK(Q, P). 

For any 0 < A _ oo, let 

(2.4) A I{Q: K(Q, o) < A), 

(2.5) = {Q: Kn(Q, -91) < A) 

THEOREM 1. For any H70 c ?7, Q e ,0 < A < oo 

(2.6) B(A, Q, -Ro) _ K(-9A', Q) 

PROOF. First we prove that for any sequence ( D A 0 < A < oo 
(2.7) lim,o actn(R) = 0 

holds true for any R e A'. If we had a R e ,9A such that 

lim 
sup,,. a,(R) 

> 0, i.e., limkO hk(R) < 1 

for some subsequence nk, then the sequence 

qDn l I 9- pnk for nk< n < nk+1 

would be of rate 0 for testing the simple hypothesis that the actual measure is 
R. Hence Stein's lemma would imply that 

(2.8) lim infk-O log an,k(PO) = lim infn . n- log pn(PO) 

? -B(O, Po, {RI) = -K(R, Po) 
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388 G. TUSNADY 

for any PO e R. (hn denotes the error of second type of qp)n) But there is a 
PO e 6 such that K(R, PO) < A since R e 95A; consequently (2.8) contradicts 
(1.3). 

The obtained (2.7) implies that given R e. 9A any sequence p) e DA iS of 
rate 0 for testing the simple hypothesis that the actual measure is R. Hence 
B(A, Q, 9o) < B(O, Q, {R}) = K(R, Q) for any R e ,9A which proves (2.6). 0 

THEOREM 2. The sequence of tests 

(2.9) p 0=? if Ln < A 
1 if Ln > A 

is of rate A for any 0 < A < oo, where L. is defined by Definition 2, and M. is 
any sequence of partitions for which m(n) satisfies (1. 11). For this sequence of tests 

1~~~~~~~~~ 
(2.10) lim supn-. log i,(Q) _ -lim infn _. KJ(9/,n Q) 

holds true for any Q e 9 where 7A is defined by (2.5). 

COROLLARY 1. B(A, Q, 9o) > lim inf,0 K.(9A,n Q). 

PROOF. It is easy to see (cf. (5.33) in Bahadur (1971)) that 

(2 . 1) Po(K,(p;, S0) > A) < (n + 1)me-nA 

holds true for any Po c ?O; hence (1.11) implies ) e (DA. Let the numbers 
K&(-A, ,, Q) be denoted by B,. The set VA,. of measures is contained in the set 
{R: KJ(R, Q) > Bj, hence 

Q(K,,(p,& -9) < A) < Q(K,,(p,, Q) > B,,) . 

On applying the same argument as in (2.11) we get 

Q(K.(p%, Q) ? B%) ? (n + 1).e-nBn; 

consequently (1.11) implies (2.10), too. [ 

3. Adequate sequences of partitions. 

THEOREM 3. If the sequence of partitions ?X is adequate (cf. Definition 3), then 

(3.1) lim,,_ K n Q) > K(,9A, Q) 

holds true for any 0 < a < A < oo, Q e , ?2o c v?A (cf. Definition 2, (2.4) and 
(2.5)). 

COROLLARY 2. If , is adequate and the sequence m(n) satisfies (1. 11), then the 
sequence of statistics L. is ERO (cf. Definition 1). 

COROLLARY 3. If 9?0 is such that there exists an adequate sequence ofpartitions, 
then for any 0 < a < A < oo, Q C 9 10 c 9 

(3.2) K(9A, Q) < B(a, Q, -0) _ K(9, Q) 
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ON ASYMPTOTICALLY OPTIMAL TESTS 389 

PROOF. Let the numbers KJ(iA,,, Q) be denoted by Bn. The sequence Bn is 
monotone increasing, for nA is monotone. Hence the limit on the left-hand 
side of (3.1) exists. (It is also easy to see that B_ < K(,59, Q).) It is enough to 
prove that for any B, such that limn Bn < B < oo, there is an R e 9A such 
that K(R, Q) < B. 

There are Pn, e , Rn e 95a such that Kn(R,, Q) < B, K,(R,, P,) < a. For any 
j there is a convergent subsequence of Pn, Rn on Mj, because Mj has finitely 
many elements. By using the diagonal method we can choose convergent sub- 
sequences of Pn, Rn on -e U =0 ?ej, too. Let Pnk, Rnk be such subsequences; 
then there is a PO e eg such that Pnk tends to P, on ? for ?, is adequate. Let 
the limit of Rnk be denoted by P: 

(3.3) L(Y) = limk,O Rnk( Y) for Y C S. 

Now we prove that there is a probability measure R on (X, JV) such that its 
restriction to (X, ?W) is v. 

Let Y1, *, Ym be the atoms of ,A-. It is easy to see that the sequence 

(3.4) r-(x) = V(Yi) 
Q(Yi) 

if x e Yi is a martingale with respect to ?n on (X, V, Q). The function f(u, v)= 
u log (u/v); f(O, v) = O;f(u, 0) = oo; f(O, 0) = 0 (O < u, v < 1) is lower semi- 
continuous, i.e., for any convergent sequences 0 < ui < 1; 0 < vi < 1 

(3.5) f(limi OO ui, limi Oo vi) < lim infiOflui, vi) , 

consequently T, I,(Yi) log (v(Yj)/Q(Yj)) < B. This implies that r, is uniformly 
integrable on (X, X, Q), since 

Sr>crn dQ < 1 r-C >crnlogrndQ < B + i 
r,>Cn -log C ~ CI Q<log C 

for any C > 1 (note that t log t > -1). Thus r. is convergent Q a.s. and in 
L1-norm on (X, -X, Q) (cf. Theorem VII.4.1 in Doob (1953)), and the measure 
defined by 

(3.6) R(Y) = y lim,O. r,(x) dQ 

for any Ye -V is the desired limit of Rn. 
We have seen that K,(R, Q) ? B. Similarly K,(R, P,) < a < A, and the proof 

is completed by the well-known fact that K. tends to K if 5n is monotone and 
generates JV (cf. Theorem 2.4.2 in Pinsker (1964)). D 

4. The exact slope of ERO-tests. Let T. be a sequence of statistics for testing 
H0: P e 9, large values of Tn being significant, and let the function G,(t) be 
defined by 

(4.1) Gn(t) = suppe 0P(Tn ? t). 
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390 G. TUSNADY 

The sequence Tr has exact slope c when Q obtains if 

(4.2) limn I log Gn(T,,) - -c(Q) Q a.s. 
n 

This definition is due to Bahadur (1960). He proved that 

(4.3) lim inf, - log G,,(T,,) >-K(Q, 90) Q a. s. 
n 

(cf. Theorem 7.5 in Bahadur (1971)). He also proved that under suitable 
compactification conditions the exact slope of the likelihood ratio statistic is 
2K(Q, -.) 

THEOREM 4. If the sequence of partitions M,,, is adequate (cf. Definition 3), and 
the sequence m(n) satisfies (1. 1 1), then the exact slope of the statistic L. is 2K(Q, &9) 
(cf. Definition 2). 

PROOF. It is enough to prove that 

(4.4) lim sup,,0 - log H,(L,) < -K(Q, -) Q a.s. 
n 

where 
H.(t) -suppe 0 P(Ln > t). 

Let 0 < a < A < K(Q, -9P) be arbitrary. Theorem 2 implies 

lim sup, oo I log H,(a) < -a; 
n 

thus it is enough to prove that 

lim inf,,,, L,, > a Q a. s. 

Theorems 2 and 3 imply that 

lim sup, - log Q(L,, < a) < -K(7A, Q); 
n 

hence, by the Borel-Cantelli lemma, it is enough to prove that K(??A, Q) > 0. 
We have seen in the proof of Theorem 3 that 

(4.5) lim,,+o K,(Q, &) = K(Q, -0), 

thus A < Kn(Q, .?0) for some n. The m-dimensional set of probabilities {R(Yi); 
i = 1, * * *, m} of those R-s for which K.(R, g9o) < A, is closed, and does not 
contain the vector {Q(Yi), i = 1, * * *, m}, hence Kfl(S9'A,,, Q) > 0. This completes 
the proof, because K Q) < K(,A Q). L 

5. Remarks, examples, problems. First of all it should be noted that the 
adequateness of . actually is a property of the system {90, 5n n = 1, 2, . . 
The convergence on c vQ/ is a weaker version of the weak convergence of 
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probability measures defined by 

(5.1) P(Y) = lim-.00 Pn(Y) for all Ye JV; 

consequently the weak closedness is a necessary condition for the existence of 
an adequate sequence of partitions. Given any convergent sequence Rnk on e 
we can define v by (3.3) and rn by (3.4) (by choosing any dominating Q). More- 
over rn will still be a martingale with respect to n. Hence it is convergent 
Q a.s.; but it is no longer convergent in L1 norm, unless r. is uniformly in- 
tegrable. In any case, if 9 is dominated, and its densities form a compact set 
with respect to L1-norm, then the limit measure (3.6) belongs to 90. 

EXAMPLE 1. Let S and Q e 9 be arbitrary, and let 

(5.2) P I= {P: K(Q, P) > A} . 

Then Q i 9A, but in most cases the closure of 90 is equal to 9 for any ,, 
hence there is no adequate sequence of partitions. On the other hand, one can 
prove that if a sequence of partitions is adequate with respect to &70, then it is 
adequate with respect to 9A too. Consequently if _V is countably generated, 
then any monotone sequence of partitions is adequate with respect to 9 = 

{P: K(P, Q) < A}. 

EXAMPLE 2. Let (X, JV) be the real line with the a-algebra of Borel-measur- 
able sets, and let S7 be the collection of all probability measures concentrated 
on the dyadic rationals in [0, 1). Let Q be the uniform distribution on (0, 1). 
Let A be the partition of [0, 1) consisting of the half-open intervals [(i -1)/2? 
i/2'%). Then, for any A < 00, Kn(-A,n, Q) = 0 and K(9A, Q) = oo. Hence (3.1) 
does not hold, and M is not adequate. 

EXAMPLE 3. Let X be arbitrary, and let Jv be a countably generated a-algebra 
(e.g., X is the Euclidean space and vQ is the a-algebra of Borel-measurable sets). 
Let 0% = {P0}, where P0 is arbitrary. Then any monotone sequence of partitions 
generating _v is adequate. Consequently 

(5.3) B(A, Q, {Po}) = K(9A, Q) 

for any continuity point A of the function B(A) = B(A, Q, {Po}). This function 
is convex, because K(R, P) is convex in R: for any R1, R2, 0 < t < 1 and R - 

tR1 + (1 - t)R2 we have 

K(R, P) < tK(R1, P) + (1 - t)K(R2, P), 

(which in turn is a consequence of the convexity of u log u). Hence the only 
discontinuity that may occur is at 

(5.4) A_0 = sup{A: K(9A, Q) = oo} 

(5.3) has been obtained by Blahut (1972) in the case when SW is finitely generated. 
The majority of tests of rate A = 0 for this problem are ERO at any Q (e.g., 
the Kolmogorov-Smirnov test in a Euclidean space). This however is true only 
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392 G. TUSNADY 

for A = 0, and one can expect that any ERO statistic for testing goodness-of- 
fit is asymptotically equal to Ln. 

EXAMPLE 4. Let (X, A?) be the k-dimensional Euclidean space with the q- 
algebra of Borel-measurable sets, and let ?0 be the set of normal distributions. 
It is easy to see that there is no adequate sequence of partitions in this case. This 
is partly the consequence of using only finite partitions. The finiteness of the 
partitions was used in an essential manner in (2. 11), but there is no evidence 
that it would really be needed for the validity of Theorem 2. Vasicek (1976) 
introduced a test for normality based on sample entropy. It would be worth- 
while to determine whether his statistic is ERO or not. 

Another limitation of our results is the lack of error terms. The statistic L, 
is ERO, but for a reasonable sample size it may be very poor. This problem 
consists of two parts. One is the error term in Stein's lemma and in Theorem 1. 
The question is the following: are there any sequences en, -* 0 depending on 9, 
Q only through the function B(A, Q, 92) such that for any sequences so, for 
which 

(5.5) 1 log a,,, -A - n n 

we have 

(5.6) 1 log M3O(Q) > -B(A, Q, 99) -O) - n 

The other side of this problem is the speed of convergence of the sequence Bn. 
It is very likely that its investigation needs different methods from those used 
in the proof of Theorem 3. 

6. Acknowledgment. I am indebted to T. Nemetz and I. Csiszar who have 
given me great assistance throughout this work. I am also grateful to the referees 
for their encouraging comments and suggestions. Example 2 is due to one of 
them and this has led me to the concept of adequateness. 
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