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Abstract. There is a uniquely defined random graph model with indepen-
dent adjacencies in which the degree sequence is a sufficient statistic. The model
was recently discovered independently by several authors. Here we join to the sta-
tistical investigation of the model, proving that if the degree sequence is in the
interior of the polytope defined by the Erdős–Gallai conditions, then a unique
maximum likelihood estimate exists.

1. Introduction

In a version of Albert–Barabási random graphs [10] the adjacencies are
independent with probabilities

pt,u =
κ√
tu

,

where κ is a positive parameter. Observing that the right hand side is a
product, the generalization is straightforward with a slight modification. We
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supplant the probabilities with odds:

(1)
pt,u

1 − pt,u
= αtαu,

where α1, . . . , αT are arbitrary positive parameters assigned to the vertices
of the graph. The probability of a graph G is thus

(2) P (G;α) = C(α)
T∏

t=1

αdt

t ,

where dt denotes the degree of vertex t and

C(α) =
T∏

t=2

t−1∏

u=1

1
1 + αtαu

.

P (G;α) depends on the observed graph G through the degree sequence only,
thus the degree sequence is a sufficient statistic.

A simple random model like this ought to have a history. We refer to [3]
where the origin and basic properties of the model are delineated. There the
parametrization βt = log αt is used and the random graph is called β-model,
what we also adapt here. The β-model is investigated also in [1] and [2].

The structure of the paper is the following. In the next section, we prove
our main results regarding maximum likelihood estimation in the β-model.
Theorem 2.1 is very close to Theorem 1.4 and Theorem 2.9 is very close
to Theorem 1.5 of [3]. However, our proofs appear to be more natural and
simpler. The novelty of our Theorem 2.9 is that there is no need for a priori
assuming the existence of the ML estimate, since in Theorem 2.8 we settle
a conjecture of Diaconis et al. [3] about when the ML estimate exists. An
extended discussion of our results is given in [8]. Statistical inference on
discrete structures is developed in [6] and for random permutations in [5].

2. Maximum likelihood estimation in the β-model

Throughout the paper, T � 3 will be a fixed integer, and we will deal
with simple undirected graphs on the vertex set {1, . . . , T }. The edge set of
a graph G is denoted by E(G). A random graph will formally stand for an
arbitrary probability distribution on the set of all 2(

T

2) graphs.
It is well-known (see [7] and [11]) that a sequence {dt, 1 � t � T } of

nonnegative integers is the degree sequence of a graph if and only if
∑T

t=1 dt
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is even, and the following Erdős–Gallai conditions hold:

(3)
k∑

t=1

dπ(t) � k(k − 1) +
T∑

u=k+1

min (k, dπ(u)), k = 1, . . . , T − 1

for any permutation π(1), . . . , π(T ) of integers 1, . . . , T . How about the ex-
pected degree sequence of a random graph? To this end, let εt,u denote the
indicator of the edge between vertices u and t. Of course, εt,u = εu,t and
εt,t = 0. Moreover, let pt,u = P (εt,u = 1) be the probability of an edge be-
tween u and t. Then the expected degree of vertex t is Δt =

∑T
u=1 pt,u. If we

write both pt,u and Δt as vectors, we obtain the concise notation Δ = Sp,
where S : R

(T

2) → R
T is a linear transformation.

Theorem 2.1. There exists a random graph with vertex set {1, . . . , T }
such that the expected degree of vertex t is Δt, if and only if Δt � 0 and

(4)
k∑

t=1

Δπ(t) � k(k − 1) +
T∑

u=k+1

min (k, Δπ(u)), k = 1, . . . , T − 1

hold true for any permutation π(1), . . . , π(T ) of integers 1, . . . , T .

Proof. In one direction, let k be a fixed integer as in (4) and define

σs =
k∑

t=1

pπ(t),π(s), 1 � s � T.

The left hand side of (4) equals
∑T

s=1 σs. For s � k we have that σs � k − 1
and for s > k we have σs � k and σs � Δπ(s). Thus Δt satisfies (4).

In the other direction, let us denote the set of T -dimensional vectors with
nonnegative coordinates satisfying (4) by DT . The expected degree sequence
Δ of a random graph is the convex combination of the degree sequences
satisfying the Erdős–Gallai conditions (3). Let us denote this set by RT .
The conditions (3) can be rewritten as a set of linear inequalities, namely

k∑

t=1

dπ(t) � k(k − 1) +
T∑

u=k+1

(
λuk + (1 − λu)dπ(u)

)

must hold for all k, all permutations π, and all sequences (λk+1, . . . , λT )
∈ {0, 1}T −k. This shows that the conditions remain valid after taking con-
vex combinations, thus RT � DT . We want to determine all maximal faces
of RT . These are determined by inequalities aT Δ � ba, where a ∈ R

T is a
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suitable vector, and ba a corresponding constant. For any a, we get for the
supporting hyperplane

aT Δ =
T∑

t=1

atΔt =
∑

u<t

ptu(at + au) �
∑

at+au>0

(at + au) = ba.

Clearly, ba can be attained, and is attained by exactly the points Δ = Sp
with

(5) ptu = 1 if at + au > 0, ptu = 0 if at + au < 0, ptu ∈ [0, 1] otherwise.

We claim that the maximal faces of RT have normal vectors with at ∈
{−1, 0, +1}. Indeed, for any vector a, let c = sgn (a). Observe that if Δ
is on the supporting hyperplane with normal vector a, i.e. aT Δ = ba, then in
view of (5), it is also on the supporting hyperplane with normal vector c, i.e.
cT Δ = bc. This proves our claim. Moreover, the inequalities aT Δ � ba, with
at ∈ {−1,0,1} are evidently equivalent with the Erdős–Gallai conditions (4),
finishing the proof. �

Remark 2.2. Theorem 2.1 is not new. First it was published by M. Ko-
ren (see Theorem 1 in [9]). Our proof is more straightforward and simpler.

In the β-model, according to (2), the conditional distribution of the
graph, given that its degree sequence is d = {d1, . . . , dT }, is the uniform dis-
tribution on the set of all graphs with this degree sequence, for any degree
sequence d. The converse also holds.

Theorem 2.3. Suppose that for a random graph with independent adja-
cencies 0 < rtu = ptu

1−ptu
< ∞. If, for any degree sequence d, the conditional

distribution of the graph, given that its degree sequence is d, is the uniform
distribution, then the random graph belongs to the β-model.

Proof. For T � 3, the theorem trivially holds. If T � 4, let d =
(2, . . . , 2), this is an interior point of RT . Suppose that the distribution
of a random graph, conditioned on its degree sequence being d, is uniform.
This implies that for all graphs G with degree sequence d,

∏

(tu)∈E(G)

rtu = κ

for some constant κ > 0. It is easily seen that for any four distinct vertices
u, t, v, w, there exists a realization G of d = (2, . . . , 2) such that (ut), (vw)
∈ E(G) but (uv), (tw) �∈ E(G). Then we can make a swap showing that
rutrvw = ruvrtw. This in turn implies that the definition

αu =
√

rutruv

rtv
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does not depend on the choice of t, v, and with this definition rut = αuαt.
�

Remark 2.4. We conjecture that Theorem 2.3 holds for any individual
degree sequence in the interior of DT .

Now we turn to maximum likelihood estimation in the β-model. Suppose
we observe the graph G, and we want to maximize the likelihood P (G;α).
We will show in several steps that if the degree sequence of G lies in the
interior of DT , then a unique maximum likelihood estimate exists, and we
give a simple iteration converging to this maximum likelihood estimate.

To start out, the likelihood equations are given by

∂

∂αt
log P (G;α) =

dt

αt
−

∑

u�=t

αu

1 + αuαt
= 0, 1 � t � T.

Theorem 2.5. Let Δ = {Δ1, . . . ,ΔT } be an interior point of DT . Then,
the likelihood equations

(6)
∑

u�=t

αtαu

1 + αtαu
= Δt, 1 � t � T

have a solution.

Proof. In the β-model, the lefthand side of (6) is just
∑

u�=t pt,u, i.e.
the expected degree of vertex t. We shall maximize the entropy

(7) H(p) = −
∑

1�u<t�T

(
pt,u log pt,u + (1 − pt,u) log (1 − pt,u)

)

of an arbitrary random graph with independent adjacencies, fixing the ex-
pected degrees of the vertices, in other words we require

(8)
∑

u�=t

pt,u = Δt, 1 � t � T.

Since Δ lies in the interior of DT , there exists a solution of (8) such that
0 < pt,u < 1 holds true for all 1 � u < t � T . On the other hand on the

boundary of the cube C = [0, 1](
T

2), at least one of the probabilities pt,u is
equal to either 0 or 1, where the (one-sided) partial derivative ∂

∂pt,u
H(p)

of the entropy equals ± ∞ while the corresponding term −
(
pt,u log pt,u

+ (1 − pt,u) log (1 − pt,u)
)

turns from a positive number to zero. Thus the
maximum of H(p), given (8) is in the interior of DT .
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Let us denote the Lagrangian multipliers with βt and set

H̃(p) = H(p) +
T∑

t=1

βt

( ∑

u�=t

pt,u − Δt

)
.

At the maximum place, the partial derivatives

∂H̃(p)
∂pt,u

= − log
pt,u

1 − pt,u
+ βt + βu

should be zero. It means that pt,u has the form (1). �
The likelihood equations are

αt = dt

( ∑

u�=t

1
α−1

u + αt

)−1

, 1 � t � T.

Let R
T
+ be the T dimensional space with positive coordinates. For any α,

let ϕ : R
T
+ → R

T
+ be defined by

(9) ϕt(α) = dt

( ∑

u�=t

1
α−1

u + αt

)−1

1 � t � T.

The solutions of the likelihood equation are the fixed points of the map ϕ.
Starting from any α(0), we can run the iteration α(n+1) = ϕ(α(n)), hoping
to converge to the maximum likelihood estimate.

Theorem 2.6. For any x, y ∈ R
T
+ define

(10) �(x, y) = max

(
max

1�t�T

xt

yt
, max

1�t�T

yt

xt

)
.

Then for x �= y

(11) �(ϕ
(
ϕ(x)

)
, ϕ

(
ϕ(y)

)
) < �(x, y).

We shall need the following lemma.

Lemma 2.7. For any integer n > 1 and arbitrary positive numbers
a1, . . . , an and b1, . . . , bn we have

(12)
a1 + · · · + an

b1 + . . . + bn
� max

1�i�n

ai

bi
.

Equality holds true if and only if the ratios ai

bi
have the same value.
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Proof. Let κ > 0 be such that ai � κbi hold true for i = 1, . . . , n. Then
the left hand side of (12) can not be larger than κ and the only way to
equality is ai = κbi for all i. �

Proof of Theorem 2.6. Let us denote �(x, y) by κ. Let us fix t and
apply Lemma 2.7 for n = T , ai =

(
y−1

i + yt
) −1, bi =

(
x−1

i + xt
) −1:

(13)
ϕt(x)
ϕt(y)

=
∑

u�=t

(
y−1

u + yt
) −1

∑
u�=t

(
x−1

u + xt
) −1 � max

u�=t

x−1
u + xt

y−1
u + yt

.

Applying Lemma 2.7 again we get that

(14) max
u�=t

x−1
u + xt

y−1
u + yt

� max
u�=t

max
(

yu

xu
,
xt

yt

)
� κ.

Interchanging x and y, we see that �
(
ϕ(x), ϕ(y)

)
� �(x, y). Equality in (14)

can hold only if xt

yt
= κ and yu

xu
= κ at least for one u �= t. But then the

equality in (13) can be valid only if yu

xu
= κ for all u �= t. Thus a neces-

sary condition for �(ϕ
(
ϕ(x)

)
, ϕ

(
ϕ(y)

)
) = κ would be that max ϕt(x)

ϕt(y) = κ

and min ϕt(x)
ϕt(y) = 1/κ. But this cannot happen, because the first one implies

yt

xt
= κ for all but one t, while the second implies yt

xt
= 1/κ for all but one t.

�

Theorem 2.8. If the degree sequence of the graph G lies in the interior
of DT , then there exists a unique parameter vector (α1, . . . , αT ) satisfying (6),
which is also the unique maximizer of the likelihood function (2).

Proof. If the degree sequence is in the interior of DT then we first show
that there is indeed at least one maximum of the likelihood function

P (G;α) = P (G; p) =
∏

(t,u)∈E(G)

pt,u

∏

(t,u)�∈E(G)

(1 − pt,u),

where p is calculated from α via (1). Indeed, by Theorem 2.5 we can
parametrize the β-model with the expected degree sequences Δ = Sp. Sup-
pose now that Δ approaches the boundary of DT . By continuity, it suffices
to show that if p∗ is such that Δ∗ = Sp∗ is on the boundary of DT , then
P (G; p∗) = 0. Denote the degree sequence of G by d∗. Since Δ∗ is on the
boundary, there are real numbers (x0, x1, . . . , xT ) such that

x0 +
T∑

t=1

xtdt � 0
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for all degree sequences d ∈ DT , and

Ep∗

(
x0 +

T∑

t=1

xtdt

)
= x0 +

T∑

t=1

xtΔ∗
t = 0.

Since

x0 +
T∑

t=1

xtd
∗
t > 0,

P (G; p∗) must be zero.
Since the maxima satisfy (6), Theorem 2.6 ensures the uniqueness. �

Theorem 2.9. Let ϕ be defined by (9). If d lies in the interior of DT ,
then the iteration α(n+1) = ϕ(α(n)) starting with arbitrary α(0) ∈ R

T
+ con-

verges at a geometric rate, and

αt = lim
n→∞

α
(n)
t , t = 1, . . . , T

is the unique maximum likelihood estimate.

Proof. We showed in Theorem 2.6 that ϕ is a contraction in the metric
r(x, y) = log �(x, y). Starting from any α(0), the sequence of iterates remains
bounded. Moreover, any limit point of the sequence is a fixed point of ϕ.
But due to the contractive property, the only fixed point is the maximum
likelihood estimate guaranteed by Theorem 2.8. The geometric rate of con-
vergence follows from a standard compactness argument. �

We remark at this point that the β-model can naturally be studied in
the framework of exponential families. The random graphs

E =

⎧
⎨

⎩Pβ : Pβ(G) = C(β) exp
( T∑

t=1

βtdt(G)
)⎫

⎬

⎭

form an exponential family. For any Δ ∈ DT , the corresponding linear fam-
ily is given by

L = {Q : EQ

(
dt(G)

)
= Δt, 1 � t � T }.

We can now use Section 3 of [4], in particular Theorems 3.2 and 3.3. These
ensure that the intersection L ∩ cl (E ) consists of a single random graph P ∗,
and if there exists a random graph Q in L with full support, then P ∗ ∈ E . If
Δ is an interior point of DT , then indeed there exists an interior point p of
the unit cube with Sp = Δ, which ensures that the corresponding random
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graph has full support. Thus we obtain another proof of Theorem 2.5 (and
the uniqueness of the solution is also proved). By the Pythagorean theorem
of information geometry, P ∗ is also the unique maximum likelihood estimate,
thus proving Theorem 2.8 again.

Acknowledgement. We are thankful to the referee informing us about
Koren’s paper.
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