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Abstract The problem of prediction of yet uncharted connections in the
large scale network of the cerebral cortex is addressed. Our approach was de-
termined by the fact that the cortical network is highly reciprocal although
directed, i.e. the input and output connection patterns of vertices are slightly
different. In order to solve the problem of predicting missing connections in
the cerebral cortex, we propose a probabilistic method, where vertices are
grouped into two clusters based on their outgoing and incoming edges, and
the probability of a connection is determined by the cluster affiliations of the
vertices involved. Our approach allows accounting for differences in the in-
coming and outgoing connections, and is free from assumptions about graph
properties. The method is general and applicable to any network for which the
connectional structure is mapped to a sufficient extent. Our method allows
the reconstruction of the original visual cortical network with high accuracy,
which was confirmed after comparisons with previous results. For the first
time, the effect of extension of the visual cortex was also examined on graph
reconstruction after complementing it with the subnetwork of the sensori-
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motor cortex. This additional connectional information further improved the
graph reconstruction. One of our major findings is that knowledge of defi-
nitely nonexistent connections may significantly improve the quality of pre-
dictions regarding previously uncharted edges as well as the understanding
of the large scale cortical organization.

1 Introduction

The cerebral cortex is probably the most prominent example of a natural
information processing network. It is therefore of major importance to learn
how this network is organized. At the lowest level, the cortical network is
composed of physically (i.e. via chemical and electrical synapses) connected
nerve cells. (The chemical synapse is the dominant type and it is rectifying in
contrast to the electrical synapse, which allows bi-directional interactions be-
tween the neurons). The cortex, in general (ignoring species and areal density
differences [16]) consists of approximately 1010 nerve cells, each receiving nu-
merous connections of order 103 (up to about 104) [7]. However, these data do
not necessarily imply a homogenous degree distribution as the diverse types
of neurons could form specific sub-networks. Based on functional constraints
and axonal wiring economy, Buzsáki et al. [10] proposed a scale-free-like,
small world architecture for the network of inhibitory local circuit neurons
consisting approximately 20% of the whole neuron population. In fact, the
significance of such a diversity of neurons is presently unknown, especially
in the case of the pyramidal cells, which is the principal cell type of the
cerebral cortex (making up the remaining 80%) [16]. Pyramidal cells, con-
sidered excitatory in nature, form long distance connections both within the
cortex and with subcortical structures. However, most of the synaptic con-
tacts are formed locally within a short distance, and it is unclear how the
cortical network is organized at the neuron level [18]. Considering anatomi-
cal and physiological data, Tononi et al. [66] outlined a network architecture,
which suitably performs segregation and integration, the fundamental func-
tions of the central nervous system. Integration is achieved by connections
between clusters of neurons, representing functionally specialized units, which
are formed by dense local connectivity [66]. Using mutual information as a
measure of integration, it was shown that the proposed network exhibited
high complexity, significantly differing from random and regular lattice net-
works characterized by low measure of complexity [66]. Differences between
cortical and random networks were also pointed out by Négyessy et al. [46],
although on the level of cortical areas instead of single neurons. On the other
hand, based on estimates of the spreading function, Bienenstock [6] showed
that the graph of cortical neurons has a high dimensionality close to that of
an Erdős-Rényi random graph of similar size. This assumption is consonant
with Szentágothai’s notion of quasi-randomness in neuronal connectivity [64].



Reconstructing Cortical Networks 3

The neuron doctrine (stating that nerve cells are the developmental, struc-
tural and functional units of the central nervous system) has been challenged
by arguing that populations of neurons function as units [5,8,19,23,44,63,66].
This perspective is in close agreement with the so-called columnar or modu-
lar organization of cortical structure and function as proposed by Mountcas-
tle [44] and Szentágothai [63]. Accordingly, the cortex is usually viewed as
a two dimensional sheet composed of functional modules with a diameter of
250–500 µm, arranged perpendicularly to the surface and spanning the layers
to the depth of the cortex. Although it is hard to estimate due to the dif-
ferent types (and size) of columns [11, 44], a network of such modules would
form a graph with millions of vertices in case of humans. Unfortunately, such
a network would be hard to draw because apart from some cortical regions
and specific columns (e.g., [4, 9, 35, 56, 57, 61]) the interconnections among
these modules or cell clusters are obscure. In addition, functional modules
may not be fixed structures; they could dynamically change their extension
via neuronal plasticity (e.g., [11,31]). It is noteworthy that the minicolumnar
organization apparently can not resolve the problem of defining structural
and functional cortical units, as momentarily the minicolumn seems to be a
similarly vague concept as the column [18,55].

At a higher organizational level, the cortex is composed of a set (about a
hundred, roughly four orders of magnitude less than the number of columnar
modules in the human) of structurally and functionally specialized regions or
areas with highly variable shapes and sizes [67]. This level of organization is
of great interest because the available anatomical and imaging (fMRI, PET,
EEG, MEG) techniques made it possible to investigate the network of cortical
areas (hence neuro-cognitive functions) [1, 8, 29, 41, 50]. Most of our knowl-
edge about this large-scale cortical network comes from studies charting the
neuronal connections between cortical areas. Since the use of sensitive and
powerful tract tracing techniques is not feasible in humans, the neural con-
nections among the areas (“anatomical connectivity”, [59]) have been studied
intensely in non-human primates, especially in the macaque, which serves as
a model of the human cortex [67]. Large collections of such data are available
at the CoCoMac database [37] and for updates, one may search PubMed [52].
Although the areas are connected to each other via varying density of bun-
dles of axonal processes [27] in a complicated laminar and topographical
pattern [20, 54], the network of areas is usually represented in binary form
considering only the knowledge of the existence of a connection between the
areas [58]. Even such a simplification allowed the description of the funda-
mental properties of the network of cortical areas, e.g., its small-world like
characteristics and hierarchical organization [28,32,59]. However, Kötter and
Stephan [38] have pointed out that the lack of information about connectivity
can hinder the understanding of important features of the cortical network.

The cortical network is directed, as long-range connections between the ar-
eas end up in chemical synapses, but strongly reciprocal (reciprocity reaches
80%) [20]. From the graph theoretic point of view, the high level of reci-
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procity presents an obstacle by obscuring directedness in the network. The
global edge density is roughly 0.2–0.4 [58]. A granular organization repre-
senting functional segregation and integration is prevalent also at this large
scale [26,30,45,47,68], resulting in the density of connections going up to 0.6
or more within the clusters [21]. The other major characteristic that makes
the cortex a small-world network is that its clustered organization is accom-
panied by a short average path length, roughly between 2 and 3 [32, 59].
Because it is reasonable to assume that a considerable part of the large-scale
cortical network is still unknown, the identification of the key topological
features that characterize this network, i.e. understanding its organizational
principles, remained an open issue [21,30,33,34,38,51,60]. A practical way of
approaching this problem is to check how exactly the network can be recon-
structed by using a given index or network measure [21, 30]. This approach
also has the interesting consequence of predicting missing data, which can be
verified experimentally. The two studies published up to now present data on
such predictions of yet unknown connections in the cortex [21, 30]. The re-
sults of these studies (especially those by Costa et al. [21], who investigated
a broad set of measures) suggest that connectional similarity of the areas
is a good predictor in reconstructing the original cortical network. However,
they also report a relatively large number of violations, where known existent
connections were predicted as nonexistent in the reconstructed graphs and
vice versa [21, 30]. This suggests that using other approaches could result in
better reconstruction of the cortical network. The aim of the present study
was therefore to find a reconstruction algorithm that predicts the large-scale
cortical network more accurately, i.e. with fewer violations. By considering
the similarity of the connections of the individual areas, our approach is remi-
niscent to that used by the previous analyses [21,30]. However, there are sub-
stantial differences as well, especially the fact that we use a stochastic method
which is able to take into account the amount of uncertainty present in the
data being analyzed. Furthermore, contrary to the previous studies [21, 30],
where the in- and outputs are either taken into account separately [30] or the
network was symmetrized prior to analysis [21], our approach is principally
dependent on the combination of the areas’ in- and output pattern. Notably,
considering the similarity of the in- and output pattern as the result of the
high number of reciprocated links, a stochastic approach seems advantageous.
Finally, in contrast to Jouve et al. [30], who assumed that a large number of
indirect connections of path length 2 is suggestive of the existence of a direct
link between the areas, our method is free of such assumptions.

2 Methods

In this section, we introduce a simple stochastic graph model based on vertex
types and connection probabilities depending on them. From now on, we call
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this the preference model. We will discuss a greedy and a Markov chain Monte
Carlo (MCMC) method for fitting the parameters of the preference model to a
network being studied. The MCMC method shows the rapid mixing property.
In Section 3, we will employ these methods to reconstruct the cortical network
and to predict previously unknown connections.

2.1 General remarks on the method

The problem we would like to solve and the proposed method are not cor-
tex specific, though the data on which we operate is. As data collection
and mapping are necessarily partial due to unavoidable observational errors,
our method offers the possibility to map interactions, connections, influences
based on the previous knowledge. Given the rough, but in principle correct
summary of such information in the form of appropriate graph model, one
may refine the knowledge of underlying graph represenation to some extent.
Applications and extensions of the solution we propose are straightforward
to apply to any other network, with appropriate caution. The main assump-
tions underlying our approach are as follows: the number of nodes is known in
advance, we only wish to predict previously uncharted edges, the majority of
the edges are known, yet a large number of undetected edges are possible, at
least in principle. As with most problems involving prediction, it is relatively
simple to create a model performing slightly better than random tossing, but
increasing prediction accuracy is a difficult problem. Our approach to edge
prediction is inspired by one of the most influential results of graph theory by
Endre Szemerédi [36, 62, 65], which became known as Szemerédi’s regularity
lemma. Loosely speaking, the regularity lemma states that the structures of
very large graphs can be described by assigning vertices to a small number
of almost equally sized groups and specifying the connection probabilities
between the groups. The regularity lemma is formulated as an asymptotical
and existential statement. The graph we work with is definitely small, not
comparable in size to those graphs to which one would in principle apply
the regularity lemma. Thus our model can be viewed as a form of fitting,
with allowance for error. We do not try to pretend that the assumptions of
the regularity lemma apply to the case of large-scale cortical networks, but
the idea underlying the regularity lemma, i.e. the probabilistic description of
connections between and inside vertex groups, is exercised in order to find a
good reconstruction. The proposed solution of the graph partitioning problem
and its usage in edge prediction is achieved by using probabilistic methods,
which allow finding solutions close to the optimum and satisfy the precision
dictated by the practical applications.
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(a) (b)

Fig. 1 Two graphs generated by the preference model. Black and white colours denote

the groups the nodes belong to. Panel (a) shows a clustered graph where the connection
probability between nodes within the same group is 0.2, while the connection probability

between nodes in different groups is only 0.02. Panel (b) shows a bipartite graph where

only nodes in different groups are allowed to connect with a probability of 0.2.

2.2 The preference model

This graph model starts from an empty graph with N vertices and it assigns
every vertex to one of K distinct groups. The groups are denoted by integer
numbers from 1 up to K. The generation process considers all pairs of vertices
once, and it adds an edge between node v1 and v2 with probability pij if v1
belongs to group i and v2 belongs to group j. That is, the expected density
of edges between group i and group j is exactly pij , and the existence of
an edge between two vertices depends solely on the group affiliation of the
vertices involved. Fig. 1 shows two possible graphs generated by this model.
The one shown on Fig. 1(a) is a graph with clustered organization: vertices
in similar groups tend to link together while rarely linking to vertices of the
other group. The graph on Fig. 1(b) is a bipartite graph. The model allows
the simultaneous appearance of these two basic patterns in a graph: pii ≈ 1
results in the one seen on Fig. 1(a) and pij ≈ 1, i 6= j induces the one on
Fig. 1(b). A method using similar ideas but designed for different applications
was also described in a recent paper of Newman and Leicht [49].

The generalization of the model to directed graphs is straightforward: ver-
tices of a directed graph will be assigned to an incoming and an outgoing
group (in-group and out-group in short), and the probability of the existence
of an edge between a vertex from out-group i and another vertex from in-
group j is given by pij . The number of parameters in this model isK2+2N+1,
since there are 2N parameters for the group affiliations of the vertices, K2

parameters represent the elements of the preference matrix and the last pa-



Reconstructing Cortical Networks 7

rameter is K itself. The probabilities are usually arranged in a probability
matrix P for the sake of convenience. To emphasize the role of direction-
ality, elements of the preference matrix in the directed case are sometimes
denoted by pi→j instead of pij . We also introduce the membership vectors
u = [u1, u2, . . . , uN ] and v = [v1, v2, . . . , vN ], where ui is the out-group and
vi is the in-group of vertex i. From now on, parameterizations of the model
will be denoted by M = (K,u,v,P).

This model naturally gives rise to densely connected subnetworks with
sparse connections between them by appropriately specifying the connection
probabilities within and between groups. This is a characteristic property of
cortical networks, and it is assumed that a good reconstruction of the net-
work can be achieved by specifying vertex groups and connection probabili-
ties appropriately. More precisely, given a graph G(V,E) without multiple or
loop edges, the reconstruction task is equivalent to specifying the number of
groups, finding an appropriate assignment of vertices to groups and determin-
ing the elements of the probability matrix P. The reconstructed graph then
can be generated by the preference model, and new (previously unknown)
connections can also be predicted by checking the probabilities of the uncer-
tain edges in the fitted model. E.g., a crude reconstruction of the visuo-tactile
network of the macaque monkey (see Section 3 for details about this dataset)
would be a model with two groups (group 1 corresonding to the visual and
group 2 to the tactile vertices in the network) and connection probabilities
p1→1 = 0.385, p1→2 = 0.059, p2→1 = 0.035 and p2→2 = 0.377, based on the
density of connections between the groups in the original network. The intro-
duction of more vertex types results in a better reconstruction, and obviously
the reconstruction is perfect when N = K and P is A, the adjacency matrix
of the graph. However, such a reconstruction is not able to predict unknown
connections. We will discuss the problem of overfitting in Section 2.5.

2.3 Measuring the accuracy of reconstruction

Since the preference model is a probabilistic model, every possible graph with
N vertices can theoretically be generated by almost any parameterization of
the model, but of course some graphs are more likely to be generated by a
specific parameterization than by others. Therefore, we measure the fitness
of a particular parameterization M = (K,u,v,P) with respect to a given
graph G(V,E) by its likelihood, i.e. the probability of the event that the
probabilistic model with parameters M generates G(V,E):

L(M|G) =
∏

(i,j)∈E

pui→vj

∏
(i,j)/∈E

i 6=j

(1− pui→vj
) (1)
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The restriction i 6= j in the second product term corresponds to the nonex-
istence of loop edges (even if they exist, they are ignored). To avoid numerical
errors when working with small probabilities, one can use the log-likelihood
instead, for the log-likelihood attains its maximum at the sameM where the
likelihood does:

logL(M|G) =
∑

(i,j)∈E

log pui→vj
+

∑
(i,j)/∈E

i 6=j

log(1− pui→vj
) (2)

2.4 Fitting the preference model

Fitting a model to a given graph G(V,E) is equivalent to the maximum
likelihood estimation (MLE) of the parameters of the model with respect
to the graph, i.e. choosing M in a way that maximizes logL(M|G). Since
the number of possible group assignments is KN (where K is the number
of groups and N = |V | is the number of vertices), which is exponential
in N , direct maximization of logL(M|G) by an exhaustive search is not
feasible. An alternative, greedy approach is therefore suggested to maximize
the likelihood.

2.4.1 Greedy optimization

Starting from an initial configurationM(0) =
(
K,u(0),v(0),P(0)

)
, the greedy

optimization will produce a finite sequence of model parameterizationsM(0),
M(1), M(2), . . . satisfying L(M(k)|G) ≥ L(M(k−1)|G) for k ≥ 1. First we
note that the log-likelihood of an arbitrary configuration M is composed of
N local likelihood functions corresponding to the vertices:

logL(M|G) =
N∑

i=1

N∑
j=1
j 6=i

log
(
Aijpui→vj + (1−Aij)

(
1− pui→vj

))

=
N∑

i=1

logLi(G|M) (3)

where Aij is 1 if there exists an edge from i to j and 0 otherwise. Let us
assume first that K is given in advance. Starting from random initial mem-
bership vectors u(0) and v(0) of M(0), we can estimate an arbitrary element
pi→j of the real underlying probability matrix P by counting the number
of edges that originate from out-group i and terminate in in-group j and
divide it by the number of possible edges between out-group i and in-group
j. The estimated probabilities are stored in P(0). After that, we examine
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the local likelihoods Li(G|M(0)) for all vertices and choose the in- and out-
groups of the vertices in a way that greedily maximizes their local likelihood,
assuming that the group affiliations of all other vertices and the estimated
probabilities remain unchanged. Formally, let u(0)

i=k denote the vector ob-
tained from u(0) by replacing the ith element with k and similarly let v(0)

i=l

denote the vector obtained from v(0) by replacing the ith element with l.
LetM(0)

i,k,l =
(
K,u(0)

i=k,v
(0)
i=l,P

(0)
)

, and for every vertex i, every out-group k

and every in-group l, calculate logLi(G|M(0)
i,k,l). After that, put vertex i in

out-group k and in-group l if that maximizes logLi(G|M(0)
i,k,l). Now calcu-

late the next estimation of the probability matrix, P(1), maximize the local
log-likelihoods based on the new probability matrix and repeat these two
alternating steps until u(k) = u(k−1) and v(k) = v(k−1).

2.4.2 Markov chain Monte Carlo sampling

The group assignments obtained by the greedy algorithm suffer from a minor
flaw: they correspond only to a local maximum of the parameter space and
not the global one. The local maximum means that no further improvement
could be made by putting any single vertex in a different group while keeping
the group affiliations of all other vertices intact. However, there is the pos-
sibility of improving the partition further by moving more than one vertex
simultaneously. Another shortcoming of the algorithm is the danger of over-
fitting: partitions with high likelihood might perform poorly when one tries
to predict connections, because they are too much fine-tuned to the graph
being analyzed. Therefore we also consider employing Markov chain Monte
Carlo (MCMC) sampling methods [3] on the parameter space. (An alterna-
tive MCMC-based data mining method on networks is presented in [13], but
while that method infers hierarchical structures in networks, our algorithm
is concerned with the discovery of densely connected subgraphs and bipartite
structures; see Fig. 1(a) and Fig. 1(b), respectively).

Generally, MCMC methods are a class of algorithms for sampling from
a probability distribution that is hard to be sampled from directly. These
methods generate a Markov chain whose equilibrium distribution is equivalent
to the distribution we are trying to sample from. In our case, the samples
are parameterizations of the preference model, and the distribution we are
sampling from is the following:

P(M =M0) =
L(M0|G)∫

SK

L(M′|G) dM′
(4)
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where SK is the space of all possible parameterizations of the probability
model for a given K. Informally, the probability of drawing M as a sample
should be proportional to its likelihood of generating G(V,E), for instance,
if M1 generates our network with a probability of 0.5 and M2 generates it
with a probability of 0.25, M1 should be drawn twice as frequently as M2.

The generic framework of the MCMC method we use is laid down in
the Metropolis-Hastings algorithm [25]. The only requirement of the al-
gorithm is that a function proportional to the density function (that is,
P(M =M0) in (4)) can be calculated. Note that P(M =M0) ∝ L(M0|G),
since the denominator in (4) is constant. Starting from an arbitrary ran-
dom parameterization M(0), MCMC methods propose a new parameteri-
zation M′ based on the previous parameterization M(t) using a proposal
density function Q(M′|M(t)). If the proposal density function is symmet-
ric (Q(M′|M(t)) = Q(Mt|M′)), the probability of accepting the proposed
parameterization is min

(
1, L(M′|G)/L(M(t))

∣∣G). When the proposal is ac-
cepted, it becomes the next state in the Markov chain (M(t+1) = M′),
otherwise the current state is retained (M(t+1) =M(t)).

MCMC sampling can only approximate the target distribution, since there
is a residual effect depending on the starting position of the Markov chain.
Therefore, the sampling consists of two phases. In the first phase (called
burn-in), the algorithm is run for many iterations until the residual effect
diminishes. The second phase is the actual sampling. The burn-in phase must
be run long enough so that the residual effects of the starting position become
negligible.

A desirable property of a Markov chain in a MCMC method is rapid mix-
ing. A Markov chain is said to mix rapidly if its mixing time grows at most
polynomially fast in the logarithm of the number of possible states in the
chain. Mixing time refers to a given formalization of the following idea: how
many steps do we have to take in the Markov chain to be sure that the distri-
bution of states after these steps is close enough to the stationary distribution
of the chain? Given a guaranteed short mixing time, one can safely decide
to stop the burn-in phase and start the actual sampling after the number of
steps taken exceeded the mixing time of the chain.

Several definitions exist for the mixing time of a Markov chain (for an
overview, see [43]). To illustrate the concept, we refer to a particular variant
called total variation distance mixing time, which is defined as follows:

Definition 1 (Total variation distance mixing time). Let S denote the
set of states of a Markov chain C, let A ⊆ S be an arbitrary nonempty subset
of the state set, let π(A) be the probability of A in the stationary distribution
of C, and πt(A) be the probability of A in the distribution observed after step
t. The total variation distance mixing time of C is the smallest t such that
|πt(A)− π(A)| ≤ 1/4 for all A ⊆ S and all initial states.

However, many practical problems have resisted rigorous theoretical anal-
ysis. This applies also to the method presented here, mostly due to the fact
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that the state transition matrix of the Markov chain (and therefore its sta-
tionary distribution) is a complicated function of the adjacency matrix of the
network and the number of vertex groups, and no closed form description
exists for either. In these cases, a common approach to decide on the length
of the burn-in phase is based on the acceptance rate, which is the fraction of
state proposals accepted during the last m steps. Sampling is started when
the acceptance rate drops below a given threshold (a typical choice is 20% or
0.2). Local maxima are avoided by accepting parameterization proposals with
a certain probability even when they have a lower likelihood than the last one,
but being biased at the same time towards partitions with high likelihoods.
In the case of multiple local maxima with approximately the same likelihood,
MCMC sampling tends to oscillate between those local maxima. By taking
a large sample from the equilibrium distribution, one can approximate the
probability of vertex i being in out-group k and in-group l and extract the
common features of all local maxima (vertices that tend to stay in the same
groups despite randomly walking around in the parameter space).

The only thing left to clarify before employing MCMC sampling on fitting
the preference model is the definition of an appropriate symmetric proposal
density function. We note that the number of groups K is constant and the
probability matrix P can be approximated by the edge densities for a given
out- and in-group assignment, leaving us with only 2N parameters that have
to be determined. We take advantage of the fact that the conditional distri-
bution of each parameter (assuming the others are known) can be calculated
exactly as follows:

P(ui = k) =
Li(G|Mi,k,∗)∑K
l=1 Li(G|Mi,l,∗)

(5a)

P(vi = k) =
Li(G|Mi,∗,k)∑K
l=1 Li(G|Mi,∗,k)

(5b)

where Mi,k,∗ = (K,ui=k,v,P) and Mi,∗,k = (K,u,vi=k,P). Since the con-
ditional distribution of each parameter is known, Gibbs sampling [24] can be
used. The Gibbs sampling alters a single variable of the parameter vector in
each step according to its conditional distribution, given all other parameters.
It can be shown that the proposal distribution defined this way is symmet-
ric if the variable being modified is picked randomly according to a uniform
distribution. In practice, it is sufficient to cycle through the variables in a
predefined order as long as the Markov chain can access all states under this
ordering. To speed up the burn-in process, one can apply the greedy optimiza-
tion method described in Section 2.4.1 and revert to the MCMC sampling
when the algorithm reached the first local maximum.
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2.5 Choosing the number of groups

As mentioned earlier in Section 2.2, the key parameter that controls the
balance between accurate reconstruction and meaningful prediction is the
number of vertex groups used in the preference model. A very small number
of groups yields an inaccurate reconstruction and most likely meaningless
predictions. Increasing the number of groups gradually improves the accuracy
of reconstruction, attaining perfection when the number of groups is equal
to the number of vertices, but in this case no new edges are predicted. This
is the classical problem of overfitting: by increasing the number of groups,
the ability of the model to generalize beyond the original data diminishes.
Therefore, the goal is to select the number of groups in a way that achieves
good reconstruction while still allowing the model to predict connections by
assigning a high probability to vertex pairs where an uncertain connection is
suspected.

We tried multiple approaches to infer the appropriate number of groups in
the networks we studied. The exact results will be discussed in Section 2.6.2
and Section 3; here we only outline the basic ideas. We will make use of the
eigenvalues of the Laplacian matrix of the graph, the singular value decompo-
sition (SVD) of the adjacency matrix and the Akaike information criterion [2].

Given an undirected graph G(V,E) without loops and multiple edges, its
Laplacian matrix is defined as L = D−A, where A is the adjacency matrix
and D is a diagonal matrix composed of the degrees of the vertices. A basic
property of the Laplacian matrix is that its smallest eigenvalue is zero, and
its multiplicity is equal to the number of connected components of the graph.
The number of eigenvalues close to zero is frequently used for determining
the number of dense subgraphs (communities, clusters) in the graph and,
based on similar reasoning, this could be a good estimate of the number of
groups that have to be used in the preference model; however, we cannot use
D−A directly, since this form of the Laplacian is defined only for undirected
graphs.

An extension of the Laplacian to directed graphs was introduced in [12].
This involves calculating the Perron vector φ of the transition probability
matrix P of the graph. The transition probability matrix P is derived from
the adjacency matrix by normalizing the row sums to be 1. The Perron vector
φ is a unique (up to scaling) left eigenvector of P satisfying φP = φ. The
existence of this vector is guaranteed by the Perron-Frobenius theorem. There
is no closed-form solution for φ, but it is easy to calculate in polynomial time
numerically. The directed Laplacian is then defined as:

L = I− Φ1/2PΦ−1/2 + Φ−1/2P∗Φ1/2

2
(6)
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where P∗ is the conjugate transpose of P and Φ is a diagonal matrix composed
of the elements of φ, assuming that

∑n
i=1 φi = 1. The properties emphasized

above for the undirected Laplacian hold for the directed Laplacian as well.
The singular value decomposition of an m×n matrix M is a factorization

process that produces an m × m and an n × n unitary matrix (U and V,
respectively) and an m × n matrix Σ with non-negative numbers on the
diagonal and zeros off the diagonal in a way that M = UΣV∗. The diagonal
of Σ contains the singular values, while the columns of U and V are the
left and right singular vectors, respectively. Plotting the singular values on
a scree plot (sorted from large to small) is a good visual cue to determining
the number of groups in the model: the number of groups can simply be
assigned according to the number of large singular values. It is noteworthy
that one can approximate the original matrix M by setting all singular values
other than the l largest to zero and disregarding the appropriate rows of U
and V that correspond to the zeroed singular values. The remaining parts
of U and V can serve as an input for a k-means clustering algorithm in an
l-dimensional space, and the results of the clustering yield a good candidate
of an initial position of the greedy optimization process of the preference
matrix. In practice, however, performing a complete SVD is less efficient
than optimization from a random initial position.

The Akaike information criterion (AIC) [2] is a measure of the goodness of
fit of a statistical model (the preference model in our case). It is an unbiased
estimator of the Kullback-Leibler divergence [39], and it is an operational way
of determining the appropriate trade-off between the complexity of a model
and its predictive power. AIC is calculated as 2k − 2 logL, where k is the
number of parameters in the model and L is the likelihood. In the preference
model, k = K2 +2N+1. The suggested number of groups can be determined
by fitting the model with various numbers of groups and choosing the one
that minimizes the Akaike information criterion.

The AIC can also be used to detect situations when the network being
studied is in fact completely random, and therefore its appropriate description
is simply an Erdős–Rényi random graph model instead of the preference
model. This is done by estimating the probability parameter p of the Erdős–
Rényi model from the edge density of the network and then calculating the
log-likelihood of the network according to the Erdős–Rényi model. Given
a directed network with n vertices and m edges, the maximum likelihood
estimator of p is m

n(n−1) , resulting in a log-likelihood of m log p + (n2 − n −
m) log(1 − p) (assuming that there are no loop edges). The baseline AIC
corresponding to the Erdős–Rényi model is then 2 − 2(m log p + (n2 − n −
m) log(1 − p)), since the model has only a single parameter. If the network
being studied is completely random, the AIC corresponding to the case of two
groups will be larger than the baseline AIC of the Erdős–Rényi model, for
we introduced more parameters without actually improving the likelihood.
On the other hand, networks possessing a structure that can be described by
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the preference model will show significant improvement in the log-likelihood
compared to the pure random case, resulting in a lower AIC.

2.6 Performance measurements

To demonstrate the validity of the fitting algorithms presented above, we
conducted several benchmarks on computer-generated test graphs. First, we
generated graphs according to the preference model, ran the fitting algorithm
on the graphs by supplying the appropriate number of groups beforehand
and then compared the known and the estimated parameters of the model.
These benchmarks were performed in order to test the validity of the fitting
algorithm and to assess the quality of the results obtained. Next, we ran the
fitting algorithms without specifying the number of groups to show that the
Akaike information criterion is suitable for determining the right value of k.

2.6.1 Fitting the model with given number of groups

This benchmark proceeded as follows: graphs with 128 vertices were gener-
ated according to the preference model using 4 in- and out-types. The type
distribution was uniform, so there were 32 vertices of each type on average.
The preference matrix was chosen as follows: each element pij was set to
one of two predefined values p1 and p2 with probability 0.5. p1 and p2 was
varied between 0 and 1 with a step size 0.05. For each (p1, p2) combination,
we generated 50 graph instances using the preference model. Values of the
quality functions (described below) were averaged over these instances and
the results were plotted as a function of p1 and p2. We used only two prob-
abilities because the results can then be visualized on a heat map or a 2.5D
plot.

To assess the fitness of the fitted model, we had to define some quality
functions that compare the fitted parameters to the original (expected) ones.
First we note that the number of groups and the probability matrix do not
have to be compared, since the former is fixed and the latter one is calculated
from the group assignments, so errors in the elements of the probability ma-
trices are simply due to errors in the group assigments. Therefore, only the
group assignments matter. The following quality functions were defined:

Normalized mutual information of the confusion matrix. This mea-
sure was suggested by Fred and Jain [22] and later applied to community
detection in graphs by Danon et al. [15]. The measure is based on the con-
fusion matrix C = [cij ] of the expected and observed group assignments.
cij is the number of vertices that are in group i in the original and group
j in the fitted model. The confusion matrix can be calculated separately
for in- and out-groups, but they can safely be added together to obtain
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a single confusion matrix and then a single quality measure, which is the
normalized mutual information of the confusion matrix:

I(C) = −2

∑k
i=1

∑k
j=1 cij log cijc∗∗

ci∗c∗j∑k
i=1

(
ci∗ log ci∗

c∗∗
+ c∗i log c∗i

c∗∗

) (7)

where ci∗ is the sum of the i-th row, c∗j is the sum of the j-th column of
the confusion matrix. c∗∗ is the sum of cij for all i, j. It is assumed that
0 log 0 = 0. When the fitted group assignment is completely identical to the
expected one (apart from rearrangement of group indices), I(C) attains
its maximum at 1. I(C) = 0 if the two group assignments are indepen-
dent. Danon et al. [15] argue that this measure is in general stricter than
most other quality measures proposed so far. For instance, a completely
random assignment of groups still has an expected success ratio of 0.25
for 4 groups (since each pair is consistent with probability 1/4). In this
case, the normalized mutual information is close to zero, which is a more
intuitive description of what happened than a success ratio of 0.25. See
the paper of Danon et al. [15] for a list of other measures they considered.

Likelihood ratio. This measure is simply the ratio of the likelihoods of
the original and the fitted parameterizations, given the generated graph.

The likelihood ratios and the mutual information indices are plotted on
Figure 2. As expected, the mutual information index is low when p1 ≈ p2.
This is no surprise, since p1 ≈ p2 implies that the actual difference between
different vertex types diminish: they all behave similarly, and the random
fluctuations at this network size render them practically indistinguishable.
The overall performance of the algorithm is satisfactory in the case of p1 � p2

and p1 � p2, with success ratios and mutual information indices larger than
0.9 in all cases. In cases when p1 ≈ p2, the likelihood ratio is greater than
1, which indicates that the fitted model parameterization is more likely than
the original one. This phenomenon is an exemplar of overfitting: apparent
structure is detected by the algorithm where no structure exists at all if we
use too many groups.

2.6.2 Fitting the model without a predefined number of groups

In Section 2.5, we described three different methods for estimating the num-
ber of groups one should use for a given network when fitting the preference
model. Two of these methods requires some human intervention, since one
had to choose a threshold manually for the eigenvalues of the Laplacian ma-
trix or for the singular values of the adjacency matrix.

We investigated the eigenvalues of the directed Laplacian matrix first. Af-
ter some experiments on graphs generated according to the preference model,
it became obvious that the number of eigenvalues of the Laplacian close to
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Fig. 2 Mean likelihood ratios of the fitted parameterizations to the expected ones (left)
and mean normalized mutual information conveyed by the confusion matrices (right) as a

function of p1 and p2.
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Fig. 3 The 15 smallest nonzero eigenvalues of the Laplacian matrix for graphs generated

by the preference model with 8 groups, either with or without a strong clustered structure

(left and right panel, respectively)

zero correlate to the number of groups only if the vertex groups coincide with
densely connected subgraphs. In other words, pii must be large and pij for
i 6= j must be small. This is illustrated on Figure 3. The left panel shows the
case when pij = 0.2 + 0.6 δ(i, j) (the graph is clustered) and the right panel
shows the case when pij is 0.2 or 0.8 with 1/2 probability. There is indeed a
relatively large jump after the eighth eigenvalue for the former case, but the
transition is smooth for the latter. Therefore, the eigenvalues of the directed
Laplacian matrix were excluded from further investigations.

In the case of SVD analysis, one has to count the large singular values.
“Large” is definitely a subjective term, therefore a scree plot of the singular
values is often used as a visual aid. The scree plot is simply a bar graph of
the singular values sorted in their decreasing order. The plot usually looks
like the side of a mountain with some debris at the bottom: the singular
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Fig. 4 The largest 20 singular values of the adjacency matrix of a graph generated by the

preference model with 8 groups

values decrease rapidly at first, but there is an elbow where the steepness
of the slope decreases abruptly, and the plot is almost linear from there on
(see Figure 4 for an illustration). The number of singular values to the left
of the elbow is the number of groups we will choose. To allow for automated
testing, we implemented a simple method to decide on the place of the elbow.
The approach we used is practically equivalent to the method of Zhu and
Ghodsi [69]. It is based on the assumption that the values to the left and
right of the elbow behave as independent samples drawn from a distribution
family with different parameters. The algorithm first chooses a distribution
family (this will be the Gaussian distribution in our case), then considers all
possible elbow positions and calculates the maximum likelihood estimation
of the distribution parameters based on the samples to the left and right side
of the elbow. Finally, the algorithm chooses the position where the likelihood
was maximal. Assuming Gaussian distributions on both sides, the estimates
of the mean and variance are as follows:

µ̃1 =
∑q

i=1 xi

q
µ̃2 =

∑n
i=q+1 xi

n− q

σ̃2 =

∑q
i=1 (xi − µ1)2 +

∑n
i=q+1 (xi − µ2)2

n− 2

(8)

where xi is the i-th element in the scree plot (sorted in decreasing order),
n is the number of elements (which coincides with the number of vertices)
and q is the number of elements standing to the left of the elbow. Note
that the means of the Gaussian distributions are estimated separately, but
the variance is common. Zhu and Ghodsi [69] argue that allowing different
variances makes the model too flexible. The common variance is calculated
by taking into account that the first q elements are compared to µ1 and the
remaining ones are compared to µ2. See the paper of Zhu and Ghodsi [69] for
a more detailed description of the method.
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In this benchmark, 100 networks were generated with 128 vertices each.
Elements of the preference matrix were chosen to be p1 or p2 with equal
probability, as in Section 2.6.1 before, but the case of p1 ≈ p2 was avoided
by constraining p1 to be above 0.6 and p2 to be below 0.4. The number of
groups was varied between 2 and 8 according to a uniform distribution. The
number of groups in the fitted model was estimated by the SVD and the
AIC methods, the best AIC was chosen by trying all possible group counts
between 2 and 10. The AIC method proved to be superior to the SVD method:
the estimation was perfect in 79% of the cases. The number of groups was
underestimated by 1 group in 14, 2 groups in 3 and 3 groups in 2 cases. There
were 2 overestimations by 1 group as well, resulting in a mean squared error
of 0.46 groups. On the other hand, the SVD method made severe mistakes
at times; in fact, only 7% of its estimations matched the prior expectations,
all other cases were overestimations, sometimes by 7 or 8 groups. This is due
to the unsupervised choice of the elbow in the scree plot. It is assumed that
better results can be achieved by making the choice manually, therefore the
conclusion is that the SVD-based estimation should be handled with care
and the AIC method is preferred when one would like to choose the number
of groups automatically.

2.7 Handling uncertain connections

Despite being concerned about predicting unknown connections in a network
where some parts are uncertain, we only discussed fitting the preference model
to a graph where all connections were known and all uncertain connections
were assumed to be nonexistent. As a refinement of the model, we can include
our a priori assumption about the probability of the event that a particular,
presently uncharted connection exists in the network. Let us denote by bi→j

our degree of belief in the existence of an edge going from vertex i to j. We
write bi→j = 1 if we are fully convinced that the edge actually exists and
bi→j = 0 for edges that are known to be nonexistent. Intermediary values
of bi→j can be thought about as probabilities, e.g., bi→j = 0.3 means that
the probability of an edge from vertex i to j is 0.3. (Note that bi→j acts
as a generalization of Aij : bi→j is 1 if and only if we are convinced that
Aij = 1, bi→j is 0 if and only if we are convinced that Aij = 0. Uncertain
connections result in 0 < bi→j < 1). In this sense, not only our model but the
graph being fitted is also probabilistic, and we are trying to find the model
whose expected likelihood with respect to the whole ensemble of possible
graphs parameterized by the degrees of belief is maximal. All the optimization
methods described earlier also work in this case, only the likelihood and the
log-likelihood functions have to be adjusted:
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L(M|G) =
N∏

i=1

N∏
j=1,j 6=i

(
bi→jpui→vj

+ (1− bi→j)
(
1− pui→vj

))
(9a)

logL(M|G) =
N∑

i=1

N∑
j=1,j 6=i

log
(
bi→jpui→vj + (1− bi→j)

(
1− pui→vj

))
(9b)

The elements of the optimal probability matrix P can then be thought
about as the posterior probabilities of the edges in the network. An edge
whose prior probability is significantly lower than its posterior probability is
then likely to exist, while connection candidates with significatly higher prior
than posterior probabilities are likely to be nonexistent.

3 Results and discussion

In this section, we will present our results on application of the preference
model to the prediction of unknown connections in the visual and sensorimo-
tor cortex of the primate (macaque monkey) brain.

The dataset we are concerned with in this section is a graph model of
the visuo-tactile cortex of the macaque monkey brain. Connectivity data was
retrieved from the CoCoMac database [37] and it is identical to the dataset
previously published in [45]. The whole network contains 45 vertices and
463 directed links among them. The existence of connections included in the
network were confirmed experimentally, while connections missing from the
network were either explicitly checked for and found to be nonexistent, or
never checked experimentally. To illustrate the uncertainty in the dataset
being analyzed, we note that 1157 out of the 1980 possible connections were
uncertain (never checked experimentally) and only 360 were known to be
absent.

The network consists of two dense subnetworks corresponding to the vi-
sual and the sensorimotor cortex (30 and 15 vertices, respectively). The visual
cortex can also be subdivided to the so-called dorsal and ventral parts using
a community detection algorithm based on random walks [40]. Most of the
uncertain connection candidates are heteromodal (originating in the visual
and terminating in the sensorimotor cluster, or the opposite), and it is as-
sumed that the vast majority of possible heteromodal connections are indeed
nonexistent. The basic properties of these networks are shown in Table 1,
while the adjacency matrix of the visuo-tactile network is depicted on Fig. 5.
Note that since the visual and sensorimotor cortices are subnetworks of the
visuo-tactile networks, their adjacency matrices are the upper-left 30×30 and
lower-right 15 × 15 submatrices of the adjacency matrix of the visuo-tactile
cortex. In order to compare our results with previous reconstruction attempts
that were only concerned with the visual cortex [21, 30], we will present re-
sults based on the visual subnetwork as well as the whole visuo-tactile cortex.
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Table 1 Basic properties of the original networks

Visual Sensorimotor Visuo-tactile

Vertices 30 15 45

Known connections (edges) 335 85 463
Known nonexistent connections 310 0 360

Unknown connections 225 125 1157

Density 0.385 0.404 0.233
Density (excl. unknowns) 0.519 1.000 0.548

Diameter 3 3 5

Average path length 1.6632 1.767 2.149
Reciprocity 0.850 0.888 0.815

Data analysis was performed using the open source igraph network analysis
library [14] (http://cneurocvs.rmki.kfki.hu/igraph).

3.1 Rapid mixing of the MCMC process

First, we illustrate the rapid convergence of the MCMC process to the equi-
librium distribution. This property is crucial, since a chain with short mixing
time tends to get close to its equilibrium distribution quickly, thus ensur-
ing that a short burn-in period is sufficient. Since a rigorous proof of the
mixing time of the Markov chain designed for fitting the preference model
is well beyond the scope of this chapter, and we are mostly concerned with
its applicability to the visual and visuo-tactile networks, we check the fast
convergence of the method by plotting the log-likelihood of the states of the
Markov chain and the acceptance rate as the fitting progresses from an arbi-
trary random starting position. Fig. 6 illustrates that the chain mixes rapidly,
reaching its equilibrium distribution in roughly n2 steps, where n is the num-
ber of vertices in the network. This satisfies the criterion of rapid mixing,
since the number of possible states in the Markov chain is k2n (k is the num-
ber of groups), therefore the mixing time is polynomial in the logarithm of
the number of states. The number of groups was fixed at 7 for the visual and
10 for the visuo-tactile cortex, these choices will be explained later. Unknown
edges were treated as nonexistent. Fig. 6 suggests that one can start sampling
from the Markov chain after roughly n2 steps or after the acceptance rate
drops below 0.2.
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Fig. 5 Adjacency matrix of the visuo-tactile cortex dataset. Black cells denote known
existing connections, white cells denote known nonexistent connections. Gray cells are

connections not confirmed or confuted experimentally. The upper left 30 × 30 submatrix

is the adjacency matrix of the visual cortex, the lower right 15 × 15 submatrix describes
the sensorimotor cortex.

3.2 Methodological comparison with other prediction
approaches

Our method allows prediction of nonreciprocal connections, and the network
data is not symmetrised for the sake of computational and methodological
tractability, in contrast to [21]. Furthermore, we only use the connectional
data for prediction,, no other anatomical facts were taken into account. An
approach where additional neuroanatomical facts were used as predictional
input is described in [21]. Jouve et al. [30] use a specific property of the visual
cortex: the existence of indirect connections of length 2 between areas are
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Fig. 6 Log-likelihood of the states of the Markov chain (left) and acceptance rates in a

window of 100 samples (right) for the visual and visuo-tactile cortices, normalised by n2,
on a logarithmic time scale

presumed to support the existence of a direct connection. This property need
not hold for other large cortical structures, especially when investigating the
interplay of different cortices (e.g., the visual and the sensorimotor cortices).
In fact, this assumption is difficult to prove or disprove due to the poor
knowledge of connection structure in other parts of the cortex. The problem
is even more pronounced in the case of heteromodal connections, thus other
guiding principles had to be sought.

3.3 Visual cortex

Since the visual cortex is a part of the visuo-tactile cortex, the adjacency
graph of the visual cortex can be found in Fig. 5 as the upper left 30 × 30
submatrix. It is noteworthy that most of the unknown connections are adja-
cent to the areas VOT and V4t, and the subgraph consisting of the vertices
PITd, PITv, CITd, CITv, AITd, AITv, STPp and STPa (all belonging to
the ventral class) is also mostly unknown. Based on the connection density
of the visual cortex (assuming unknown connections to be nonexistent), the
probability of the existence of a connection classified as unknown was set to
0.385. These degrees of belief were taken into account in the likelihood func-
tion as described in Sect. 2.7. The search for the optimal configuration started
from a random initial position, first improved by a greedy initial phase, then
followed by MCMC sampling after reaching the first local maximum. The
sampling process was terminated when at least 106 samples were taken from
the chain. The sample with the best likelihood became the final result.

The optimal number of groups in the preference model was determined by
studying the eigenvalues of the Laplacian and the singular values of the ad-



Reconstructing Cortical Networks 23

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  5  10  15  20  25  30

Eigenvalues

(a) Eigenvalues

 0

 2

 4

 6

 8

 10

 12

 14

 0  5  10  15  20  25  30

Singular values

(b) Singular values

Fig. 7 Eigenvalues of the Laplacian and singular values of the adjacency matrix of the
visual cortical graph

jacency matrix (unknown connections were treated as nonexistent) as well as
the Akaike information criterion of the obtained partitions at various group
numbers from 2 to 15. Partitions having more than 15 groups do not seem
feasible, since in these cases, at least one of the groups will contain only one
vertex. The eigenvalues and the singular values are shown on Fig. 7. A vi-
sual inspection suggests using only two groups (which is congruent with the
anatomical fact that the visual cortex is composed of two major pathways,
namely the dorsal and the ventral stream), but the minimal AIC value was
achieved using 7 groups (see Table 2). Since two groups are intuitively in-
sufficient for an accurate reconstruction, we decided to use 7 groups in the
rest of the analysis. This is further supported by the mediocre success rate of
the model with only two groups. Success rates were calculated as follows: for
every possible threshold τ between 0 and 1 (with a granularity of 0.01), the
percentage of known edges that had a predicted probability greater than τ
was calculated. The final threshold used for calculating the success rate was
chosen to be the one that produced the highest ratio of correctly predicted
known edges. τ fluctuated around 0.5 in all cases. As it was expected based
on our reasoning outlined in Sect. 2.5, the success rate increased steadily as
we increased the number of groups, but the divergence of τ from 0.5 after
having more than 7 groups is likely to be a precursor of overfitting.

The fitted model with 7 groups provided probabilities for the 225 unknown
connections, 137 of them were above the optimal threshold τ = 0.5. The ratio
of predicted edges approximately matches the density of the visual cortex
when we exclude the unknown connections from the density calculation (see
Table 1). However, if we wanted the ratio of predicted connections to match
the density of known connections in the visual cortex, we would have to
increase τ to 0.654, predicting only 81 connections. This ratio matches the one
reported in [21], although the connection matrix in [21] included an additional
area in the analysis. The predicted adjacency matrix with τ=0.654 is shown
on Fig. 8 and its basic descriptive graph measures are to be found in Table
3.
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Table 2 Likelihoods, AIC values and success rates in the visual cortex

K Log-likelihood AIC τ Success rate

2 -481.608 1091.216 0.50 80.7%

3 -440.280 1018.560 0.50 82.4%
4 -413.027 978.055 0.50 84.2%

5 -394.664 959.328 0.50 85.1%

6 -378.271 948.543 0.50 87.4%
7 -363.146 944.292 0.50 87.6%

8 -353.071 954.143 0.50 88.5%

9 -340.886 963.773 0.47 89.6%
10 -331.626 983.253 0.43 90.2%

11 -319.771 1001.543 0.49 90.7%
12 -307.766 1023.532 0.48 91.5%

13 -300.657 1059.315 0.48 91.9%

14 -297.540 1107.081 0.46 92.0%
15 -288.615 1147.231 0.49 92.4%

Table 3 Basic properties of the predicted networks

Predicted visual Predicted visuo-tactile

Vertices 30 45

Edges 358 757
Density 0.412 0.382

Diameter 3 4

Average path length 1.478 1.833
Reciprocity 0.517 0.645

Reciprocity of predicted connections 0.674 0.824

Besides the overall success rate, we also calculated the ratio of correctly
predicted 1’s and 0’s (R1 and R0, respectively) for the case of K = 7. With
τ = 0.5, 84.8% of known 0’s and 93.1% of known 1’s were predicted correctly
(R0 = 0.848, R1 = 0.931). The geometric mean (

√
R0R1) was 0.888, which

dropped to 0.8245 when raising τ to 0.654 (R0 = 0.925, R1 = 0.734), thus a
higher τ seems to be better at reconstructing non-existing connections.

We compared our results to earlier studies [21,30]. Comparisons were based
on the percentage of matching predictions. Since both studies took a slightly
different sets of areas into consideration, we did not take into account those
areas that were not present in any of the matrices.

The predictions of Jouve et al. [30] are based solely on topological features
of the network model of the visual cortex, similarly to the method presented
here. The agreement between the two predicted matrices is moderate: 61.6%
of the predictions match for τ = 0.5 and only 47% for τ = 0.654. Most of the
disagreements involved areas V4t (28), VOT (22), FEF (17) and DP (16).
Area MSTd was joined together with MSTp in our study (resulting in the
vertex denoted by MSTd/p), therefore neither MSTd nor MSTd/p was taken
into account. We note that the matrix used in the present paper incorporated
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Fig. 8 The predicted adjacency matrix of the visual cortex with 7 vertex groups. White

cells denote confirmed existing and absent connections. Dark gray cells denote mismatches
between the known and the predicted connectivity. Light gray cells denote predictions for

unknown connections.

the results of anatomical experiments that could not have been included in
the matrix in [30], therefore the moderate match between the two matrices
can be explained by the differences in the initial dataset, see Table 4 for
the number of mismatches involving each area. Since the prediction method
of Jouve et al. was not concerned with reconstructing the entire network
(predictions were made only on unknown connections), no comparison could
be made based on the success rates of the two methods.

The predictions published by Costa et al. [21] are based on several topo-
logical (e.g., node degree, clustering coefficient) and spatial features (e.g.,
area sizes, local density of the areas in the 3D space, based on their known
positions in the cortex). In this sense, the reconstruction method based on
the preference model is simpler, for it depends solely on the connection ma-
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Table 4 Number of mismatches in the predicted matrix, grouped by areas

Known connections Jouve et al. [30] Costa et al. [21]

V1 5 0 0

V2 5 1 0
V3 6 0 0

V3A 1 4 1

V4 21 0 0
V4t 2 28 15

VOT 7 22 18

VP 10 0 –
MT 3 2 0

MSTd/p 5 – –
MSTl 7 7 0

PO 10 3 1

LIP 8 3 3
PIP 5 13 4

VIP 4 6 3

DP 12 16 8
7a 9 10 7

FST 11 8 1

PITd 6 6 2
PITv 4 7 6

CITd 2 9 3

CITv 3 8 5
AITd 7 2 1

AITv 4 8 3
STPp 11 9 8

STPa 6 12 3

TF 13 8 11
TH 6 8 2

FEF 8 17 3

46 15 7 9

In the second column, the known connections of the original matrix are compared to
our predictions. In the last two columns, only the unknown (predicted) connections are

compared to the unknown connections of our dataset. The 4 largest number of mismatches

in each column are underlined.

trix. We also note that Costa et al. inferred the topological features from a
symmetrized connectivity matrix, thus their predicted matrix is also com-
pletely symmetric, while our method produced a matrix where only 67.4%
of the connections (67.4% of the predicted, previously unknown connections)
were reciprocal. The ratios of correctly predicted 1’s and 0’s in the visual
cortex reported by Costa et al. were slightly worse (R0 = 244/350 = 0.697,
R1 = 207/295 = 0.701,

√
R0R1 = 0.699, loop connections excluded). Note

that the comparison can not be fully accurate because of the slightly different
set of areas used in the analysis (MIP and MDP were present only in [21],
whereas MSTd/p and VP were present only in the matrix used in this study).
69.8% of the predictions presented here matched the predictions of [21], and
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all predicted edges with a probability larger than 0.8 were predicted in [21]
as well.

One may note that in spite of the improvement of the reconstruction as
compared to the previous studies [21,30], there is still a relatively high num-
ber of mismatches on Fig. 8. The distribution of mismatches in the adjacency
matrix can be suggestive of the methodological shortcomings and the state
of knowledge in the investigated network. It appears that most of the mis-
matches are to be found within the two major visual clusters, the dorsal and
ventral visual subsystems, where connectional densities are higher than in
the lower left and upper right quadrants of the matrix representing the inter-
cluster connections. Interestingly, most of the mismatches affected either the
input or output patterns of areas V4 and 46, and to a lesser degree of TF and
FEF in the intercluster regions. These areas are central nodes in the visual
cortical network, establishing connections between different clusters. In fact,
the inclusion of the sensorimotor cortex improved the reconstruction (see
Section 3.4). It is also noteworthy that relatively few mismatches/violations
occurred in case of the lower order areas (listed in the upper left corner of the
matrix). This is an important point as low-level areas establish connections
mostly within their cluster and the connections of these areas are relatively
well explored. These observations indicate the dependence of reconstruction
quality on the actual knowledge of the network.

To summarize without going into the details, we conclude that our re-
construction is biologically realistic and reflects our understanding of the
organization of the visual cortical connectivity.

3.4 Visuo-tactile cortex

The network model of the visuo-tactile cortex is an extension of the visual
cortex, obtained by adding the 15 areas of the sensorimotor cortex and their
respective connections. Connections going between a visual and a sensorimo-
tor area are called heteromodal connections. The density of the sensorimotor
cortex is slightly higher than that of the visual cortex. Based on the con-
nection densities, the probability of the existence of an unknown connection
was assumed to be 0.385 inside the visual cortex and 0.404 inside the sen-
sorimotor cortex. Unknown heteromodal connections were assumed to exist
with probability 0.1. Note that the vast majority of heteromodal connections
is unknown. There was no confirmed nonexisting sensorimotor connection
indicated in the data set. The adjacency matrix is shown on Fig. 5. The opti-
mal configuration was found by combining the greedy optimization with the
MCMC method, similarly as above.

The number of groups in the preference model was determined again by
the Akaike information criterion. The eigenvalues of the Laplacian and the
singular values of the adjacency matrix suggested 5 groups, which is again in
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Table 5 Likelihoods, AIC values and success rates in the visuo-tactile cortex

K Log-likelihood AIC τ Success rate

5 -814.956 1859.913 0.42 83.6%

6 -783.935 1819.871 0.23 84.4%
7 -756.352 1790.705 0.46 84.8%

8 -736.163 1780.327 0.37 86.1%

9 -718.422 1778.844 0.43 86.4%
10 -697.078 1774.156 0.49 87.3%

11 -683.335 1788.671 0.46 89.3%

12 -684.105 1836.210 0.46 89.3%
13 -665.337 1848.674 0.47 89.4%

14 -653.755 1879.510 0.48 89.4%
15 -652.173 1934.347 0.40 90.1%

concordance with anatomical considerations, but as shown above, 5 groups
were insufficient to reproduce only the visual cortex (part of the visuo-tactile
cortex). Log-likelihoods, AIC values and success rates are shown in Table 5,
from 5 to 15 groups. The optimal number of groups with the lowest AIC was
10.

The fitted model with 10 groups predicted 225 connections with τ = 0.47
out of the 1157 unknown ones (R0 = 0.883, R1 = 0.892,

√
R0R1 = 0.887).

This is 19.4% of the unknown connections and it roughly matches the over-
all density of the visuo-tactile cortex (23.3%). However, only 5 heteromodal
connections (all originating from LIP) were predicted apart from the known
existing ones. This is due to the fact that very little is known about the
heteromodal connections, and the algorithm cannot generalize beyond them
with higher confidence. We also note that the posterior probability of many
heteromodal connections in this case stayed at 0.1, the same as their prior
probability. Taking into account that even a significant difference between the
prior and the posterior probabilities of the heteromodal connections may not
reach the threshold of 0.49, we decided to use different thresholds for non-
heteromodal and heteromodal connections (τ1 and τ2, respectively). τ1 was
left at 0.49, while τ2 was lowered to 0.137, the average a posterori probabili-
ties of the unknown heteromodal connections. This new configuration yielded
R0 = 0.831, R1 = 0.927,

√
R0R1 = 0.877 and 132 predicted heteromodal con-

nections, related mainly to areas LIP, VIP, DP, 7a, FST, TF, FEF and 46
in the visual cortex. It is noteworthy that four of these areas (46, 7a, LIP
and VIP) were classified as structural overlaps between the two subnetworks
in the fuzzy community analysis of Nepusz et al. [47]. Anatomical considera-
tions also support the bridge-like role of these areas between the cortices. It
was previously suggested in the literature that area VIP should be split into
two areas (VIPm and VIPp), establishing stronger connections with visual
or sensorimotor areas, respectively [42]. VIP and LIP are involved with hand
and eye coordination, respectively, requiring a combined input of visual and
tactile signals. Area 46 is a part of the dorsolateral prefrontal cortex, and it
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Table 6 Group affiliations of the areas in the visuo-tactile cortex

Out-group 1 V1, VOT, MSTl
Out-group 2 V2, V3, V3A, V4t, VP, MT, PO, PIP

Out-group 3 V4

Out-group 4 MSTd/p, FST, FEF
Out-group 5 LIP, VIP

Out-group 6 DP, 7a

Out-group 7 PITd, PITv, CITd, CITv, AITd, AITv, STPp, STPa, TH
Out-group 8 TF, 46

Out-group 9 3a, 1, 2, 5, SII, 7b, 4, 6, SMA

Out-group 10 3b, Ri, Ig, Id, 35, 36

In-group 1 V1, PIP
In-group 2 V2, V3, V3A, V4t, VP, MT, PO

In-group 3 35, 36

In-group 4 V4, FST, FEF
In-group 5 VIP

In-group 6 MSTd/p, MSTl, LIP, DP, 7a

In-group 7 PITd, PITv, CITd, CITv, AITd, AITv, STPp, STPa, TH
In-group 8 VOT, TF, 46

In-group 9 3a, 1, 2, 5, SII, 7b, 4, 6, SMA

In-group 10 3b, Ri, Ig, Id

does not have functions related to low-level sensory information processing.
Being a higher level (supramodal) area, it integrates visual, tactile and other
information. Area 7a integrates visual, tactile and proprioceptive signals. Fi-
nally, areas TF and FEF are also high level structures integrating widespread
cortical information (e.g., [20]).

The predicted connectivity matrix is shown on Fig. 9, the basic graph
measures are depicted in Table 3. To show the subtle differences between
predicted connections, the exact probabilities are shown on Fig. 10, encoded
in the background colour of the matrix cells (white indicating zero probability
and black indicating 1). The latter figure shows the prediction in its full
detail, especially in the sensorimotor cortex where the predicted clique-like
subgraph reveals its internal structure more precisely. The group affiliations
of the individual vertices are shown in Table 6.

We also examined the ratios of correctly predicted known 0’s and 1’s
with respect to pure visual and pure sensorimotor connections. As expected,
the algorithm performed better in the visual cortex, which is more thor-
ougly charted than the sensorimotor cortex. The calculated ratios were
R0 = 0.865, R1 = 0.902,

√
R0R1 = 0.882 for the visual cortex. Since the

sensorimotor cortex contained no known non-existing connections, R1 could
not be calculated for it. All known connections in the sensorimotor cortex
were predicted correctly (R0 = 1), however, this is due to the lack of infor-
mation on nonexisting connections in the sensorimotor cortex. The ratios of
the visual cortex were similar to the ones obtained when analyzing the visual
cortex alone.
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Fig. 9 The predicted adjacency matrix of the visuo-tactile cortex with 10 vertex groups,
τ1 = 0.49 and τ2 = 0.137. White cells denote confirmed existing and absent connections.

Black cells denote mismatches between the known and the predicted connectivity. Light

gray cells denote predictions for unknown connections.

Out of the 225 unknown connections in the visual cortex, 46 were predicted
differently when we took into account the sensorimotor cortex. The most
discrepancies involved the outgoing edges of VOT (10 mismatches), PIP (6
mismatches) and TF (6 mismatches). These can be caused by the additional
information present in the system in the form of heteromodal connections.
At the same time, prediction errors related to the known visual connections
of visual areas having heteromodal connections decreased (e.g., area TF: 13
to 6, area 46: 15 to 4), due to the same additional information. Other notable
improvements were at V4 (21 to 13) and DP (12 to 7).

The reconstruction quality of the visual cortex was improved by adding the
information about the heteromodal connections and the sensorimotor cortex
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Fig. 10 Probability of the connections in the visuo-tactile cortex with 10 vertex groups,
τ1 = 0.49 and τ2 = 0.137. Probabilities are denoted by colours, with white corresponding

to 0 and black corresponding to 1. The predicted adjacency matrix is shown in the matrix

cells.

(see Fig. 8 and the upper left part of Fig. 9). This was not a simple conse-
quence of increasing the number of clusters from 7 to 10, but the corollary of
the additional information about the connections that visual areas form with
the sensorimotor cortex. This contextual information may also give guidelines
for understanding the mechanisms of heteromodal interactions.

3.5 Major structural changes after reconstruction

An interesting feature of the reconstructed network is the complete clique
induced by the following vertices: PITd, PITv, CITd, CITv, AITd, AITv,
STPp, STPa, TF and TH. We note that this region was mostly uncharted
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in the original matrix, and there were only three confirmed nonexisting con-
nections (STPp → AITd and STPa ↔ AITv). This clique also appeared in
the earlier analysis of Jouve et al. [30] and a similar but smaller clique also
emerged in our predictions of the visual cortex. Notably, a similar tendency
could also be observed in the analysis of Costa et al. [21], as only a few con-
nections were missing among the areas mentioned above to form a clique.
Our assumption is that our prediction based on solely the visual cortex is a
more accurate approximation of the true connectional pattern of these areas.

Finally, we compared the community structure of the original and the pre-
dicted connectivity matrix in order to obtain further support for the validity
of our predictions. We argue that a valid predicted connectivity matrix should
not only obtain a high ratio of correctly predicted 1’s and 0’s, but also keep
the community structure of the network mostly intact. In order to take the
directionality of the edges into account, we employed the community detec-
tion method of Latapy & Pons [40]. This method is based on the idea that
given a significant community structure in the network, short random walks
tend to stay within the same community. We tried random walks with length
ranging from 3 to 7. The quality of the obtained partitions was assessed
by the modularity function Q [48]. Best results were achieved with random
walks of length 7 for the original and 4 for the predicted cortex (Q = 0.339
and Q = 0.301, respectively). Table 7 shows the detected communities of the
original and the predicted visuo-tactile cortex.

Table 7 Community structure of the original and the predicted visuo-tactile cortex

Original visuo-tactile cortex (Q = 0.339)

Community 1 V1, V2, V3, V3A, V4t, VP, MT, MSTd/p, MSTl, PO, LIP, PIP,
VIP, DP, 7a, FST, FEF, 46

Community 2 V4, VOT, PITd, PITv, CITd, CITv, AITd, AITv, STPp, STPa,

TF, TH
Community 3 3a, 3b, 1, 2, 5, Ri, SII, 7b, 4, 6, SMA

Community 4 Ig, Id, 35, 36

Predicted visuo-tactile cortex (Q = 0.379)

Community 1 V1, V2, V3, V3A, V4t, VP, MT, MSTd/p, MSTl, PO, LIP, PIP,

VIP, DP, 7a, FST, FEF, 46
Community 2 V4, VOT, PITd, PITv, CITd, CITv, AITd, AITv, STPp, STPa,

TF, TH
Community 3 3a, 3b, 1, 2, 5, Ri, SII, 7b, 4, 6, SMA, Ig, Id, 35, 36

Community 1 corresponds approximately to the dorsal stream of the visual
cortex while community 2 contains the areas of the ventral stream in both
cases. Community 3 and community 4 form the sensorimotor cortex. These
groups were joined together to form a single community of the sensorimotor
cortex in the case of the predicted matrix. Since there is no known anatomical
meaning of community 4, the predicted community structure represents our
understanding of the sensorimotor cortex more accurately than the original
one. Apart from this mismatch, we can conclude that the major structure of
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the original matrix was preserved during the reconstruction process, but the
reconstructed network seems less modular than the original, as indicated by
the decrease in the modularity of the partitions.

Other notable differences were the smaller diameter and shorter average
path length (Table 1, 3). Considering segregation and integration as major
cortical functions [66], these findings together predict a more efficient cortical
information processing as it can be deduced on the basis of our present state
of knowledge about this network.

4 Conclusion

From a biological point of view, the stochastic representation of the corti-
cal network described in the present study demonstrates the high level of
uncertainty of our knowledge about the connectivity of the ventral visual
cluster (community 2) as well as the sensorimotor cortex (communities 3 and
4). Similarly to our findings, both previous studies [21, 30] predicted numer-
ous connections within the ventral visual cluster, making it almost a large,
fully connected clique. A similar observation was made here in the sensori-
motor cortex. We should note that in contrast to the dorsal visual cluster
(including the majority of areas in community 1) there is a massive lack
of information regarding the non-existence of the connections in the ventral
and sensorimotor clusters (see also [20]). Considering the deterministically
imperfect knowledge of the cortical, and probably most of the real-life com-
plex networks, these findings point out the significance of information about
known nonexistent connections. Interestingly, similar conclusion was drawn
by Kötter and Stephan [38], who investigated the role of components in cor-
tical information processing by defining their network participation indices.
This is an important point when considering that neurobiologists focus on
the existence of connections between the cortical areas and often ignore the
absence of them while mapping cortical connections in their experiments.
In fact, this point is in agreement with our expectations considering that
the cortical network architecture is shaped by evolutionary and functional
constraints.

Considering individual cortical areas, our predictions resulted in a rela-
tively large number of mismatches of the connections of some mid- (e.g., V4
and DP) and high level areas (e.g., TF and 46) when compared to the orig-
inal data. The connections of high level areas, which form the connections
between the different cortical clusters, are hard to predict in individual sub-
networks where the connections between these areas and the neglected part
of the network is necessarily missing from the data. The largest number of
mismatches occurred in the case of V4. This area is a functionally hetero-
geneous, complex structure, which maybe divided to sub-regions, and forms
a bridge between the dorsal and ventral clusters of the visual cortex [47].
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This could at least partly explain the large number of mismatches occurred
in the reconstruction process. The assumption outlined here is further sup-
ported by the fact that the number of mismatches involving areas V4, DP,
TF and 46 decreased after taking into account the sensorimotor cluster and
the heteromodal connections. On the other hand, V4t and VOT are exam-
ples of structures with largely unexplored connectivity. The existing data
suggest that these areas exhibit roughly similar pattern of connectivity to
their topographical neighbor area V4, which has much better explored con-
nectivity. The large differences observed in the predicted connectivity of V4t
and VOT in the three studies (including ours as well as Costa et al. [21] and
Jouve et al. [30]) is most probably due to the large uncertainty in the con-
nectional data of these two areas. Interestingly, a more careful examination
of Fig. 8 suggest that the prediction of the connections of these three areas,
especially that of V4 and VOT tended to be somewhat complementary in
the visual cortex. This was less evident in the larger visuo-tactile network
(Fig. 9). Based on these observations it is suggested that the mismatches of
V4-connections occurred during the reconstruction as a consequence of the
optimization process.

From the methodological point of view it is important to note that our ap-
proach is not a community structure detection. There are many sophisticated
methods which reliably detect communities within networks [17, 40, 48, 53],
yet the information about the community structure is not sufficient for an
accurate network reconstruction. One of the main advantages of our method
is a higher accuracy in reconstruction of charted connections (known existent
or nonexistent), compared to earlier methods [21,30]. It is important to em-
phasize that our method allows the prediction of nonreciprocal connections.
The presented approach is general and applicable to other networks not nec-
essarily related to cortical structure. Its generality is reflected in the fact that
we do not use information about the underlying spatial structure, as these
data may be unavailable or unintelligible for some networks, nor we assume
that there is a given property of paths related to the clustering coefficient in
the network. Our method is based on an exact goal function that we optimize.
The existence of a goal function allows for a comparison of different solutions
which may be difficult to carry out in the absence of a quantitative measure.
The drawbacks of our approach are related to the necessity of knowledge
regarding existing and confirmed nonexisting connections. This necessity is
reflected in the prediction of heteromodal connections, as the number of con-
firmed or refuted heteromodal connections is surprisingly small, see Fig. 5.
One has to note that the method is computationally expensive, which may
be a severe limiting factor in case of large networks. Finally, inspired by the
Szemerédi regularity lemma, the present study exemplifies the usefulness of
a theoretical approach in analyzing real world data.
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Scientifique (CNRS) (ed.) Problèmes combinatoires et théorie des graphes (Colloq.
Internat. CNRS, Univ. Orsay, Orsay, 1976, pp. 399–401. Paris (1978)

63. Szentágothai, J.: The “module-concept” in cerebral cortex architecture. Brain Res
95(2-3), 475–96 (1975)

64. Szentágothai, J.: Specificity versus (quasi-) randomness revisited. Acta Morphologica

Hungarica 38, 159–167 (1990)
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