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Abstra
t

Modular gates are known to be immune for the random restri
tion te
hniques of Ajtai

(1983), Furst, Saxe, Sipser (1984), Yao (1985) and H�astad (1986). We demonstrate here

a random 
lustering te
hnique whi
h over
omes this diÆ
ulty and is 
apable to prove

generalizations of several known modular 
ir
uit lower bounds of Barrington, Straub-

ing, Th�erien (1990), Krause and Pudl�ak (1994), and others, 
hara
terizing symmetri


fun
tions 
omputable by small (MOD

p

;AND

t

;MOD

m

) 
ir
uits.

Applying a degree-de
reasing te
hnique together with random restri
tion methods for

the AND gates at the bottom level, we also prove a hard spe
ial 
ase of the Constant

Degree Hypothesis of Barrington, Straubing, Th�erien (1990), and other related lower

bounds for 
ertain (MOD

p

;MOD

m

;AND) 
ir
uits.

Most of the previous lower bounds on 
ir
uits with modular gates used spe
ial de�ni-

tions of the modular gates (i.e., the gate outputs one if the sum of its inputs is divisible

by m, or is not divisible by m), and were not valid for more general MOD

m

gates. Our

methods are appli
able, and our lower bounds are valid, for the most general modular

gates as well.

1 Introdu
tion

Boolean 
ir
uits are perhaps the most widely examined models of 
omputation. They gain

appli
ation in diverse areas as VLSI design, 
omplexity theory as well as in the theory of

parallel 
omputation.

A majority of the strongest and deepest lower bound results for 
omputational 
omplexity

were proved using the Boolean 
ir
uit model of 
omputation (for example [11℄, [16℄, [7℄, [12℄,

[13℄, or see [14℄ for a survey).

Unfortunately, lots of questions, even for very restri
ted 
ir
uit 
lasses, have been unsolved

for a long time.

Bounded depth and polynomial size is a natural restri
tion. Ajtai [1℄, Furst, Saxe, and

Sipser [5℄ proved that no polynomial sized, 
onstant depth 
ir
uit 
an 
ompute the PARITY

fun
tion. Yao [16℄ and H�astad [7℄ generalized this result for sub-logarithmi
 depths. Their

te
hnique involved a sophisti
ated use of random restri
tion te
hniques, in whi
h randomly

assigned 0-1 values to the input variables �xed the output of large fan-in AND and OR

Boolean gates.

�

Department of Computer S
ien
e, E�otv�os University, R�ak�o
zi �ut 5, H-1088 Budapest, Hungary; E-mail:

grolmusz�
s.elte.hu

y

R�enyi Institute of the Hungarian A
ademy of S
ien
e, Re�altanoda u. 13-15, H-1055 Budapest, Hungary;

E-mail: tardos�
s.elte.hu

1



Grolmusz-Tardos: Lower Bounds for (MOD p { MOD m) Cir
uits 2

Sin
e the modular gates are very simple to de�ne, and they are immune to the random

restri
tion te
hniques in lower bound proofs for the PARITY fun
tion, the following natural

question was asked by Barrington, Smolensky and others: How powerful will be the Boolean


ir
uits if, beside the standard AND, OR and NOT gates, MOD

m

gates are also allowed in the


ir
uit? Here a MOD

A

m

gate outputs 1 if the sum of its inputs is in a set A � f0; 1; 2; : : : ;m�1g

modulo m.

Razborov [12℄ showed that for 
omputing MAJORITY with AND, OR, NOT and MOD

2

gates, exponential size is needed with 
onstant depth. This result was generalized by Smolen-

sky [13℄ for MOD

p

gates instead of MOD

2

ones, where p denotes a prime.

We know very little, however, if both MOD

p

and MOD

q

gates are allowed in the 
ir
uit

for di�erent primes p; q, or, if the modulus is a non-prime power 
omposite, e.g., 6. For

example, it is 
onsistent with our present knowledge that depth-3, linear-size 
ir
uits with

MOD

6

gates only, re
ognize an NP-
omplete language (see [2℄).

It is not diÆ
ult to see that 
onstant-depth 
ir
uits with MOD

p

gates only, (p prime),


annot 
ompute even very simple fun
tions: the n-fan-in OR or AND fun
tions, sin
e they


an only 
ompute 
onstant degree polynomials of the input variables over GF

p

(see [13℄).

But depth-2 
ir
uits with MOD

2

and MOD

3

gates, or MOD

6

gates 
an 
ompute the n-

fan-in OR and AND fun
tions [8℄, [2℄. Consequently, these 
ir
uits are more powerful than


ir
uits with MOD

p

gates only. The sket
h of the 
onstru
tion: we take a MOD

3

gate at the

top of the 
ir
uit, and 2

n

MOD

2

gates on the next level, where ea
h subset of the n input

variables is 
onne
ted to exa
tly one MOD

2

gate, then this 
ir
uit 
omputes the n-fan-in OR,

sin
e if at least one of the inputs is 1, then exa
tly half of the MOD

2

gates evaluate to 1.

Barrington, Straubing and Th�erien in [2℄ 
onje
tured that any (MOD

B

p

;MOD

A

m

;AND

d

)


ir
uit needs exponential size to 
ompute the n fan-in AND fun
tion, where the prime p and

the positive integers m and d are �xed, and AND

d

denotes the fan-in d AND fun
tion. They


alled it the Constant Degree Hypothesis (CDH), and proved the d = 1 
ase, with highly

non-trivial algebrai
 te
hniques. Their proof also works for depth-(`+ 1)

(

`

z }| {

MOD

B

p

k

;MOD

B

p

k

; : : : ;MOD

B

p

k

;MOD

A

m

) (1)


ir
uits, 
omputing the AND fun
tion.

Yan and Parberry [15℄, using Fourier-analysis, proved also the d = 1 
ase for

(MOD

f1;2;:::;p�1g

p

;MOD

f1g

2

) 
ir
uits, but their method also works for the spe
ial 
ase of the

CDH where the sum of the degrees of the monomials g

i

on the input-level satis�es:

X

deg(g

i

)�1

(deg(g

i

)� 1) �

n

2(p� 1)

�O(1):

Krause and Waa
k [10℄ applied 
ommuni
ation-
omplexity te
hniques to show that any

(MOD

f1;2;:::;m�1g

m

;SYMMETRIC) 
ir
uit, 
omputing the ID fun
tion:

ID(x; y) =

�

1; if x = y;

0 otherwise,

for x; y 2 f0; 1g

n

, should have size at least 2

n

= logm, where SYMMETRIC is a gate, 
om-

puting an arbitrary symmetri
 Boolean fun
tion. Sin
e (non-weighted) MOD

m

gates are also

SYMMETRIC gates, this lower bound is valid for (MOD

f1;2;:::;m�1g

m

;MOD

A

m

) 
ir
uits. When
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mod m 
oeÆ
ients (or multiple wires) are allowed on the input-level, then the MOD

m

gates

are not SYMMETRIC gates, but the same proof te
hniques remain appli
able. Caussinus

[4℄ proved, that the result of [2℄ also implies a similar lower bound for the AND fun
tion.

Unfortunately, results [10℄, [4℄ do not generalize for the more general MOD

A

m

gates at the

top.

Krause and Pudl�ak [9℄ proved that any (MOD

f0g

p

k

;MOD

f0g

q

) 
ir
uit whi
h 
omputes the

MOD

f0g

r

fun
tion has size at least 2


n

, for some 
 > 0, where p and r are di�erent primes

and q is not divisible by either of them.

Our main result is a 
hara
terization of those symmetri
 Boolean fun
tions whi
h are


omputable by quasipolynomial-size

(

`

z }| {

MOD

B

p

k

;MOD

B

p

k

; : : : ;MOD

B

p

k

;MOD

A

m

)


ir
uits. We prove (Theorem 5), that the only symmetri
 fun
tions that are 
omputable by

su
h 
ir
uits are the MOD

mp

j

fun
tions with small j. Consequently, the non-trivial threshold

fun
tions, (so also AND and OR), and the MOD

f0g

r

fun
tions if r does not divide p

j

m need ex-

ponential size on that 
ir
uits. Even MOD

4

requires exponential size (MOD

3

r

;AND

t

;MOD

2

)


ir
uits for 
onstant t and r. Note the asymmetry: MOD

4

is easy to 
ompute with a poly-

nomial size (MOD

2

;AND

3

) 
ir
uit. These results generalize the theorems of Barrington,

Straubing, Th�erien [2℄ and Krause and Pudl�ak [9℄, and give a 
hara
terization of the 
om-

putable symmetri
 fun
tions, instead of singular lower bounds.

Grolmusz [6℄ generalized the results of [2℄, [15℄, [10℄, [9℄ for (MOD

q

;MOD

p

;AND


n

) 
ir-


uits, where the input-polynomials of ea
h MOD

p

gate is 
onstru
tible from linear terms

using at most 
n� 1 multipli
ations (or, equivalently, 
an be 
omputed by an arithmeti
 
ir-


uit of an arbitrary number of mod p additions and at most 
n� 1 fan-in 2 multipli
ations).

In parti
ular, one 
an allow the sum of an arbitrary fun
tion of 
n variables and a linear

polynomial of the n variables as inputs for ea
h MOD

p

gate. We generalize this result, too

(Lemma 18). The main tool of the proof of [6℄ is a Degree De
reasing Lemma, whi
h we also

generalize here for non-prime moduli (Lemma 15), and we use it both for lower- and upper

bound proofs.

Here we generalize the results of [6℄: we prove a lower bound on the size of the

(MOD

p

;MOD

m

;AND) 
ir
uits 
omputing AND

n

, if m is a positive integer, p is a prime,

and ea
h MOD

m

gate has not-too-many AND gates as inputs and those AND gates have

low fan-in. For the exa
t statement see Theorem 6. This is an important spe
ial 
ase of the

Constant Degree Hypothesis of [2℄. The lower bound also applies to 
ir
uits 
omputing some

other fun
tions besides AND.

2 Our Results

2.1 Ideas

MOD

m

gates are immune to random restri
tion te
hniques, sin
e these gates remain MOD

m

gates on the remaining variables after an arbitrary restri
tion, and thus (unless less than m

variables remain unrestri
ted) the 
omplexity does not de
rease.

We over
ome this diÆ
ulty by a random 
lustering te
hnique, whi
h for
e some randomly


hosen variables to be equal. Ea
h equivalen
e 
lass (or 
luster) will make a new variable of
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the MOD

m

gate, and ea
h new variable will be invisible (i.e., its 
oeÆ
ient will be a multiple

of m) for the gate with a 
onstant probability. (Lemma 10)

We use this for (MOD

p

;AND

t

;MOD

m

) 
ir
uits, 
omputing symmetri
 fun
tions. Sup-

pose, that the equivalen
e 
lasses are of size m, then the resulting fun
tion of the new,


lustered variables, is a unique symmetri
 fun
tion.

Almost all symmetri
 fun
tions (ex
ept the MOD

p

k

m

fun
tions) have large restri
tions,

whose unique fa
tor resulting from the 
lustering above 
annot be expressed as a modulo p

sum of fun
tions, none of whi
h depends on all variables. An exponential lower bound follows

for the number of AND gates on level 2. (Theorem 4)

If we have o(n

2

= log n) 
onstant-degree monomials as inputs for ea
h MOD

m

gates on

level 2, then by random restri
tions, one 
an essentially de
rease their number, and a small

number of low-degree monomials 
an be 
onverted to linear polynomials with the help of the

Degree De
reasing Lemma (Lemma 15), and we 
an apply Theorem 4 to get lower bounds.

(Theorem 6)

2.2 Preliminaries

De�nition 1 A fan-in n gate is an n-variable Boolean fun
tion. Let G

1

; G

2

; : : : ; G

`

be gates

of unbounded fan-in. Then a (G

1

; G

2

; : : : ; G

`

)- 
ir
uit denotes a depth-` 
ir
uit with a G

1

-

gate on the top, G

2

gates on the se
ond level, G

3

gates on the third level from the top,. . . ,

and G

`

gates on the last level. AND

t

denotes the fan-in t AND gate. The size of a 
ir
uit is

de�ned to be the total number of the gates in the 
ir
uit.

All of our modular gates are of unbounded fan-in, and we allow to 
onne
t inputs to gates

or gates to gates with multiple wires. Note, that by this de�nition, our modular gates are

not symmetri
 gates in general.

In the literature MOD

m

gates are sometimes de�ned to be 1, i� the sum of their inputs

is divisible by m, and sometimes they are de�ned to be 1, i� the sum of their inputs is not

divisible by m. The following, more general de�nition 
overs both 
ases.

De�nition 2 We say that gate G is a MOD

m

-gate, if there exists A � f0; 1; : : : ;m�1g su
h

that

G(x

1

; x

2

; : : : ; x

n

) =

�

1; if

P

n

i=1

x

i

mod m 2 A

0 otherwise.

A is 
alled the 1-set of G. MOD

m

gates with 1-set A are denoted by MOD

A

m

.

Notation 3 Let �

p

(x

1

; x

2

; : : : ; x

s

) =

P

s

i=1

x

i

mod p.

In general, �

p

is not a Boolean gate, sin
e its value is from f0; 1; : : : ; p � 1g. But, in all

of our statements, its value will be guaranteed to be 0 or 1.

2.3 Theorems

Here we list the three main results of this paper.

To be 
on
ise we use ((MOD

B

p

k

)

`

;MOD

A

m

) to denote 
ir
uits of type (1). Note that standard

te
hniques (see Lemma 8) show that these 
ir
uits are equivalent to (

P

p

;AND

t

;MOD

A

m

)


ir
uits and we 
ould have stated Theorems 4 and 5 for those 
ir
uits instead.
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Theorem 4 Suppose that a 
ir
uit of type ((MOD

B

p

k

)

`

;MOD

A

m

) with p prime 
omputes a

symmetri
 Boolean fun
tion f on n variables, su
h that f 6= MOD

A

p

j

m

for any A. Then its

size S is exponential in p

j

, i.e., there exists a number 
 > 1 depending on p, m, k, and ` su
h

that S > 


p

j

.

As a spe
ial 
ase we get that the size S of an n-variable 
ir
uit of type ((MOD

B

p

k

)

`

;MOD

A

m

)

with p prime 
omputing any of the nontrivial threshold fun
tions (in
luding AND and OR)

or the MOD

f0g

r

fun
tion (where r does not divide mp

j

for any j) is exponential in n. We

have S > 


n

for a number 
 > 1 depending only on p, m, k, and `.

Theorem 5 Let the prime p, and the positive integers m, k, and ` be �xed with m not a power

of p. The symmetri
 fun
tions 
omputed by a type ((MOD

B

p

k

)

`

;MOD

A

m

) 
ir
uit of quasipolyno-

mial size are exa
tly the fun
tions MOD

C

mp

j

with j = O(log logn) and C � f0; 1; : : : ;mp

j

�1g.

On the other hand, all the fun
tions MOD

C

mp

j

with j = O(log log n) 
an be 
omputed by

quasipolynomial size (

P

p

;AND

2

;MOD

m

) 
ir
uits.

Our �nal result proves a spe
ial 
ase of the Constant Degree Hypothesis:

Theorem 6 Let p be prime and m a �xed positive integer. Suppose that a

(MOD

B

p

;MOD

A

m

;AND) 
ir
uit 
omputes AND

n

. If ea
h MOD

m

gate has fan-in o(n

2

= log n)

and ea
h AND gate has 
onstant fan-in then the size of the 
ir
uit is super-polynomial.

We remark that this result is a 
onsequen
e of the tradeo� between the size of

(�

p

;MOD

m

;AND) 
ir
uits 
omputing AND and a new measure introdu
ed here, the number

of pairs of input variables the MOD

m

gates relate (see Theorems 19 and 20). Note, that simi-

lar bounds 
an be proved for 
ir
uits 
omputing many other natural fun
tions, like threshold

or MOD

r

fun
tions.

3 The Proofs

3.1 Eliminating the top gate

The top-gate elimination is widely used in the literature (
f., [9℄, Lemma 5.2, or [3℄). It

repla
es the top MOD

p

r

gate with 
onstant fan-in AND gates and a simple summation

modulo p with a polynomial in
rease in the size.

Lemma 7 Let p be a prime, k a positive integer, and A � f0; 1; : : : ; p

k

� 1g. There is a

modulo p polynomial of degree p

k

� 1 
omputing the MOD

A

p

k

fun
tion.

2

One 
an repeatedly use this lemma to eliminate a 
onstant-depth sub-
ir
uit of MOD

p

r

gates from the top of any 
ir
uit, as stated by the next lemma.

Lemma 8 Suppose that f : f0; 1g

n

! f0; 1g is 
omputed by a depth-(` + 1)

(

`

z }| {

MOD

A

p

k

; : : : ;MOD

A

p

k

; G)


ir
uit, where p is a prime and on the input level we have arbitrary gates (or sub-
ir
uits) G.

Suppose the number of these gates G is S. Then f 
an also be 
omputed from the same gates

G by a (�

p

;AND

t

; G) 
ir
uit, with t < p

k`

and at most S

p

k`

AND

t

gates on the middle level.
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Proof: By Lemma 7 all MOD

A

p

k


an be repla
ed by a modulo p polynomial of degree less

than p

k

thus f is degree < p

k`

polynomial of the output of the G gates. The bound on the

size 
omes from 
ounting all the possible monomials in su
h a polynomial. 2

Note, that the size of the new 
ir
uit is still polynomial in S and the fan-in of the AND

gates is 
onstant if the depth ` and the modulus p

k

are 
onstants. Note also, that AND

t

gates with t < p

k


an be 
onsidered as spe
ial MOD

p

k

gates and thus AND

t

gates 
an be

eliminated the same way.

3.2 Random Clustering

De�nition 9 Let � be an equivalen
e relation on the variables of a fun
tion f . By the fa
tor

f=� of f we mean the fun
tion obtained from f by identifying variables a

ording to �. The

variables of f=� 
orrespond to the equivalen
e 
lasses of �. For an integer m we 
all the

f=� an m-fa
tor of f if ea
h equivalen
e 
lass in � 
onsists of m variables.

We say that the Boolean fun
tion f is p-simple (p is a positive integer) if it 
an be

expressed as a modulo p sum of fun
tions none of whi
h depend on all of the variables.

Example. Suppose that f has 6 variables, and x

1

�x

2

; x

3

�x

4

; x

5

�x

6

. Then f=� is a 2-fa
tor

of f , has three variables, and is de�ned as

f=�(y

1

; y

2

; y

3

) = f(y

1

; y

1

; y

2

; y

2

; y

3

; y

3

):

Noti
e that any fa
tor of the AND fun
tion is again an AND fun
tion. The m-fa
tor

of a symmetri
 fun
tion is unique and it is also a symmetri
 fun
tion. Note that for prime

numbers p a fun
tion f is p-simple if and only if it 
an be expressed as a modulo p polynomial

of degree less than the number of its variables.

Impli
itly, a random 
lustering te
hnique was used in the paper of Krause and Pudl�ak

[9℄. However, our method here more dire
tly gives stronger results.

The following lemma is about a spe
ial type of three level 
ir
uits. It is stated in a more

general way but the reader may think of polynomial size (

P

p

;AND

t

;MOD

A

m

) 
ir
uits with


onstant t.

Lemma 10 Let p, m, and t be positive integers, 1 � " > 0 and suppose the Boolean fun
tion

f on n variables satis�es f �

P

S

i=1

f

i

(mod p), where ea
h f

i

is 
omputed in an arbitrary

way from t of the fun
tions f

ij

and from (1�")n of the input variables. Ea
h of the fun
tions

f

ij

is in turn a modulo m linear 
ombination of the input variables. Here the fun
tions f

i

output modulo p values while f

ij

output modulo m values. If n is large enough and divisible by

m, and S < 


n

then there exists a p-simple m-fa
tor of f , where the 
onstant 
 > 1 depends

only on m, t, and ".

Proof: The idea is to observe that f

ij

=� is a modulo m linear 
ombination of its variables

and the 
oeÆ
ient of a variable, 
orresponding to an equivalen
e 
lass in a random �, is

equal to zero with a positive 
onstant probability. Thus f

i

=� depends on all of its variables

with exponentially small probability. Then with high probability, all the fun
tions f

i

=� has

an invisible variable and thus f=� is p-simple.
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Figure 1: Random 
lustering in the simplest 
ase: t = 1; " = 1, every f

i1

is a MOD

6

gate.

Let us 
hoose � uniformly at random from all the partitions of the variables into 
lasses of

size m. Consider 
hoosing the equivalen
e 
lasses one by one. Consider a �xed 1 � i � S and

one of the �rst d"n=(2m)e 
lasses. When we 
hoose the variables of this 
lass, there are less

than "n=2 variables already in previous 
lasses and at most (1�")n variables dire
tly seen by

f

i

, so the set H of the remaining variables has at least "n=2 elements. Ea
h variable in H has

a 
oeÆ
ient in ea
h of the 
ombinations f

ij

. Let (a

j

)

t

j=1

be a list of 
oeÆ
ients that are most

popular, and 
all a variable inH good if its 
oeÆ
ient in f

ij

is a

j

for ea
h value of j. There are

at least jHj=m

t

� �n=(2m

t

) good variables. When 
hoosing the variables for our equivalen
e


lass ea
h has probability at least �=(2m

t

) to be good. Despite the slight dependen
e among

these events, the probability that ea
h of them are good is still at least (�=(4m

t

))

m

, for

large enough n. If this is the 
ase, f

i

=� does not depend on the variable 
orresponding

to this 
lass, sin
e f

i

does not see it dire
tly and the 
oeÆ
ient of this variable in f

ij

is

ma

j

= 0 mod m. Thus (using (1�u)

k

< e

�uk

) with probability at most e

�("n=(2m))�("m

�t

=4)

m

does f

i

=� depend on ea
h of its variables. We 
hoose ln 
 = ("=4)

m+1

=m

tm+1

. If S < 


n

then with positive probability none of the fun
tions f

i

=� depend on all of the variables,


onsequently, f=� �

P

S

i=1

f

i

=� (mod p) is p-simple. 2

We remark here that the same proof gives that if S in the lemma is bounded by another

exponential fun
tion of n then a random m-fa
tor of f 
an almost always be expressed as

a modulo p sum of fun
tions, ea
h of them is not depending on an m

�mt

fra
tion of their

variables.

Notation 11 Let w(x) denote the weight of a zero-one ve
tor x, i.e., the number of ones in

x. Then f(i) denotes the value of the symmetri
 Boolean fun
tion f on inputs of weight i.

Lemma 12 Let p be a prime. If f is a symmetri
 Boolean fun
tion on p

k

variables with

f(0) 6= f(p

k

) then f is not p-simple.

Proof: Noti
e that

X

x2f0;1g

n

(�1)

w(x)

f(x) � 0 (mod p)

for p-simple fun
tions f . The left hand side is zero for fun
tions not depending on one of the

input variables, thus it is divisible by p for a modulo p sum of su
h fun
tions.
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For a symmetri
 fun
tion on n = p

k

variables the left hand side of the last equation is

n

X

i=0

(�1)

i

 

n

i

!

f(i) � f(0)� f(n) (mod p);

sin
e p divides

�

p

k

i

�

unless i = 0 or i = p

k

. Thus f(0) 6= f(n) implies that f has full p-degree

as 
laimed. 2

Theorem 13 Let p be a prime, m, t, k, and S positive integers and 1 � " > 0. Suppose the

symmetri
 Boolean fun
tion f on n variables is the modulo p sum of S of the fun
tions f

i

,

where ea
h of the f

i


omputed in an arbitrary way from t of the fun
tions f

ij

and from (1�")n

of the input variables. Ea
h of the fun
tions f

ij

is in turn a modulo m linear 
ombination

of the input variables. Here the fun
tions f

i

output modulo p values while f

ij

output modulo

m values. Suppose f is not equal to any MOD

mp

k

gate. Then S > 


p

k

for a 
onstant 
 > 1

depending only on m, t, and ".

Proof: Sin
e f is not a MOD

mp

k

gate, there exist numbers 0 � i < i +mp

k

= j � n

su
h that f(i) 6= f(j). Restri
t the fun
tion f by assigning 0 to n � j of its variables

and assigning 1 to i of them. The resulting fun
tion f

0

is a symmetri
 fun
tion of its mp

k

variables satisfying f

0

(0) 6= f

0

(mp

k

). Noti
e that the restri
tion does not in
rease the size of

the 
ir
uit 
omputing the fun
tion. The unique m-fa
tor of f

0

is a symmetri
 fun
tion f

00

on

p

k

variables satisfying f

00

(0) 6= f

00

(p

k

). By Lemma 12 f

00

is not p-simple. Thus Lemma 10

gives the 
laimed bound on S. 2

We are ready now to prove Theorem 4.

Proof: (Theorem 4) We apply Lemma 8 to get rid of the MOD

p

k

gates and get a

(

P

p

;AND

t

;MOD

m

) 
ir
uit for our symmetri
 fun
tion. The size of the 
ir
uit blows up

polynomially, i.e., it is bounded by S

b

, where b and t depend on p, m, k, and `. Then The-

orem 13 bounds S. Noti
e that we did not use the feature of Theorem 13 that the middle

gates 
an dire
tly depend on many input variables.

The statement on the spe
i�
 fun
tions follows from the observation that every fun
tion

mentioned there satis�es that it is not of the form MOD

A

mp

j

unless mp

j

> n. 2

The following lemma ni
ely 
omplements Theorem 13.

Lemma 14 Consider the Boolean fun
tion f(x

1

; x

2

; : : : ; x

n

) = MOD

A

mp

k

(x

1

; x

2

; : : : ; x

n

). If

m is not a power of the prime p then f 
an be 
omputed by a (

P

p

;AND

2

;MOD

m

) 
ir
uit of

size at most (mn)

2p

k

0

, where p

k

0

is the largest power of p dividing mp

k

.

Noti
e that the assumption that m is not a power of p is ne
essary. Otherwise, if m =

p

`

, arbitrary size 
onstant depth 
ir
uits of 
onstant fan-in AND and arbitrary MOD

p

and

MOD

m

gates 
ould only 
ompute Boolean fun
tions expressible as 
onstant degree modulo

p polynomials, and that 
onstant degree does not depend on k. Consequently, it 
annot


ompute f , whi
h is a degree-(p

k

� 1) polynomial.

Proof: Suppose �rst that all elements of the 1-set A are 
ongruent to a single number a

modulo m. There is a degree p

k

0

� 1 polynomial on the input 
omputing MOD

A

p

k

0

modulo p

(Lemma 7). This polynomial 
an be implemented by a modulo p sum of AND gates of at

most p

k

0

�1 variables. The number of AND gates is bounded by n

p

k

0

�1

. Let q be prime fa
tor

of m di�erent from p and sti
k a redundant MOD

f1g

q

gate above ea
h AND gate. Apply the
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Degree De
reasing Lemma (Lemma 15) to repla
e ea
h AND gate by a 
olle
tion of at most

(2q)

p

k

0

�2

MOD

q

gates summing to the same value modulo p. First repla
e ea
h MOD

q

gate

by a MOD

m

gate 
omputing the same fun
tion then repla
e ea
h MOD

m

gate G by the AND

of G and the MOD

fag

m

gate on all the inputs. The resulting 
ir
uit 
omputes the AND of the

MOD

fag

m

and the MOD

A

p

k

0

fun
tions, thus it 
omputes the MOD

A

mp

k

fun
tion as desired.

To remove our assumption on A noti
e that every set A 
an be de
omposed into m sets

A

i

satisfying this assumption. The equation MOD

A

mp

k

=

P

i

MOD

A

i

mp

k

proves the lemma. 2

Consider the smallest (

P

p

;AND

t

;MOD

m

) 
ir
uit 
omputing the fun
tion MOD

f0g

mp

j

and

noti
e that the lower bound on the 
ir
uit size for this fun
tion in Theorem 13 is 


p

j

while

the upper bound in Lemma 14 is n




0

p

j

. The gap is too wide to 
hara
terize polynomial size


ir
uits, but we 
an 
hara
terize quasipolynomial size 
ir
uits as in Theorem 5.

Proof: (Theorem 5) Apply Lemma 8 as in Theorem 4 to eliminate the MOD

p

k

gates. Use

Theorem 13 and Lemma 14 to get the two sides of the 
hara
terization. 2

3.3 The Degree De
reasing Lemma

Lemma 15 exploits a surprising property of (MOD

s

, MOD

m

)-
ir
uits, whi
h (MOD

p

;MOD

p

)


ir
uits la
k, sin
e 
onstant-depth 
ir
uits with MOD

p

gates and arbitrary size are only


apable to 
ompute 
onstant degree modulo p polynomials of the input. Here we generalize

the original version [6℄ of the degree de
reasing lemma for non-prime moduli.

Lemma 15 (Degree De
reasing Lemma) Let p be a prime, and s;m > 1 be integers, satisfying

g
d(s; p) = g
d(s;m) = 1. Let x

1

; x

2

; x

3

be variables taking values from f0; 1; : : : ; p � 1g,

x

0

1

2 f0; 1g. Then

MOD

A

p

(x

1

x

2

+ x

3

) � H

0

+H

1

+ � � �+H

p�1

+ � (mod s); (2)

MOD

A

m

(x

0

1

x

2

+ x

3

) � H

0

0

+H

0

1

+ �

0

(mod s); (3)

where H

i

abbreviates

H

i

= �

p�1

X

j=0

MOD

A

p

(ix

2

+ x

3

+ j(x

1

+ (p� i)))

for i = 0; 1; : : : ; p � 1, and where � is the multipli
ative inverse of p modulo s: �p � 1

(mod s), and � is a positive integer satisfying � = �jAj(p� 1)� mod s, and

where H

0

i

abbreviates

H

0

i

= �

0

m�1

X

j=0

MOD

A

m

(ix

2

+ x

3

+ j(x

0

1

+ (m� i)))

for i = 0; 1, and where �

0

is the multipli
ative inverse of m modulo s: �

0

m � 1 (mod s),

and �

0

is a positive integer satisfying �

0

= �jAj� mod s,
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Figure 2: Degree de
reasing in (MOD

3

;MOD

f1g

2

) 
ase. On the left the input is a degree-2

polynomial, on the right linear polynomials.

Proof: Let x

1

= k and let 0 � i � p� 1; k 6= i. Then

H

k

= �

p�1

X

j=0

MOD

A

p

(kx

2

+ x

3

) = �pMOD

A

p

(kx

2

+ x

3

) � MOD

A

p

(x

1

x

2

+ x

3

) (mod s);

and

H

i

= �

p�1

X

j=0

MOD

A

p

(ix

2

+ x

3

+ j(k � i)) = �jAj;

sin
e for any �xed x

2

; x

3

; i; k expression kx

2

+x

3

+ j(k� i) takes on every value exa
tly on
e

modulo p while j = 0; 1; : : : ; p � 1; so MOD

A

p

(ix

2

+ x

3

+ j(k � i)) equals to 1 exa
tly jAj

times. Consequently,

H

0

+H

1

+� � �+H

p�1

+� � MOD

A

p

(x

1

x

2

+x

3

)+(p�1)�jAj+� � MOD

A

p

(x

1

x

2

+x

3

) (mod s):

Similarly, let x

0

1

= k 2 f0; 1g and let i 2 f0; 1g, k 6= i. Then

H

0

k

= �

0

m�1

X

j=0

MOD

A

m

(kx

2

+ x

3

) = �

0

mMOD

A

m

(kx

2

+ x

3

) � MOD

A

p

(x

0

1

x

2

+ x

3

) (mod s);

and

H

0

i

= �

0

m�1

X

j=0

MOD

A

m

(ix

2

+ x

3

+ j(k � i)) = �

0

jAj;

sin
e for any �xed x

2

; x

3

; i; k, for i 6= k ji� kj = 1, so expression kx

2

+ x

3

+ j(k � i) takes on

every value exa
tly on
e modulo m while j = 0; 1; : : : ;m� 1; so MOD

A

m

(ix

2

+ x

3

+ j(k � i))

equals to 1 exa
tly jAj times. Consequently,

H

0

0

+H

0

1

+ �

0

� MOD

A

m

(x

0

1

x

2

+ x

3

) + �

0

jAj+ �

0

� MOD

A

p

(x

0

1

x

2

+ x

3

) (mod s):

2
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3.4 Random Restri
tion

The Constant Degree Hypothesis of [2℄ states that any (

P

p

;MOD

m

;AND

d

) 
ir
uit 
omputing

AND has super-polynomial size if p is a prime and m and d are 
onstants. We make progress

toward this statement by proving Theorem 6 stating that AND requires super-polynomial

size 
ir
uits of this type, if ea
h MOD

m

gate has fan-in o(n

2

= log n). A stronger form of this

statement (see Theorem 19) 
an be based on the following de�nition:

De�nition 16 Let G be a gate of a 
ir
uit on the se
ond level from the inputs 
omputing

some fun
tion of AND's of variables. We say that G relates two input variables if they appear

as inputs in a 
ommon AND gate below G.

Figure 3: Gate G relates e.g., x

1

and x

2

, or x

3

and x

6

, but does not relate x

1

and x

4

.

We say that a gate G is H-linear, if H is a subset of the input-variables, su
h that G does

not relate two input variables outside H, i.e., the input of G is linear in the variables outside

H with 
oeÆ
ients that are arbitrary fun
tions of the variables in H. We 
all a gate "-linear

if it is H-linear with a set H 
ontaining at most a "-fra
tion of all variables.

We start with a simple appli
ation of the Degree De
reasing Lemma (Lemma 15).

Lemma 17 Let p and m be relatively prime integers and 
onsider an n variable Boolean

fun
tion f be 
omputed by a (MOD

B

m

;AND) 
ir
uit, where the top MOD

B

m

gate is H-linear.

Then f 
an be 
omputed by a (

P

p

;MOD

m

) 
ir
uit with (2m)

jHj

MOD

m

gates.

Proof: We use indu
tion on jHj. In the jHj = 0 
ase the AND gates have fan-in one, thus

they 
an be removed.

We 
an translate the AND gates to multipli
ations on the 0-1 variables. Consequently,

the input of the MOD

m

gate is a polynomial P of the input variables with all of its monomials

having at most a single variable outside H. We may suppose that P is multi-linear. If x

i

2 H

for some 1 � i � n we 
an write this input in the form P = Qx

i

+R, where the polynomials

Q and R do not depend on x

i

and all their monomials 
ontain at most a single variable

outside H. We apply Lemma 15 to repla
e our MOD

m

gate with the modulo p sum of 2m

MOD

m

gates. The inputs of these MOD

m

gates are linear 
ombinations of x

i

, Q, and R. To

�nish the proof we apply the indu
tive hypothesis with H n fx

i

g to repla
e ea
h of these new

MOD

m

gates with the modulo p sum of (2m)

jHj�1

MOD

m

gates on the input variables. 2
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Lemma 18 Let the prime p and the positive integer m be �xed. Then there exist 
onstants


 > 1 and " > 0 su
h that if a 
ir
uit ((MOD

A

p

k

)

`

;MOD

B

m

;AND) 
omputes AND

n

, and every

MOD

m

gate is an "-linear gate, then the size of the 
ir
uit is S > 


n

.

The proof of this lemma is simpler for the 
ase when p is not dividing m. We need

Theorem 13 in its full generality for the remaining 
ase.

Proof: Suppose �rst that p does not divide m.

We apply Lemma 17 for the MOD

m

gates. The resulting 
ir
uit 
omputes a modulo p

polynomial of degree less than p

k`

of the at most S(2m)

"n

MOD

m

gates (Lemma 8). The

size is therefore at most (S(2m)

"n

)

p

k`

. But Theorem 4 
laims an exponential lower bound on

this size, thus for a small enough ", size S must be exponential in n.

In the general 
ase where p may dividem, we writem = p

a

m

0

where p does not dividem

0

.

First we de
ompose ea
h MOD

B

m

gate into the sum of MOD

fb

i

g

m

gates, for B = fb

1

; b

2

; : : : ; b

t

g.

Then MOD

fb

i

g

m

gates are 
onverted to MOD

f0g

m

gates, 
onne
ting bit 1 with multiple wires

to the gate. Next, we ex
hange MOD

f0g

m

gates to AND of the MOD

f0g

m

0

and MOD

f0g

p

a

gates.

(We used a similar de
omposition in the proof of Lemma 14.) We have in
reased the size

of the 
ir
uit by a fa
tor of at most 2m so far. We apply Lemma 17 to the MOD

m

0

gates.

This in
reases the size by a fa
tor of at most (2m)

"n

. The resulting 
ir
uit has MOD

m

0

and

AND gates at the bottom level and MOD

p

a

, MOD

p

,

P

p

, and AND

2

gates everywhere else.

As the last two types 
an be repla
ed with MOD

p

gates we 
an apply Lemma 8. We get a

three level 
ir
uit 
omputing AND

n

with a

P

p

gate on top, AND

t

gates in the middle (with

a 
onstant t depending on m, p, k, and ` ). The bottom gates are MOD

m

and AND gates.

Noti
e that the number S

2

of the gates in the middle level is at most S

t

1

, where S

1

is the

number of gates on the bottom level, and S

1

� (2m)

"n+1

S.

The fanin of these bottom AND gates is bounded by "n+1. We 
hoose " < 1=4t. Merging

the bottom AND gates with the middle AND gates, one gets that AND

n

is the modulo p sum

of AND fun
tions on at most n=2 inputs and at most t MOD

m

gates. Applying Theorem 13

one gets that S

2

> 


n

with some 
 > 1 depending on p, m, k, and `. Thus S

t

> 


n

=(2m)

t("n+1)

proving an exponential lower bound on S if 
 > (2m)

"t

. 2

Now we turn to prove Theorem 6. It is a spe
ial 
ase of the following result proving an

optimal tradeo� between size and the new measure of the maximal number of related pairs.

Theorem 19 Let p be a prime and m, k, and ` positive integers. Suppose that a

((MOD

B

p

k

)

`

;MOD

A

m

;AND) 
ir
uit 
omputes AND

n

. If ea
h MOD

m

gate in the 
ir
uit re-

lates at most X � n pairs of input variables then the size of the 
ir
uit is at least 


n

2

=X

0

, with

a 
onstant 


0

> 1 depending on p, m, k, and `.

Proof: We �x the values 
 and " 
laimed in Lemma 18. We take a restri
tion on the


ir
uit by leaving a variable unrestri
ted with probability P = "n=(22X) independently for

ea
h of the variables. We assign 1 to the rest of the variables. Clearly, the restri
ted 
ir
uit


omputes the AND of the remaining variables.

With probability of at least 1=2, the number of the remaining variables is at least n

0

=

bPn=2
 = b"n

2

=(44X)
.

Exa
tly those pairs remained related in a MOD

m

gate in the restri
ted 
ir
uit, whose

both variables remained unrestri
ted.

The expe
ted number of pairs related by a single gate in the restri
ted 
ir
uit is at most

XP

2

= "n

0

=11. Unfortunately, the deviation 
an be large, it is easy to 
onstru
t n gates,
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relating n� 1 pairs ea
h, su
h that any restri
tion to n

0

variables has a gate relating n

0

� 1

pairs. Thus it is important, that for using Lemma 18, we need not bound the number of

related pairs, only the size of a set, 
overing ea
h pair.

Lemma 18 easily imply the Theorem if there is a restri
tion leaving n

0

variables unre-

stri
ted, su
h that every MOD

m

gate is "-linear. In other words, for ea
h G, we need the

existen
e of a set H (depending on G) of size at most "n

0

, whi
h 
ontain at least one of every

pair related by G in the restri
ted 
ir
uit.

Let us bound the probability that this is not the 
ase for a �xed MOD

m

gate G. Take a

maximal mat
hing on pairs of unrestri
ted variables that are related by G. The set H of the

endpoints of the mat
hing-edges satis�es that no pair is related outside H, sin
e otherwise,

adding that pair to the mat
hing would yield a larger mat
hing. Thus it suÆ
es to bound

the probability that jHj � "n

0

, i.e., that all the variables involved in some j = d"n

0

=2e pairs

of G-related variables forming a mat
hing remain unrestri
ted. We bound this probability by

the produ
t of the number of 
hoi
es for the mat
hing and the probability that the variables

remain unrestri
ted for a �xed mat
hing. For a �xed gate G we get that the probability that

at least n

0

variables remain unrestri
ted but G is not "-linear after the restri
tion is at most

�

X

j

�

P

2j

. Hen
e if S

�

X

j

�

P

2j

< 1=2, where S is the size of our 
ir
uit, then Lemma 18 proves

our Theorem. The alternative is S � (2

�

X

j

�

P

2j

)

�1

�

�

j

eXP

2

�

j

proving the same bound. 2

Next we show that the logarithmi
 order of magnitude of the bound in Theorem 19 is

tight.

Theorem 20 If m is not a power of the prime p, and X > 0 is arbitrary, then the n variable

AND fun
tion is 
omputable by a (

P

p

;MOD

m

;AND) 
ir
uit of size (2m)

n

2

=(2X)

su
h that

the total number of pairs of variables related by any MOD

m

gate in the 
ir
uit is at most X.

Proof: Compute AND of the variables in two levels with AND gates, �rst 
omputing the

AND of dn

2

=(2X)e 
lasses of at most d2X=ne variables ea
h. Then pla
e a MOD

f1g

m

gate of

fan-in 1 onto the top. Apply Lemma 17 to repla
e the top two levels by the modulo p sum

of (2m)

n

2

=(2X)

MOD

m

gates. The inputs of these new gates are linear 
ombinations of the

outputs of the gates 
omputing AND for a single 
lass.

Note that Lemma 17 works only if m is not a multiple of p. Otherwise use that MOD

m

gates 
an simulate MOD

q

gates if q divides m. 2

We remark that the proofs of Lemma 18 and Theorem 19 use Theorem 13 for the lower

bound, so they apply to 
ir
uits 
omputing OR or MOD

r

with r not dividing mp

s

, not just

for AND. The upper bound in Theorem 20 
an also be applied to these fun
tions.
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