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Abstract

Modular gates are known to be immune for the random restriction techniques of Ajtai
(1983), Furst, Saxe, Sipser (1984), Yao (1985) and Hastad (1986). We demonstrate here
a random clustering technique which overcomes this difficulty and is capable to prove
generalizations of several known modular circuit lower bounds of Barrington, Straub-
ing, Thérien (1990), Krause and Pudlak (1994), and others, characterizing symmetric
functions computable by small (MOD,,, AND;,MOD,,) circuits.

Applying a degree-decreasing technique together with random restriction methods for
the AND gates at the bottom level, we also prove a hard special case of the Constant
Degree Hypothesis of Barrington, Straubing, Thérien (1990), and other related lower
bounds for certain (MOD,, MOD,,,, AND) circuits.

Most of the previous lower bounds on circuits with modular gates used special defini-
tions of the modular gates (i.e., the gate outputs one if the sum of its inputs is divisible
by m, or is not divisible by m), and were not valid for more general MOD,,, gates. Our
methods are applicable, and our lower bounds are valid, for the most general modular
gates as well.

1 Introduction

Boolean circuits are perhaps the most widely examined models of computation. They gain
application in diverse areas as VLSI design, complexity theory as well as in the theory of
parallel computation.

A majority of the strongest and deepest lower bound results for computational complexity
were proved using the Boolean circuit model of computation (for example [11], [16], [7], [12],
[13], or see [14] for a survey).

Unfortunately, lots of questions, even for very restricted circuit classes, have been unsolved
for a long time.

Bounded depth and polynomial size is a natural restriction. Ajtai [1], Furst, Saxe, and
Sipser [5] proved that no polynomial sized, constant depth circuit can compute the PARITY
function. Yao [16] and Hastad [7] generalized this result for sub-logarithmic depths. Their
technique involved a sophisticated use of random restriction techniques, in which randomly
assigned 0-1 values to the input variables fixed the output of large fan-in AND and OR
Boolean gates.
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Since the modular gates are very simple to define, and they are immune to the random
restriction techniques in lower bound proofs for the PARITY function, the following natural
question was asked by Barrington, Smolensky and others: How powerful will be the Boolean
circuits if, beside the standard AND, OR and NOT gates, MOD,,, gates are also allowed in the
circuit? Here a MOD,‘% gate outputs 1 if the sum of its inputsisinaset A C {0,1,2,...,m—1}
modulo m.

Razborov [12] showed that for computing MAJORITY with AND, OR, NOT and MODy
gates, exponential size is needed with constant depth. This result was generalized by Smolen-
sky [13] for MOD,, gates instead of MODy ones, where p denotes a prime.

We know very little, however, if both MOD,, and MOD, gates are allowed in the circuit
for different primes p,q, or, if the modulus is a non-prime power composite, e.g., 6. For
example, it is consistent with our present knowledge that depth-3, linear-size circuits with
MODyg gates only, recognize an NP-complete language (see [2]).

It is not difficult to see that constant-depth circuits with MOD,, gates only, (p prime),
cannot compute even very simple functions: the n-fan-in OR or AND functions, since they
can only compute constant degree polynomials of the input variables over GF), (see [13]).

But depth-2 circuits with MODy and MODj3 gates, or MODg gates can compute the n-
fan-in OR and AND functions [8], [2]. Consequently, these circuits are more powerful than
circuits with MOD,, gates only. The sketch of the construction: we take a MOD3 gate at the
top of the circuit, and 2" MODy gates on the next level, where each subset of the n input
variables is connected to exactly one MOD4 gate, then this circuit computes the n-fan-in OR,
since if at least one of the inputs is 1, then exactly half of the MODy gates evaluate to 1.

Barrington, Straubing and Thérien in [2] conjectured that any (MODE ,MOD:}  AND,)
circuit needs exponential size to compute the n fan-in AND function, where the prime p and
the positive integers m and d are fixed, and AND, denotes the fan-in d AND function. They
called it the Constant Degree Hypothesis (CDH), and proved the d = 1 case, with highly
non-trivial algebraic techniques. Their proof also works for depth-(£ + 1)

l
(MOD/;,MOD/, ..., MOD/;, MOD;;) (1)

circuits, computing the AND function.
Yan and Parberry [15], using Fourier-analysis, proved also the d = 1 case for

(MODi{,l’Q""’p_l},MODS}) circuits, but their method also works for the special case of the
CDH where the sum of the degrees of the monomials g; on the input-level satisfies:

> (deg(gi) —1) <

deg(g:)>1

n

1) O(1).

Krause and Waack [10] applied communication-complexity techniques to show that any
(MOD-?+™ 1 SYMMETRIC) circuit, computing the ID function:

1, if z =y,
0 otherwise,

ID(z,y) = {

for z,y € {0,1}", should have size at least 2"/logm, where SYMMETRIC is a gate, com-
puting an arbitrary symmetric Boolean function. Since (non-weighted) MOD,,, gates are also

SYMMETRIC gates, this lower bound is valid for (MODS ™~} MODA) circuits. When
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mod m coefficients (or multiple wires) are allowed on the input-level, then the MOD,,, gates
are not SYMMETRIC gates, but the same proof techniques remain applicable. Caussinus
[4] proved, that the result of [2] also implies a similar lower bound for the AND function.
Unfortunately, results [10], [4] do not generalize for the more general MOD;} gates at the
top.

Krause and Pudlak [9] proved that any (MODZ{)Q}, MODéO}) circuit which computes the

MOD,{U} function has size at least 2", for some ¢ > 0, where p and r are different primes
and ¢ is not divisible by either of them.

Our main result is a characterization of those symmetric Boolean functions which are
computable by quasipolynomial-size

l
(MOD/;,MOD/}, ..., MOD/;, MOD;;)

circuits. We prove (Theorem 5), that the only symmetric functions that are computable by
such circuits are the MOD,,, ,; functions with small j. Consequently, the non-trivial threshold

functions, (so also AND and OR), and the MOD,{O} functions if r does not divide p/m need ex-
ponential size on that circuits. Even MODy requires exponential size (MOD3r, AND;, MOD5)
circuits for constant ¢ and r. Note the asymmetry: MODy is easy to compute with a poly-
nomial size (MODg2, ANDj3) circuit. These results generalize the theorems of Barrington,
Straubing, Thérien [2] and Krause and Pudldk [9], and give a characterization of the com-
putable symmetric functions, instead of singular lower bounds.

Grolmusz [6] generalized the results of [2], [15], [10], [9] for (MOD,, MOD,, AND,,) cir-
cuits, where the input-polynomials of each MOD,, gate is constructible from linear terms
using at most en — 1 multiplications (or, equivalently, can be computed by an arithmetic cir-
cuit of an arbitrary number of mod p additions and at most ¢n — 1 fan-in 2 multiplications).
In particular, one can allow the sum of an arbitrary function of cn variables and a linear
polynomial of the n variables as inputs for each MOD,, gate. We generalize this result, too
(Lemma 18). The main tool of the proof of [6] is a Degree Decreasing Lemma, which we also
generalize here for non-prime moduli (Lemma 15), and we use it both for lower- and upper
bound proofs.

Here we generalize the results of [6]: we prove a lower bound on the size of the
(MOD,,MOD,,,, AND) circuits computing AND,,, if m is a positive integer, p is a prime,
and each MOD,, gate has not-too-many AND gates as inputs and those AND gates have
low fan-in. For the exact statement see Theorem 6. This is an important special case of the
Constant Degree Hypothesis of [2]. The lower bound also applies to circuits computing some
other functions besides AND.

2 Our Results

2.1 Ideas

MOD,,, gates are immune to random restriction techniques, since these gates remain MOD,,
gates on the remaining variables after an arbitrary restriction, and thus (unless less than m
variables remain unrestricted) the complexity does not decrease.

We overcome this difficulty by a random clustering technique, which force some randomly
chosen variables to be equal. Each equivalence class (or cluster) will make a new variable of
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the MOD,,, gate, and each new variable will be invisible (i.e., its coefficient will be a multiple
of m) for the gate with a constant probability. (Lemma 10)

We use this for (MOD,,, AND;, MOD,,) circuits, computing symmetric functions. Sup-
pose, that the equivalence classes are of size m, then the resulting function of the new,
clustered variables, is a unique symmetric function.

Almost all symmetric functions (except the MOD functions) have large restrictions,
whose unique factor resulting from the clustering above cannot be expressed as a modulo p
sum of functions, none of which depends on all variables. An exponential lower bound follows
for the number of AND gates on level 2. (Theorem 4)

If we have o(n?/logn) constant-degree monomials as inputs for each MOD,, gates on
level 2, then by random restrictions, one can essentially decrease their number, and a small
number of low-degree monomials can be converted to linear polynomials with the help of the
Degree Decreasing Lemma (Lemma 15), and we can apply Theorem 4 to get lower bounds.
(Theorem 6)

2.2 Preliminaries

Definition 1 A fan-in n gate is an n-variable Boolean function. Let G1,Ga,...,Gy be gates
of unbounded fan-in. Then a (G1,Gs,...,Gy)- circuit denotes a depth-¢ circuit with a G1-
gate on the top, Gy gates on the second level, G3 gates on the third level from the top,...,
and Gy gates on the last level. AND, denotes the fan-in t AND gate. The size of a circuit is
defined to be the total number of the gates in the circuit.

All of our modular gates are of unbounded fan-in, and we allow to connect inputs to gates
or gates to gates with multiple wires. Note, that by this definition, our modular gates are
not symmetric gates in general.

In the literature MOD,,, gates are sometimes defined to be 1, iff the sum of their inputs
is divisible by m, and sometimes they are defined to be 1, iff the sum of their inputs is not
divisible by m. The following, more general definition covers both cases.

Definition 2 We say that gate G is a MOD,,,-gate, if there exists A C {0,1,...,m—1} such
that .
G(Ilax% s 7In) = { 1’ /Lf 2221 i mod m € A
0 otherwise.

A is called the 1-set of G. MOD,,, gates with 1-set A are denoted by MOD;%.
Notation 3 Let ¥,(z1,z2,...,25) = > ;- z; mod p.

In general, ¥, is not a Boolean gate, since its value is from {0,1,...,p — 1}. But, in all
of our statements, its value will be guaranteed to be 0 or 1.

2.3 Theorems
Here we list the three main results of this paper.
To be concise we use ((MODﬁc)E, MODZ) to denote circuits of type (1). Note that standard

techniques (see Lemma 8) show that these circuits are equivalent to (ZP,ANDt,MODﬁl)
circuits and we could have stated Theorems 4 and 5 for those circuits instead.
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Theorem 4 Suppose that a circuit of type ((MODﬁc)é,MOD,‘i) with p prime computes a
symmetric Boolean function f on n variables, such that f # MOD;‘jm for any A. Then its
size S is exponential in p’, i.e., there exists a number ¢ > 1 depending on p, m, k, and £ such
that S > ¢’

As a special case we get that the size S of an n-variable circuit of type ((MODf,c)f, MODZ)

with p prime computing any of the nontrivial threshold functions (including AND and OR)

or the MODiU} function (where v does not divide mp’ for any j) is exponential in n. We
have S > c" for a number ¢ > 1 depending only on p, m, k, and .

Theorem 5 Let the prime p, and the positive integers m, k, and £ be fized with m not a power
of p. The symmetric functions computed by a type ((MODﬁc)f, MODA) circuit of quasipolyno-
mial size are exactly the functions MODSW- with j = O(loglogn) and C C {0,1,...,mp/ —1}.

On the other hand, all the functions MODSW- with 7 = O(loglogn) can be computed by
quasipolynomial size (3,, AND, MOD,,) circuits.

Our final result proves a special case of the Constant Degree Hypothesis:

Theorem 6 Let p be prime and m a fized positive integer. Suppose that a
(MODE,MOD%, AND) circuit computes AND,,. If each MOD,,, gate has fan-in o(n?/logn)
and each AND gate has constant fan-in then the size of the circuit is super-polynomial.

We remark that this result is a consequence of the tradeoff between the size of
(X,,MOD,,,, AND) circuits computing AND and a new measure introduced here, the number
of pairs of input variables the MOD,,, gates relate (see Theorems 19 and 20). Note, that simi-
lar bounds can be proved for circuits computing many other natural functions, like threshold
or MOD, functions.

3 The Proofs

3.1 Eliminating the top gate

The top-gate elimination is widely used in the literature (cf., [9], Lemma 5.2, or [3]). It
replaces the top MOD, gate with constant fan-in AND gates and a simple summation
modulo p with a polynomial increase in the size.

Lemma 7 Let p be a prime, k a positive integer, and A C {0,1,...,p”c — 1}. There is a
modulo p polynomial of degree p* — 1 computing the MOD;;‘;c function.

O
One can repeatedly use this lemma to eliminate a constant-depth sub-circuit of MOD,,»
gates from the top of any circuit, as stated by the next lemma.
Lemma 8 Suppose that f : {0,1}" — {0,1} is computed by a depth-(£ + 1)
l

(MOD,...,MODA, G)

circuit, where p is a prime and on the input level we have arbitrary gates (or sub-circuits) G.

Suppose the number of these gates G is S. Then f can also be computed from the same gates
. . . kt .

G by a (X,,ANDy, G) circuit, with t < Pt and at most SP AND, gates on the middle level.
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Proof: By Lemma 7 all MOD;?,c can be replaced by a modulo p polynomial of degree less

than p* thus f is degree < p*¢ polynomial of the output of the G gates. The bound on the
size comes from counting all the possible monomials in such a polynomial. O

Note, that the size of the new circuit is still polynomial in S and the fan-in of the AND
gates is constant if the depth ¢ and the modulus p* are constants. Note also, that AND;
gates with ¢t < p* can be considered as special MOD,,» gates and thus AND; gates can be
eliminated the same way.

3.2 Random Clustering

Definition 9 Let ~ be an equivalence relation on the variables of a function f. By the factor
f/~ of [ we mean the function obtained from f by identifying variables according to ~. The
variables of f/~ correspond to the equivalence classes of ~. For an integer m we call the
f/~ an m-factor of f if each equivalence class in ~ consists of m variables.

We say that the Boolean function f is p-simple (p is a positive integer) if it can be
expressed as a modulo p sum of functions none of which depend on all of the variables.

Example. Suppose that f has 6 variables, and x1~x9, x3~14, x5~x¢. Then f/~ is a 2-factor
of f, has three variables, and is defined as

I~ y2,93) = fy1, 91,92, Y2, Y3, ¥3)-

Notice that any factor of the AND function is again an AND function. The m-factor
of a symmetric function is unique and it is also a symmetric function. Note that for prime
numbers p a function f is p-simple if and only if it can be expressed as a modulo p polynomial
of degree less than the number of its variables.

Implicitly, a random clustering technique was used in the paper of Krause and Pudlak
[9]. However, our method here more directly gives stronger results.

The following lemma, is about a special type of three level circuits. It is stated in a more
general way but the reader may think of polynomial size (ZP,ANDt,MOD;?I) circuits with
constant 7.

Lemma 10 Let p, m, and t be positive integers, 1 > € > 0 and suppose the Boolean function
f on n variables satisfies f = Zle fi (mod p), where each f; is computed in an arbitrary
way from t of the functions f;; and from (1 —e)n of the input variables. Each of the functions
fij is in turn a modulo m linear combination of the input variables. Here the functions f;
output modulo p values while f;; output modulo m values. If n is large enough and divisible by
m, and S < c" then there exists a p-simple m-factor of f, where the constant ¢ > 1 depends
only on m, t, and €.

Proof:  The idea is to observe that f;;/~ is a modulo m linear combination of its variables
and the coefficient of a variable, corresponding to an equivalence class in a random ~, is
equal to zero with a positive constant probability. Thus f;/~ depends on all of its variables
with exponentially small probability. Then with high probability, all the functions f;/~ has
an invisible variable and thus f/~ is p-simple.
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(4x13x2x3) (4x, 5x5x6)(2x73x8x9) (x10x11 3x12)
| S ey e Sy, | SE—
2y1 4y2 6y3invisible 5y4

Figure 1: Random clustering in the simplest case: { = 1,e = 1, every f;; is a MODyg gate.

Let us choose ~ uniformly at random from all the partitions of the variables into classes of
size m. Consider choosing the equivalence classes one by one. Consider a fixed 1 <7 < S and
one of the first [en/(2m)] classes. When we choose the variables of this class, there are less
than en/2 variables already in previous classes and at most (1 —¢)n variables directly seen by
fi, so the set H of the remaining variables has at least en/2 elements. Each variable in H has
a coefficient in each of the combinations f;;. Let (aj);:1 be a list of coeflicients that are most
popular, and call a variable in H good if its coefficient in f;; is a; for each value of j. There are
at least |H|/m! > en/(2m') good variables. When choosing the variables for our equivalence
class each has probability at least €/(2m!) to be good. Despite the slight dependence among
these events, the probability that each of them are good is still at least (e/(4m?!))™, for
large enough n. If this is the case, f;/~ does not depend on the variable corresponding
to this class, since f; does not see it directly and the coefficient of this variable in f;; is
ma; = 0 mod m. Thus (using (1 —u)* < e~¥*) with probability at most e~ (en/(2m))-(em™" /4)™
does f;/~ depend on each of its variables. We choose Inc = (g/4)™+! /m!m+L 1If § < c»
then with positive probability none of the functions f;/~ depend on all of the variables,
consequently, f/~ = Zle fi/~ (mod p) is p-simple. O

We remark here that the same proof gives that if S in the lemma is bounded by another
exponential function of n then a random m-factor of f can almost always be expressed as
a modulo p sum of functions, each of them is not depending on an m =™ fraction of their
variables.

Notation 11 Let w(z) denote the weight of a zero-one vector x, i.e., the number of ones in
x. Then f(i) denotes the value of the symmetric Boolean function f on inputs of weight i.

Lemma 12 Let p be a prime. If f is a symmetric Boolean function on p* variables with
f(0) # f(p*) then f is not p-simple.

Proof: Notice that

>, (=1)"Pf(z)=0 (modp)

ze{0,1}"
for p-simple functions f. The left hand side is zero for functions not depending on one of the
input variables, thus it is divisible by p for a modulo p sum of such functions.
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For a symmetric function on n = p* variables the left hand side of the last equation is
" (n
> (1) ( .>f(7l) = f(0) = f(n) (mod p),

since p divides (pz.k) unless i = 0 or i = p¥. Thus f(0) # f(n) implies that f has full p-degree
as claimed. O

Theorem 13 Let p be a prime, m, t, k, and S positive integers and 1 > € > 0. Suppose the
symmetric Boolean function f on n variables is the modulo p sum of S of the functions f;,
where each of the f; computed in an arbitrary way from t of the functions f;; and from (1—e)n
of the input variables. Each of the functions f;; is in turn a modulo m linear combination
of the input variables. Here the functions f; output modulo p values while f;; output modulo
m values. Suppose f is not equal to any MOD,,, .« gate. Then S > e for a constant ¢ > 1
depending only on m, t, and €.

Proof: Since f is not a MOD,,» gate, there exist numbers 0 < ¢ < i+ mpf =j <n
such that f(i) # f(j). Restrict the function f by assigning 0 to n — j of its variables
and assigning 1 to i of them. The resulting function f’ is a symmetric function of its mp*
variables satisfying f'(0) # f'(mp”). Notice that the restriction does not increase the size of
the circuit computing the function. The unique m-factor of f’ is a symmetric function f” on
pk variables satisfying f"(0) # f"(p¥). By Lemma 12 f" is not p-simple. Thus Lemma 10
gives the claimed bound on S. O

We are ready now to prove Theorem 4.
Proof: (Theorem 4) We apply Lemma 8 to get rid of the MOD,: gates and get a
(32, ANDy,MOD,;,) circuit for our symmetric function. The size of the circuit blows up
polynomially, i.e., it is bounded by S?, where b and ¢ depend on p, m, k, and £. Then The-
orem 13 bounds S. Notice that we did not use the feature of Theorem 13 that the middle
gates can directly depend on many input variables.

The statement on the specific functions follows from the observation that every function
mentioned there satisfies that it is not of the form MODflpj unless mp/ > n. O

The following lemma nicely complements Theorem 13.

Lemma 14 Consider the Boolean function f(x1,z9,...,2,) = MOD;?ka (x1,29,...,2pn). If
m is not a power of the prime p then f can be computed by a (Zp, ANDy, MOD,,) circuit of

size at most (mn)Qi”]c , where p¥' is the largest power of p dividing mp*.

Notice that the assumption that m is not a power of p is necessary. Otherwise, if m =
p’, arbitrary size constant depth circuits of constant fan-in AND and arbitrary MOD, and
MOD,,, gates could only compute Boolean functions expressible as constant degree modulo
p polynomials, and that constant degree does not depend on k. Consequently, it cannot
compute f, which is a degree-(p¥ — 1) polynomial.
Proof:  Suppose first that all elements of the 1-set A are congruent to a single number a
modulo m. There is a degree pF -1 polynomial on the input computing MOD;‘M modulo p
(Lemma 7). This polynomial can be implemented by a modulo p sum of AND gates of at

most p¥' —1 variables. The number of AND gates is bounded by nP" —1. Let q be prime factor
of m different from p and stick a redundant MODgl} gate above each AND gate. Apply the
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Degree Decreasing Lemma (Lemma 15) to replace each AND gate by a collection of at most
(2q)pk,_2 MOD, gates summing to the same value modulo p. First replace each MOD, gate
by a MOD,,, gate computing the same function then replace each MOD,,, gate G by the AND
of G and the MOD,{%EL } gate on all the inputs. The resulting circuit computes the AND of the
1\/[OD£§1 } and the MOD;,C, functions, thus it computes the MOD;;‘wk function as desired.

To remove our assumption on A notice that every set A can be decomposed into m sets
A; satisfying this assumption. The equation MOD;?wk =3, 1\/IOD;?;p,c proves the lemma. O

Consider the smallest (3°,, AND;, MOD,,) circuit computing the function MODiS;];J‘ and

notice that the lower bound on the circuit size for this function in Theorem 13 is ¢® while
the upper bound in Lemma 14 is n¢?’ . The gap is too wide to characterize polynomial size
circuits, but we can characterize quasipolynomial size circuits as in Theorem 5.

Proof:  (Theorem 5) Apply Lemma 8 as in Theorem 4 to eliminate the MOD ;. gates. Use
Theorem 13 and Lemma 14 to get the two sides of the characterization. O

3.3 The Degree Decreasing Lemma

Lemma 15 exploits a surprising property of (MOD,, MOD,,)-circuits, which (MOD,,, MOD,)
circuits lack, since constant-depth circuits with MOD,, gates and arbitrary size are only
capable to compute constant degree modulo p polynomials of the input. Here we generalize
the original version [6] of the degree decreasing lemma for non-prime moduli.

Lemma 15 (Degree Decreasing Lemma) Let p be a prime, and s,m > 1 be integers, satisfying
ged(s,p) = ged(s,m) = 1. Let z1, 9,23 be variables taking values from {0,1,...,p — 1},
z} € {0,1}. Then

MOD, (z122 + x3) = Ho+ Hi + -+ Hy_1 + 8 (mod s), 2)

MODA (z' 9 + 23) = Hy + H| + 3’ (mod s), (3)

where H; abbreviates

p—1
H;, =« Z MOD?(i:EQ + x3 +j(£l?1 + (p - Z)))
5=0
for i = 0,1,...,p — 1, and where a is the multiplicative inverse of p modulo s: ap = 1

(mod s), and B is a positive integer satisfying 3 = —|A|(p — 1)a mod s, and
where H! abbreviates

m—1
H! =d Z MOD? (izy + x5 + j(z) + (m — 1))
=0

for i = 0,1, and where o is the multiplicative inverse of m modulo s: o'm =1 (mod s),
and (3 is a positive integer satisfying f/ = —|Ala mod s,
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X
Xy X, 3 x3 X x3 Xy X, x31 X, x3 1

Figure 2: Degree decreasing in (MODg,MOD%I}) case. On the left the input is a degree-2
polynomial, on the right linear polynomials.

Proof: Let zy =kandlet 0 <i<p-—1, k#1i. Then

p—1
H, =« Z MOD;?(kIQ +x3) = apMOD;‘(k:cg +x3) = MODﬁ(mle +z3) (mod s),
§=0
and
p—1
H; =a Y MOD:(izs + x5 + j(k — i) = a|4],
j=0

since for any fixed xo, x3,1%, k expression kzo + x3+ j(k — i) takes on every value exactly once
modulo p while j = 0,1,...,p — 1; so MOD;‘(/I:$2 + 23 + j(k —i)) equals to 1 exactly |A|
times. Consequently,

Hoy+Hi+---+H,_ 1+ = MOD;‘(xle—i—xg)+(p—1)a|A|+ﬁ = MOD;‘(:vl:vQ—va) (mod s).
Similarly, let 2} = k € {0,1} and let i € {0,1}, k # 4. Then

m—1
H,=d Z MOD:}, (kzo + 23) = o'mMOD:} (kzo + 23) = MOD;‘(IIIHTQ +z3) (mod s),
j=0
and
m—1
H! =d Z MODA (izy + 23 + j(k —i)) = | 4],
j=0

since for any fixed z9, 3,1, k, for i # k |i — k| = 1, so expression kzo + x3 + j(k — i) takes on
every value exactly once modulo m while j = 0,1,...,m — 1; so MOD?! (izy + 23 + j(k — 1))
equals to 1 exactly |A| times. Consequently,

H) + H} + ' = MOD; (¢} 72 + 3) + o/ |A| + 8/ = MOD)(z} 72 + z3) (mod s).

|
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3.4 Random Restriction

The Constant Degree Hypothesis of [2] states that any (3°,, MOD,, ANDy) circuit computing
AND has super-polynomial size if p is a prime and m and d are constants. We make progress
toward this statement by proving Theorem 6 stating that AND requires super-polynomial
size circuits of this type, if each MOD,,, gate has fan-in o(n?/logn). A stronger form of this
statement (see Theorem 19) can be based on the following definition:

Definition 16 Let G be a gate of a circuit on the second level from the inputs computing
some function of AND’s of variables. We say that G relates two input variables if they appear
as inputs in a common AND gate below G.

Figure 3: Gate G relates e.g., z1 and z9, or x3 and xg, but does not relate x1 and xz4.

We say that a gate G is H-linear, if H is a subset of the input-variables, such that G does
not relate two input variables outside H, i.e., the input of G is linear in the variables outside
H with coefficients that are arbitrary functions of the variables in H. We call a gate e-linear
if it is H-linear with a set H containing at most a e-fraction of all variables.

We start with a simple application of the Degree Decreasing Lemma (Lemma 15).

Lemma 17 Let p and m be relatively prime integers and consider an n wvariable Boolean
function f be computed by a (MODE“AND) circuit, where the top MODE1 gate is H-linear.
Then f can be computed by a (3°,, MODy,) circuit with (2m)Hl MOD,, gates.

Proof: =~ We use induction on |H|. In the |H| = 0 case the AND gates have fan-in one, thus
they can be removed.

We can translate the AND gates to multiplications on the 0-1 variables. Consequently,
the input of the MOD,,, gate is a polynomial P of the input variables with all of its monomials
having at most a single variable outside H. We may suppose that P is multi-linear. If z; € H
for some 1 < i < n we can write this input in the form P = Qz; + R, where the polynomials
@ and R do not depend on z; and all their monomials contain at most a single variable
outside H. We apply Lemma 15 to replace our MOD,,, gate with the modulo p sum of 2m
MOD,,, gates. The inputs of these MOD,,, gates are linear combinations of z;, @}, and R. To
finish the proof we apply the inductive hypothesis with H \ {z;} to replace each of these new
MOD,, gates with the modulo p sum of (2m)#I=1 MOD,, gates on the input variables. O
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Lemma 18 Let the prime p and the positive integer m be fized. Then there exist constants
c¢>1 and € > 0 such that if a circuit ((MOD;‘k)f, MODZ, AND) computes AND,,, and every
MOD,,, gate is an e-linear gate, then the size of the circuit is S > ™.

The proof of this lemma is simpler for the case when p is not dividing m. We need
Theorem 13 in its full generality for the remaining case.

Proof:  Suppose first that p does not divide m.

We apply Lemma 17 for the MOD,, gates. The resulting circuit computes a modulo p
polynomial of degree less than p*¢ of the at most S(2m)*® MOD,, gates (Lemma 8). The
size is therefore at most (S (2m)5")pu. But Theorem 4 claims an exponential lower bound on
this size, thus for a small enough ¢, size S must be exponential in n.

In the general case where p may divide m, we write m = p®mg where p does not divide my.
First we decompose each MOD,]% gate into the sum of MOD,{,?i} gates, for B = {b1,ba,...,b;}.
Then MOD,{#} gates are converted to MOD,{72} gates, connecting bit 1 with multiple wires
to the gate. Next, we exchange MODT{Q} gates to AND of the MOD,{,% and MODl{,g} gates.
(We used a similar decomposition in the proof of Lemma 14.) We have increased the size
of the circuit by a factor of at most 2m so far. We apply Lemma 17 to the MOD,,,, gates.
This increases the size by a factor of at most (2m)*”. The resulting circuit has MOD,,, and
AND gates at the bottom level and MODp., MOD,, >°,, and AND; gates everywhere else.
As the last two types can be replaced with MOD,, gates we can apply Lemma 8. We get a
three level circuit computing AND,, with a }°, gate on top, AND; gates in the middle (with
a constant ¢t depending on m, p, k, and £ ). The bottom gates are MOD,,, and AND gates.
Notice that the number Sy of the gates in the middle level is at most S!, where S; is the
number of gates on the bottom level, and S < (2m)*"*+1S.

The fanin of these bottom AND gates is bounded by en+1. We choose € < 1/4t. Merging
the bottom AND gates with the middle AND gates, one gets that AND,, is the modulo p sum
of AND functions on at most n/2 inputs and at most ¢ MOD,,, gates. Applying Theorem 13
one gets that So > ¢ with some ¢ > 1 depending on p, m, k, and £. Thus S* > ¢ /(2m)HEn+1)
proving an exponential lower bound on S if ¢ > (2m)®t. O

Now we turn to prove Theorem 6. It is a special case of the following result proving an
optimal tradeoff between size and the new measure of the maximal number of related pairs.

Theorem 19 Let p be a prime and m, k, and £ positive integers. Suppose that a
((MODﬁ)Z,MODfl,AND) circuit computes AND,,. If each MOD,, gate in the circuit re-

2
lates at most X > n pairs of input variables then the size of the circuit is at least cg /X, with
a constant cg > 1 depending on p, m, k, and £.

Proof: We fix the values ¢ and ¢ claimed in Lemma 18. We take a restriction on the
circuit by leaving a variable unrestricted with probability P = en/(22X) independently for
each of the variables. We assign 1 to the rest of the variables. Clearly, the restricted circuit
computes the AND of the remaining variables.

With probability of at least 1/2, the number of the remaining variables is at least ny =
|Pn/2] = |en?/(44X)].

Exactly those pairs remained related in a MOD,,, gate in the restricted circuit, whose
both variables remained unrestricted.

The expected number of pairs related by a single gate in the restricted circuit is at most
X P? = eng/11. Unfortunately, the deviation can be large, it is easy to construct n gates,



Grolmusz-Tardos: Lower Bounds for (MOD p — MOD m) Circuits 13

relating n — 1 pairs each, such that any restriction to n’ variables has a gate relating n’ — 1
pairs. Thus it is important, that for using Lemma 18, we need not bound the number of
related pairs, only the size of a set, covering each pair.

Lemma 18 easily imply the Theorem if there is a restriction leaving ny variables unre-
stricted, such that every MOD,, gate is e-linear. In other words, for each G, we need the
existence of a set H (depending on G) of size at most eng, which contain at least one of every
pair related by G in the restricted circuit.

Let us bound the probability that this is not the case for a fixed MOD,,, gate G. Take a
maximal matching on pairs of unrestricted variables that are related by G. The set H of the
endpoints of the matching-edges satisfies that no pair is related outside H, since otherwise,
adding that pair to the matching would yield a larger matching. Thus it suffices to bound
the probability that |H| > eny, i.e., that all the variables involved in some j = [eng/2] pairs
of G-related variables forming a matching remain unrestricted. We bound this probability by
the product of the number of choices for the matching and the probability that the variables
remain unrestricted for a fixed matching. For a fixed gate G we get that the probability that
at least ng variables remain unrestricted but G is not e-linear after the restriction is at most
()].()PQj. Hence if S()J.()PQj < 1/2, where S is the size of our circuit, then Lemma 18 proves

our Theorem. The alternative is S > (2()].()P2j)_1 > (6X7P2)] proving the same bound. O

Next we show that the logarithmic order of magnitude of the bound in Theorem 19 is
tight.

Theorem 20 If m is not a power of the prime p, and X > 0 is arbitrary, then the n variable
AND function is computable by a (3°,, MODy,, AND) circuit of size (2m)"2/(2X) such that
the total number of pairs of variables related by any MOD,, gate in the circuit is at most X.

Proof: Compute AND of the variables in two levels with AND gates, first computing the
AND of [n?/(2X)] classes of at most [2X/n] variables each. Then place a MOD}} gate of
fan-in 1 onto the top. Apply Lemma 17 to replace the top two levels by the modulo p sum
of (2m)"2/ (2X)  MOD,, gates. The inputs of these new gates are linear combinations of the
outputs of the gates computing AND for a single class.

Note that Lemma 17 works only if m is not a multiple of p. Otherwise use that MOD,,
gates can simulate MOD, gates if ¢ divides m. O

We remark that the proofs of Lemma 18 and Theorem 19 use Theorem 13 for the lower
bound, so they apply to circuits computing OR or MOD, with r not dividing mp®, not just
for AND. The upper bound in Theorem 20 can also be applied to these functions.
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