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Abstrat

Modular gates are known to be immune for the random restrition tehniques of Ajtai

(1983), Furst, Saxe, Sipser (1984), Yao (1985) and H�astad (1986). We demonstrate here

a random lustering tehnique whih overomes this diÆulty and is apable to prove

generalizations of several known modular iruit lower bounds of Barrington, Straub-

ing, Th�erien (1990), Krause and Pudl�ak (1994), and others, haraterizing symmetri

funtions omputable by small (MOD

p

;AND

t

;MOD

m

) iruits.

Applying a degree-dereasing tehnique together with random restrition methods for

the AND gates at the bottom level, we also prove a hard speial ase of the Constant

Degree Hypothesis of Barrington, Straubing, Th�erien (1990), and other related lower

bounds for ertain (MOD

p

;MOD

m

;AND) iruits.

Most of the previous lower bounds on iruits with modular gates used speial de�ni-

tions of the modular gates (i.e., the gate outputs one if the sum of its inputs is divisible

by m, or is not divisible by m), and were not valid for more general MOD

m

gates. Our

methods are appliable, and our lower bounds are valid, for the most general modular

gates as well.

1 Introdution

Boolean iruits are perhaps the most widely examined models of omputation. They gain

appliation in diverse areas as VLSI design, omplexity theory as well as in the theory of

parallel omputation.

A majority of the strongest and deepest lower bound results for omputational omplexity

were proved using the Boolean iruit model of omputation (for example [11℄, [16℄, [7℄, [12℄,

[13℄, or see [14℄ for a survey).

Unfortunately, lots of questions, even for very restrited iruit lasses, have been unsolved

for a long time.

Bounded depth and polynomial size is a natural restrition. Ajtai [1℄, Furst, Saxe, and

Sipser [5℄ proved that no polynomial sized, onstant depth iruit an ompute the PARITY

funtion. Yao [16℄ and H�astad [7℄ generalized this result for sub-logarithmi depths. Their

tehnique involved a sophistiated use of random restrition tehniques, in whih randomly

assigned 0-1 values to the input variables �xed the output of large fan-in AND and OR

Boolean gates.
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Sine the modular gates are very simple to de�ne, and they are immune to the random

restrition tehniques in lower bound proofs for the PARITY funtion, the following natural

question was asked by Barrington, Smolensky and others: How powerful will be the Boolean

iruits if, beside the standard AND, OR and NOT gates, MOD

m

gates are also allowed in the

iruit? Here a MOD

A

m

gate outputs 1 if the sum of its inputs is in a set A � f0; 1; 2; : : : ;m�1g

modulo m.

Razborov [12℄ showed that for omputing MAJORITY with AND, OR, NOT and MOD

2

gates, exponential size is needed with onstant depth. This result was generalized by Smolen-

sky [13℄ for MOD

p

gates instead of MOD

2

ones, where p denotes a prime.

We know very little, however, if both MOD

p

and MOD

q

gates are allowed in the iruit

for di�erent primes p; q, or, if the modulus is a non-prime power omposite, e.g., 6. For

example, it is onsistent with our present knowledge that depth-3, linear-size iruits with

MOD

6

gates only, reognize an NP-omplete language (see [2℄).

It is not diÆult to see that onstant-depth iruits with MOD

p

gates only, (p prime),

annot ompute even very simple funtions: the n-fan-in OR or AND funtions, sine they

an only ompute onstant degree polynomials of the input variables over GF

p

(see [13℄).

But depth-2 iruits with MOD

2

and MOD

3

gates, or MOD

6

gates an ompute the n-

fan-in OR and AND funtions [8℄, [2℄. Consequently, these iruits are more powerful than

iruits with MOD

p

gates only. The sketh of the onstrution: we take a MOD

3

gate at the

top of the iruit, and 2

n

MOD

2

gates on the next level, where eah subset of the n input

variables is onneted to exatly one MOD

2

gate, then this iruit omputes the n-fan-in OR,

sine if at least one of the inputs is 1, then exatly half of the MOD

2

gates evaluate to 1.

Barrington, Straubing and Th�erien in [2℄ onjetured that any (MOD

B

p

;MOD

A

m

;AND

d

)

iruit needs exponential size to ompute the n fan-in AND funtion, where the prime p and

the positive integers m and d are �xed, and AND

d

denotes the fan-in d AND funtion. They

alled it the Constant Degree Hypothesis (CDH), and proved the d = 1 ase, with highly

non-trivial algebrai tehniques. Their proof also works for depth-(`+ 1)

(

`

z }| {

MOD

B

p

k

;MOD

B

p

k

; : : : ;MOD

B

p

k

;MOD

A

m

) (1)

iruits, omputing the AND funtion.

Yan and Parberry [15℄, using Fourier-analysis, proved also the d = 1 ase for

(MOD

f1;2;:::;p�1g

p

;MOD

f1g

2

) iruits, but their method also works for the speial ase of the

CDH where the sum of the degrees of the monomials g

i

on the input-level satis�es:

X

deg(g

i

)�1

(deg(g

i

)� 1) �

n

2(p� 1)

�O(1):

Krause and Waak [10℄ applied ommuniation-omplexity tehniques to show that any

(MOD

f1;2;:::;m�1g

m

;SYMMETRIC) iruit, omputing the ID funtion:

ID(x; y) =

�

1; if x = y;

0 otherwise,

for x; y 2 f0; 1g

n

, should have size at least 2

n

= logm, where SYMMETRIC is a gate, om-

puting an arbitrary symmetri Boolean funtion. Sine (non-weighted) MOD

m

gates are also

SYMMETRIC gates, this lower bound is valid for (MOD

f1;2;:::;m�1g

m

;MOD

A

m

) iruits. When
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mod m oeÆients (or multiple wires) are allowed on the input-level, then the MOD

m

gates

are not SYMMETRIC gates, but the same proof tehniques remain appliable. Caussinus

[4℄ proved, that the result of [2℄ also implies a similar lower bound for the AND funtion.

Unfortunately, results [10℄, [4℄ do not generalize for the more general MOD

A

m

gates at the

top.

Krause and Pudl�ak [9℄ proved that any (MOD

f0g

p

k

;MOD

f0g

q

) iruit whih omputes the

MOD

f0g

r

funtion has size at least 2

n

, for some  > 0, where p and r are di�erent primes

and q is not divisible by either of them.

Our main result is a haraterization of those symmetri Boolean funtions whih are

omputable by quasipolynomial-size

(

`

z }| {

MOD

B

p

k

;MOD

B

p

k

; : : : ;MOD

B

p

k

;MOD

A

m

)

iruits. We prove (Theorem 5), that the only symmetri funtions that are omputable by

suh iruits are the MOD

mp

j

funtions with small j. Consequently, the non-trivial threshold

funtions, (so also AND and OR), and the MOD

f0g

r

funtions if r does not divide p

j

m need ex-

ponential size on that iruits. Even MOD

4

requires exponential size (MOD

3

r

;AND

t

;MOD

2

)

iruits for onstant t and r. Note the asymmetry: MOD

4

is easy to ompute with a poly-

nomial size (MOD

2

;AND

3

) iruit. These results generalize the theorems of Barrington,

Straubing, Th�erien [2℄ and Krause and Pudl�ak [9℄, and give a haraterization of the om-

putable symmetri funtions, instead of singular lower bounds.

Grolmusz [6℄ generalized the results of [2℄, [15℄, [10℄, [9℄ for (MOD

q

;MOD

p

;AND

n

) ir-

uits, where the input-polynomials of eah MOD

p

gate is onstrutible from linear terms

using at most n� 1 multipliations (or, equivalently, an be omputed by an arithmeti ir-

uit of an arbitrary number of mod p additions and at most n� 1 fan-in 2 multipliations).

In partiular, one an allow the sum of an arbitrary funtion of n variables and a linear

polynomial of the n variables as inputs for eah MOD

p

gate. We generalize this result, too

(Lemma 18). The main tool of the proof of [6℄ is a Degree Dereasing Lemma, whih we also

generalize here for non-prime moduli (Lemma 15), and we use it both for lower- and upper

bound proofs.

Here we generalize the results of [6℄: we prove a lower bound on the size of the

(MOD

p

;MOD

m

;AND) iruits omputing AND

n

, if m is a positive integer, p is a prime,

and eah MOD

m

gate has not-too-many AND gates as inputs and those AND gates have

low fan-in. For the exat statement see Theorem 6. This is an important speial ase of the

Constant Degree Hypothesis of [2℄. The lower bound also applies to iruits omputing some

other funtions besides AND.

2 Our Results

2.1 Ideas

MOD

m

gates are immune to random restrition tehniques, sine these gates remain MOD

m

gates on the remaining variables after an arbitrary restrition, and thus (unless less than m

variables remain unrestrited) the omplexity does not derease.

We overome this diÆulty by a random lustering tehnique, whih fore some randomly

hosen variables to be equal. Eah equivalene lass (or luster) will make a new variable of



Grolmusz-Tardos: Lower Bounds for (MOD p { MOD m) Ciruits 4

the MOD

m

gate, and eah new variable will be invisible (i.e., its oeÆient will be a multiple

of m) for the gate with a onstant probability. (Lemma 10)

We use this for (MOD

p

;AND

t

;MOD

m

) iruits, omputing symmetri funtions. Sup-

pose, that the equivalene lasses are of size m, then the resulting funtion of the new,

lustered variables, is a unique symmetri funtion.

Almost all symmetri funtions (exept the MOD

p

k

m

funtions) have large restritions,

whose unique fator resulting from the lustering above annot be expressed as a modulo p

sum of funtions, none of whih depends on all variables. An exponential lower bound follows

for the number of AND gates on level 2. (Theorem 4)

If we have o(n

2

= log n) onstant-degree monomials as inputs for eah MOD

m

gates on

level 2, then by random restritions, one an essentially derease their number, and a small

number of low-degree monomials an be onverted to linear polynomials with the help of the

Degree Dereasing Lemma (Lemma 15), and we an apply Theorem 4 to get lower bounds.

(Theorem 6)

2.2 Preliminaries

De�nition 1 A fan-in n gate is an n-variable Boolean funtion. Let G

1

; G

2

; : : : ; G

`

be gates

of unbounded fan-in. Then a (G

1

; G

2

; : : : ; G

`

)- iruit denotes a depth-` iruit with a G

1

-

gate on the top, G

2

gates on the seond level, G

3

gates on the third level from the top,. . . ,

and G

`

gates on the last level. AND

t

denotes the fan-in t AND gate. The size of a iruit is

de�ned to be the total number of the gates in the iruit.

All of our modular gates are of unbounded fan-in, and we allow to onnet inputs to gates

or gates to gates with multiple wires. Note, that by this de�nition, our modular gates are

not symmetri gates in general.

In the literature MOD

m

gates are sometimes de�ned to be 1, i� the sum of their inputs

is divisible by m, and sometimes they are de�ned to be 1, i� the sum of their inputs is not

divisible by m. The following, more general de�nition overs both ases.

De�nition 2 We say that gate G is a MOD

m

-gate, if there exists A � f0; 1; : : : ;m�1g suh

that

G(x

1

; x

2

; : : : ; x

n

) =

�

1; if

P

n

i=1

x

i

mod m 2 A

0 otherwise.

A is alled the 1-set of G. MOD

m

gates with 1-set A are denoted by MOD

A

m

.

Notation 3 Let �

p

(x

1

; x

2

; : : : ; x

s

) =

P

s

i=1

x

i

mod p.

In general, �

p

is not a Boolean gate, sine its value is from f0; 1; : : : ; p � 1g. But, in all

of our statements, its value will be guaranteed to be 0 or 1.

2.3 Theorems

Here we list the three main results of this paper.

To be onise we use ((MOD

B

p

k

)

`

;MOD

A

m

) to denote iruits of type (1). Note that standard

tehniques (see Lemma 8) show that these iruits are equivalent to (

P

p

;AND

t

;MOD

A

m

)

iruits and we ould have stated Theorems 4 and 5 for those iruits instead.
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Theorem 4 Suppose that a iruit of type ((MOD

B

p

k

)

`

;MOD

A

m

) with p prime omputes a

symmetri Boolean funtion f on n variables, suh that f 6= MOD

A

p

j

m

for any A. Then its

size S is exponential in p

j

, i.e., there exists a number  > 1 depending on p, m, k, and ` suh

that S > 

p

j

.

As a speial ase we get that the size S of an n-variable iruit of type ((MOD

B

p

k

)

`

;MOD

A

m

)

with p prime omputing any of the nontrivial threshold funtions (inluding AND and OR)

or the MOD

f0g

r

funtion (where r does not divide mp

j

for any j) is exponential in n. We

have S > 

n

for a number  > 1 depending only on p, m, k, and `.

Theorem 5 Let the prime p, and the positive integers m, k, and ` be �xed with m not a power

of p. The symmetri funtions omputed by a type ((MOD

B

p

k

)

`

;MOD

A

m

) iruit of quasipolyno-

mial size are exatly the funtions MOD

C

mp

j

with j = O(log logn) and C � f0; 1; : : : ;mp

j

�1g.

On the other hand, all the funtions MOD

C

mp

j

with j = O(log log n) an be omputed by

quasipolynomial size (

P

p

;AND

2

;MOD

m

) iruits.

Our �nal result proves a speial ase of the Constant Degree Hypothesis:

Theorem 6 Let p be prime and m a �xed positive integer. Suppose that a

(MOD

B

p

;MOD

A

m

;AND) iruit omputes AND

n

. If eah MOD

m

gate has fan-in o(n

2

= log n)

and eah AND gate has onstant fan-in then the size of the iruit is super-polynomial.

We remark that this result is a onsequene of the tradeo� between the size of

(�

p

;MOD

m

;AND) iruits omputing AND and a new measure introdued here, the number

of pairs of input variables the MOD

m

gates relate (see Theorems 19 and 20). Note, that simi-

lar bounds an be proved for iruits omputing many other natural funtions, like threshold

or MOD

r

funtions.

3 The Proofs

3.1 Eliminating the top gate

The top-gate elimination is widely used in the literature (f., [9℄, Lemma 5.2, or [3℄). It

replaes the top MOD

p

r

gate with onstant fan-in AND gates and a simple summation

modulo p with a polynomial inrease in the size.

Lemma 7 Let p be a prime, k a positive integer, and A � f0; 1; : : : ; p

k

� 1g. There is a

modulo p polynomial of degree p

k

� 1 omputing the MOD

A

p

k

funtion.

2

One an repeatedly use this lemma to eliminate a onstant-depth sub-iruit of MOD

p

r

gates from the top of any iruit, as stated by the next lemma.

Lemma 8 Suppose that f : f0; 1g

n

! f0; 1g is omputed by a depth-(` + 1)

(

`

z }| {

MOD

A

p

k

; : : : ;MOD

A

p

k

; G)

iruit, where p is a prime and on the input level we have arbitrary gates (or sub-iruits) G.

Suppose the number of these gates G is S. Then f an also be omputed from the same gates

G by a (�

p

;AND

t

; G) iruit, with t < p

k`

and at most S

p

k`

AND

t

gates on the middle level.
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Proof: By Lemma 7 all MOD

A

p

k

an be replaed by a modulo p polynomial of degree less

than p

k

thus f is degree < p

k`

polynomial of the output of the G gates. The bound on the

size omes from ounting all the possible monomials in suh a polynomial. 2

Note, that the size of the new iruit is still polynomial in S and the fan-in of the AND

gates is onstant if the depth ` and the modulus p

k

are onstants. Note also, that AND

t

gates with t < p

k

an be onsidered as speial MOD

p

k

gates and thus AND

t

gates an be

eliminated the same way.

3.2 Random Clustering

De�nition 9 Let � be an equivalene relation on the variables of a funtion f . By the fator

f=� of f we mean the funtion obtained from f by identifying variables aording to �. The

variables of f=� orrespond to the equivalene lasses of �. For an integer m we all the

f=� an m-fator of f if eah equivalene lass in � onsists of m variables.

We say that the Boolean funtion f is p-simple (p is a positive integer) if it an be

expressed as a modulo p sum of funtions none of whih depend on all of the variables.

Example. Suppose that f has 6 variables, and x

1

�x

2

; x

3

�x

4

; x

5

�x

6

. Then f=� is a 2-fator

of f , has three variables, and is de�ned as

f=�(y

1

; y

2

; y

3

) = f(y

1

; y

1

; y

2

; y

2

; y

3

; y

3

):

Notie that any fator of the AND funtion is again an AND funtion. The m-fator

of a symmetri funtion is unique and it is also a symmetri funtion. Note that for prime

numbers p a funtion f is p-simple if and only if it an be expressed as a modulo p polynomial

of degree less than the number of its variables.

Impliitly, a random lustering tehnique was used in the paper of Krause and Pudl�ak

[9℄. However, our method here more diretly gives stronger results.

The following lemma is about a speial type of three level iruits. It is stated in a more

general way but the reader may think of polynomial size (

P

p

;AND

t

;MOD

A

m

) iruits with

onstant t.

Lemma 10 Let p, m, and t be positive integers, 1 � " > 0 and suppose the Boolean funtion

f on n variables satis�es f �

P

S

i=1

f

i

(mod p), where eah f

i

is omputed in an arbitrary

way from t of the funtions f

ij

and from (1�")n of the input variables. Eah of the funtions

f

ij

is in turn a modulo m linear ombination of the input variables. Here the funtions f

i

output modulo p values while f

ij

output modulo m values. If n is large enough and divisible by

m, and S < 

n

then there exists a p-simple m-fator of f , where the onstant  > 1 depends

only on m, t, and ".

Proof: The idea is to observe that f

ij

=� is a modulo m linear ombination of its variables

and the oeÆient of a variable, orresponding to an equivalene lass in a random �, is

equal to zero with a positive onstant probability. Thus f

i

=� depends on all of its variables

with exponentially small probability. Then with high probability, all the funtions f

i

=� has

an invisible variable and thus f=� is p-simple.
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Figure 1: Random lustering in the simplest ase: t = 1; " = 1, every f

i1

is a MOD

6

gate.

Let us hoose � uniformly at random from all the partitions of the variables into lasses of

size m. Consider hoosing the equivalene lasses one by one. Consider a �xed 1 � i � S and

one of the �rst d"n=(2m)e lasses. When we hoose the variables of this lass, there are less

than "n=2 variables already in previous lasses and at most (1�")n variables diretly seen by

f

i

, so the set H of the remaining variables has at least "n=2 elements. Eah variable in H has

a oeÆient in eah of the ombinations f

ij

. Let (a

j

)

t

j=1

be a list of oeÆients that are most

popular, and all a variable inH good if its oeÆient in f

ij

is a

j

for eah value of j. There are

at least jHj=m

t

� �n=(2m

t

) good variables. When hoosing the variables for our equivalene

lass eah has probability at least �=(2m

t

) to be good. Despite the slight dependene among

these events, the probability that eah of them are good is still at least (�=(4m

t

))

m

, for

large enough n. If this is the ase, f

i

=� does not depend on the variable orresponding

to this lass, sine f

i

does not see it diretly and the oeÆient of this variable in f

ij

is

ma

j

= 0 mod m. Thus (using (1�u)

k

< e

�uk

) with probability at most e

�("n=(2m))�("m

�t

=4)

m

does f

i

=� depend on eah of its variables. We hoose ln  = ("=4)

m+1

=m

tm+1

. If S < 

n

then with positive probability none of the funtions f

i

=� depend on all of the variables,

onsequently, f=� �

P

S

i=1

f

i

=� (mod p) is p-simple. 2

We remark here that the same proof gives that if S in the lemma is bounded by another

exponential funtion of n then a random m-fator of f an almost always be expressed as

a modulo p sum of funtions, eah of them is not depending on an m

�mt

fration of their

variables.

Notation 11 Let w(x) denote the weight of a zero-one vetor x, i.e., the number of ones in

x. Then f(i) denotes the value of the symmetri Boolean funtion f on inputs of weight i.

Lemma 12 Let p be a prime. If f is a symmetri Boolean funtion on p

k

variables with

f(0) 6= f(p

k

) then f is not p-simple.

Proof: Notie that

X

x2f0;1g

n

(�1)

w(x)

f(x) � 0 (mod p)

for p-simple funtions f . The left hand side is zero for funtions not depending on one of the

input variables, thus it is divisible by p for a modulo p sum of suh funtions.
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For a symmetri funtion on n = p

k

variables the left hand side of the last equation is

n

X

i=0

(�1)

i

 

n

i

!

f(i) � f(0)� f(n) (mod p);

sine p divides

�

p

k

i

�

unless i = 0 or i = p

k

. Thus f(0) 6= f(n) implies that f has full p-degree

as laimed. 2

Theorem 13 Let p be a prime, m, t, k, and S positive integers and 1 � " > 0. Suppose the

symmetri Boolean funtion f on n variables is the modulo p sum of S of the funtions f

i

,

where eah of the f

i

omputed in an arbitrary way from t of the funtions f

ij

and from (1�")n

of the input variables. Eah of the funtions f

ij

is in turn a modulo m linear ombination

of the input variables. Here the funtions f

i

output modulo p values while f

ij

output modulo

m values. Suppose f is not equal to any MOD

mp

k

gate. Then S > 

p

k

for a onstant  > 1

depending only on m, t, and ".

Proof: Sine f is not a MOD

mp

k

gate, there exist numbers 0 � i < i +mp

k

= j � n

suh that f(i) 6= f(j). Restrit the funtion f by assigning 0 to n � j of its variables

and assigning 1 to i of them. The resulting funtion f

0

is a symmetri funtion of its mp

k

variables satisfying f

0

(0) 6= f

0

(mp

k

). Notie that the restrition does not inrease the size of

the iruit omputing the funtion. The unique m-fator of f

0

is a symmetri funtion f

00

on

p

k

variables satisfying f

00

(0) 6= f

00

(p

k

). By Lemma 12 f

00

is not p-simple. Thus Lemma 10

gives the laimed bound on S. 2

We are ready now to prove Theorem 4.

Proof: (Theorem 4) We apply Lemma 8 to get rid of the MOD

p

k

gates and get a

(

P

p

;AND

t

;MOD

m

) iruit for our symmetri funtion. The size of the iruit blows up

polynomially, i.e., it is bounded by S

b

, where b and t depend on p, m, k, and `. Then The-

orem 13 bounds S. Notie that we did not use the feature of Theorem 13 that the middle

gates an diretly depend on many input variables.

The statement on the spei� funtions follows from the observation that every funtion

mentioned there satis�es that it is not of the form MOD

A

mp

j

unless mp

j

> n. 2

The following lemma niely omplements Theorem 13.

Lemma 14 Consider the Boolean funtion f(x

1

; x

2

; : : : ; x

n

) = MOD

A

mp

k

(x

1

; x

2

; : : : ; x

n

). If

m is not a power of the prime p then f an be omputed by a (

P

p

;AND

2

;MOD

m

) iruit of

size at most (mn)

2p

k

0

, where p

k

0

is the largest power of p dividing mp

k

.

Notie that the assumption that m is not a power of p is neessary. Otherwise, if m =

p

`

, arbitrary size onstant depth iruits of onstant fan-in AND and arbitrary MOD

p

and

MOD

m

gates ould only ompute Boolean funtions expressible as onstant degree modulo

p polynomials, and that onstant degree does not depend on k. Consequently, it annot

ompute f , whih is a degree-(p

k

� 1) polynomial.

Proof: Suppose �rst that all elements of the 1-set A are ongruent to a single number a

modulo m. There is a degree p

k

0

� 1 polynomial on the input omputing MOD

A

p

k

0

modulo p

(Lemma 7). This polynomial an be implemented by a modulo p sum of AND gates of at

most p

k

0

�1 variables. The number of AND gates is bounded by n

p

k

0

�1

. Let q be prime fator

of m di�erent from p and stik a redundant MOD

f1g

q

gate above eah AND gate. Apply the
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Degree Dereasing Lemma (Lemma 15) to replae eah AND gate by a olletion of at most

(2q)

p

k

0

�2

MOD

q

gates summing to the same value modulo p. First replae eah MOD

q

gate

by a MOD

m

gate omputing the same funtion then replae eah MOD

m

gate G by the AND

of G and the MOD

fag

m

gate on all the inputs. The resulting iruit omputes the AND of the

MOD

fag

m

and the MOD

A

p

k

0

funtions, thus it omputes the MOD

A

mp

k

funtion as desired.

To remove our assumption on A notie that every set A an be deomposed into m sets

A

i

satisfying this assumption. The equation MOD

A

mp

k

=

P

i

MOD

A

i

mp

k

proves the lemma. 2

Consider the smallest (

P

p

;AND

t

;MOD

m

) iruit omputing the funtion MOD

f0g

mp

j

and

notie that the lower bound on the iruit size for this funtion in Theorem 13 is 

p

j

while

the upper bound in Lemma 14 is n



0

p

j

. The gap is too wide to haraterize polynomial size

iruits, but we an haraterize quasipolynomial size iruits as in Theorem 5.

Proof: (Theorem 5) Apply Lemma 8 as in Theorem 4 to eliminate the MOD

p

k

gates. Use

Theorem 13 and Lemma 14 to get the two sides of the haraterization. 2

3.3 The Degree Dereasing Lemma

Lemma 15 exploits a surprising property of (MOD

s

, MOD

m

)-iruits, whih (MOD

p

;MOD

p

)

iruits lak, sine onstant-depth iruits with MOD

p

gates and arbitrary size are only

apable to ompute onstant degree modulo p polynomials of the input. Here we generalize

the original version [6℄ of the degree dereasing lemma for non-prime moduli.

Lemma 15 (Degree Dereasing Lemma) Let p be a prime, and s;m > 1 be integers, satisfying

gd(s; p) = gd(s;m) = 1. Let x

1

; x

2

; x

3

be variables taking values from f0; 1; : : : ; p � 1g,

x

0

1

2 f0; 1g. Then

MOD

A

p

(x

1

x

2

+ x

3

) � H

0

+H

1

+ � � �+H

p�1

+ � (mod s); (2)

MOD

A

m

(x

0

1

x

2

+ x

3

) � H

0

0

+H

0

1

+ �

0

(mod s); (3)

where H

i

abbreviates

H

i

= �

p�1

X

j=0

MOD

A

p

(ix

2

+ x

3

+ j(x

1

+ (p� i)))

for i = 0; 1; : : : ; p � 1, and where � is the multipliative inverse of p modulo s: �p � 1

(mod s), and � is a positive integer satisfying � = �jAj(p� 1)� mod s, and

where H

0

i

abbreviates

H

0

i

= �

0

m�1

X

j=0

MOD

A

m

(ix

2

+ x

3

+ j(x

0

1

+ (m� i)))

for i = 0; 1, and where �

0

is the multipliative inverse of m modulo s: �

0

m � 1 (mod s),

and �

0

is a positive integer satisfying �

0

= �jAj� mod s,
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Figure 2: Degree dereasing in (MOD

3

;MOD

f1g

2

) ase. On the left the input is a degree-2

polynomial, on the right linear polynomials.

Proof: Let x

1

= k and let 0 � i � p� 1; k 6= i. Then

H

k

= �

p�1

X

j=0

MOD

A

p

(kx

2

+ x

3

) = �pMOD

A

p

(kx

2

+ x

3

) � MOD

A

p

(x

1

x

2

+ x

3

) (mod s);

and

H

i

= �

p�1

X

j=0

MOD

A

p

(ix

2

+ x

3

+ j(k � i)) = �jAj;

sine for any �xed x

2

; x

3

; i; k expression kx

2

+x

3

+ j(k� i) takes on every value exatly one

modulo p while j = 0; 1; : : : ; p � 1; so MOD

A

p

(ix

2

+ x

3

+ j(k � i)) equals to 1 exatly jAj

times. Consequently,

H

0

+H

1

+� � �+H

p�1

+� � MOD

A

p

(x

1

x

2

+x

3

)+(p�1)�jAj+� � MOD

A

p

(x

1

x

2

+x

3

) (mod s):

Similarly, let x

0

1

= k 2 f0; 1g and let i 2 f0; 1g, k 6= i. Then

H

0

k

= �

0

m�1

X

j=0

MOD

A

m

(kx

2

+ x

3

) = �

0

mMOD

A

m

(kx

2

+ x

3

) � MOD

A

p

(x

0

1

x

2

+ x

3

) (mod s);

and

H

0

i

= �

0

m�1

X

j=0

MOD

A

m

(ix

2

+ x

3

+ j(k � i)) = �

0

jAj;

sine for any �xed x

2

; x

3

; i; k, for i 6= k ji� kj = 1, so expression kx

2

+ x

3

+ j(k � i) takes on

every value exatly one modulo m while j = 0; 1; : : : ;m� 1; so MOD

A

m

(ix

2

+ x

3

+ j(k � i))

equals to 1 exatly jAj times. Consequently,

H

0

0

+H

0

1

+ �

0

� MOD

A

m

(x

0

1

x

2

+ x

3

) + �

0

jAj+ �

0

� MOD

A

p

(x

0

1

x

2

+ x

3

) (mod s):

2
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3.4 Random Restrition

The Constant Degree Hypothesis of [2℄ states that any (

P

p

;MOD

m

;AND

d

) iruit omputing

AND has super-polynomial size if p is a prime and m and d are onstants. We make progress

toward this statement by proving Theorem 6 stating that AND requires super-polynomial

size iruits of this type, if eah MOD

m

gate has fan-in o(n

2

= log n). A stronger form of this

statement (see Theorem 19) an be based on the following de�nition:

De�nition 16 Let G be a gate of a iruit on the seond level from the inputs omputing

some funtion of AND's of variables. We say that G relates two input variables if they appear

as inputs in a ommon AND gate below G.

Figure 3: Gate G relates e.g., x

1

and x

2

, or x

3

and x

6

, but does not relate x

1

and x

4

.

We say that a gate G is H-linear, if H is a subset of the input-variables, suh that G does

not relate two input variables outside H, i.e., the input of G is linear in the variables outside

H with oeÆients that are arbitrary funtions of the variables in H. We all a gate "-linear

if it is H-linear with a set H ontaining at most a "-fration of all variables.

We start with a simple appliation of the Degree Dereasing Lemma (Lemma 15).

Lemma 17 Let p and m be relatively prime integers and onsider an n variable Boolean

funtion f be omputed by a (MOD

B

m

;AND) iruit, where the top MOD

B

m

gate is H-linear.

Then f an be omputed by a (

P

p

;MOD

m

) iruit with (2m)

jHj

MOD

m

gates.

Proof: We use indution on jHj. In the jHj = 0 ase the AND gates have fan-in one, thus

they an be removed.

We an translate the AND gates to multipliations on the 0-1 variables. Consequently,

the input of the MOD

m

gate is a polynomial P of the input variables with all of its monomials

having at most a single variable outside H. We may suppose that P is multi-linear. If x

i

2 H

for some 1 � i � n we an write this input in the form P = Qx

i

+R, where the polynomials

Q and R do not depend on x

i

and all their monomials ontain at most a single variable

outside H. We apply Lemma 15 to replae our MOD

m

gate with the modulo p sum of 2m

MOD

m

gates. The inputs of these MOD

m

gates are linear ombinations of x

i

, Q, and R. To

�nish the proof we apply the indutive hypothesis with H n fx

i

g to replae eah of these new

MOD

m

gates with the modulo p sum of (2m)

jHj�1

MOD

m

gates on the input variables. 2
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Lemma 18 Let the prime p and the positive integer m be �xed. Then there exist onstants

 > 1 and " > 0 suh that if a iruit ((MOD

A

p

k

)

`

;MOD

B

m

;AND) omputes AND

n

, and every

MOD

m

gate is an "-linear gate, then the size of the iruit is S > 

n

.

The proof of this lemma is simpler for the ase when p is not dividing m. We need

Theorem 13 in its full generality for the remaining ase.

Proof: Suppose �rst that p does not divide m.

We apply Lemma 17 for the MOD

m

gates. The resulting iruit omputes a modulo p

polynomial of degree less than p

k`

of the at most S(2m)

"n

MOD

m

gates (Lemma 8). The

size is therefore at most (S(2m)

"n

)

p

k`

. But Theorem 4 laims an exponential lower bound on

this size, thus for a small enough ", size S must be exponential in n.

In the general ase where p may dividem, we writem = p

a

m

0

where p does not dividem

0

.

First we deompose eah MOD

B

m

gate into the sum of MOD

fb

i

g

m

gates, for B = fb

1

; b

2

; : : : ; b

t

g.

Then MOD

fb

i

g

m

gates are onverted to MOD

f0g

m

gates, onneting bit 1 with multiple wires

to the gate. Next, we exhange MOD

f0g

m

gates to AND of the MOD

f0g

m

0

and MOD

f0g

p

a

gates.

(We used a similar deomposition in the proof of Lemma 14.) We have inreased the size

of the iruit by a fator of at most 2m so far. We apply Lemma 17 to the MOD

m

0

gates.

This inreases the size by a fator of at most (2m)

"n

. The resulting iruit has MOD

m

0

and

AND gates at the bottom level and MOD

p

a

, MOD

p

,

P

p

, and AND

2

gates everywhere else.

As the last two types an be replaed with MOD

p

gates we an apply Lemma 8. We get a

three level iruit omputing AND

n

with a

P

p

gate on top, AND

t

gates in the middle (with

a onstant t depending on m, p, k, and ` ). The bottom gates are MOD

m

and AND gates.

Notie that the number S

2

of the gates in the middle level is at most S

t

1

, where S

1

is the

number of gates on the bottom level, and S

1

� (2m)

"n+1

S.

The fanin of these bottom AND gates is bounded by "n+1. We hoose " < 1=4t. Merging

the bottom AND gates with the middle AND gates, one gets that AND

n

is the modulo p sum

of AND funtions on at most n=2 inputs and at most t MOD

m

gates. Applying Theorem 13

one gets that S

2

> 

n

with some  > 1 depending on p, m, k, and `. Thus S

t

> 

n

=(2m)

t("n+1)

proving an exponential lower bound on S if  > (2m)

"t

. 2

Now we turn to prove Theorem 6. It is a speial ase of the following result proving an

optimal tradeo� between size and the new measure of the maximal number of related pairs.

Theorem 19 Let p be a prime and m, k, and ` positive integers. Suppose that a

((MOD

B

p

k

)

`

;MOD

A

m

;AND) iruit omputes AND

n

. If eah MOD

m

gate in the iruit re-

lates at most X � n pairs of input variables then the size of the iruit is at least 

n

2

=X

0

, with

a onstant 

0

> 1 depending on p, m, k, and `.

Proof: We �x the values  and " laimed in Lemma 18. We take a restrition on the

iruit by leaving a variable unrestrited with probability P = "n=(22X) independently for

eah of the variables. We assign 1 to the rest of the variables. Clearly, the restrited iruit

omputes the AND of the remaining variables.

With probability of at least 1=2, the number of the remaining variables is at least n

0

=

bPn=2 = b"n

2

=(44X).

Exatly those pairs remained related in a MOD

m

gate in the restrited iruit, whose

both variables remained unrestrited.

The expeted number of pairs related by a single gate in the restrited iruit is at most

XP

2

= "n

0

=11. Unfortunately, the deviation an be large, it is easy to onstrut n gates,
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relating n� 1 pairs eah, suh that any restrition to n

0

variables has a gate relating n

0

� 1

pairs. Thus it is important, that for using Lemma 18, we need not bound the number of

related pairs, only the size of a set, overing eah pair.

Lemma 18 easily imply the Theorem if there is a restrition leaving n

0

variables unre-

strited, suh that every MOD

m

gate is "-linear. In other words, for eah G, we need the

existene of a set H (depending on G) of size at most "n

0

, whih ontain at least one of every

pair related by G in the restrited iruit.

Let us bound the probability that this is not the ase for a �xed MOD

m

gate G. Take a

maximal mathing on pairs of unrestrited variables that are related by G. The set H of the

endpoints of the mathing-edges satis�es that no pair is related outside H, sine otherwise,

adding that pair to the mathing would yield a larger mathing. Thus it suÆes to bound

the probability that jHj � "n

0

, i.e., that all the variables involved in some j = d"n

0

=2e pairs

of G-related variables forming a mathing remain unrestrited. We bound this probability by

the produt of the number of hoies for the mathing and the probability that the variables

remain unrestrited for a �xed mathing. For a �xed gate G we get that the probability that

at least n

0

variables remain unrestrited but G is not "-linear after the restrition is at most

�

X

j

�

P

2j

. Hene if S

�

X

j

�

P

2j

< 1=2, where S is the size of our iruit, then Lemma 18 proves

our Theorem. The alternative is S � (2

�

X

j

�

P

2j

)

�1

�

�

j

eXP

2

�

j

proving the same bound. 2

Next we show that the logarithmi order of magnitude of the bound in Theorem 19 is

tight.

Theorem 20 If m is not a power of the prime p, and X > 0 is arbitrary, then the n variable

AND funtion is omputable by a (

P

p

;MOD

m

;AND) iruit of size (2m)

n

2

=(2X)

suh that

the total number of pairs of variables related by any MOD

m

gate in the iruit is at most X.

Proof: Compute AND of the variables in two levels with AND gates, �rst omputing the

AND of dn

2

=(2X)e lasses of at most d2X=ne variables eah. Then plae a MOD

f1g

m

gate of

fan-in 1 onto the top. Apply Lemma 17 to replae the top two levels by the modulo p sum

of (2m)

n

2

=(2X)

MOD

m

gates. The inputs of these new gates are linear ombinations of the

outputs of the gates omputing AND for a single lass.

Note that Lemma 17 works only if m is not a multiple of p. Otherwise use that MOD

m

gates an simulate MOD

q

gates if q divides m. 2

We remark that the proofs of Lemma 18 and Theorem 19 use Theorem 13 for the lower

bound, so they apply to iruits omputing OR or MOD

r

with r not dividing mp

s

, not just

for AND. The upper bound in Theorem 20 an also be applied to these funtions.
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