
The Communication Complexity of the Universal Relation

Gábor Tardos � Uri Zwick y

Abstract

Consider the following communication problem. Alice

gets a word x 2 f0; 1gn and Bob gets a word y 2 f0; 1gn.

Alice and Bob are told that x 6= y. Their goal is to find an

index 1 � i � n such that x
i

6= y

i

(the index i should be

known to both of them). This problem is one of the most

basic communication problems. It arises naturally from the

correspondence between circuit depth and communication

complexity discovered by Karchmer and Wigderson.

We present three protocols using which Alice and Bob can

solve the problem by exchanging at most n+ 2 bits. One of

this protocols is due to Rudich and Tardos. These protocols

improve the previous upper bound of n + log� n, obtained

by Karchmer. We also show that any protocol for solving

the problem must exchange, in the worst case, at least n+ 1

bits. This improves a simple lower bound of n� 1 obtained

by Karchmer. Our protocols, therefore, are at most one bit

away from optimality.

The three n + 2 bit protocols use two completely different

ideas and they each have some additional interesting proper-

ties. The simplest protocol (SIMPLE) always finds the first

difference betweenx and y. It uses, however, aboutn rounds

of communication. A more complicated version of this pro-

tocol (LOGSTAR) finds the first difference between x and y

by exchanging at most n + 2 bits in about log� n rounds

of communication. Our most surprising protocol (HAM3)

finds a difference, not necessarily the first one, between x

and y by exchanging at mostn+2 bits in at most 3 rounds of

communication. Protocol HAM3 uses the Hamming error-

correcting code.

We next consider protocols for finding the first difference

using a limited number of rounds. For every c � 2, we

�Mathematical Institute of the Hungarian Academy of Sciences, Pf.

127, Budapest, H-1364 Hungary. Supported by NSF grants CCR-95-03254

and DMS-9304580, a grant from Fuji Bank and the grant OTKA-F014919.

This work was done while the authorwas visiting the Institute for Advanced

Study, Princeton, NJ 08540. E-mail address: tardos@cs.elte.hu.
yDepartment of Computer Science,Tel Aviv University, Tel Aviv 69978,

Israel, International Computer Science Institute, 1947 Center Street, Suite

600, Berkeley, CA 94704, U.S.A, and Department of Computer Science,

University of California, Berkeley, CA 94720, U.S.A. E-mail address:

zwick@math.tau.ac.il.

present an oblivious protocol that finds the first difference

by exchanging n + dlog(c�1)
ne + 1 bits in c rounds of

communication. We also show that any protocol that finds

the first difference using at most c rounds must exchange

at least n + dlog(c�1)
ne � 2 bits. These protocols are,

therefore, at most 3 bits away from being optimal.

Finally, we consider protocols for variants of the above

communication problem. Our most surprising results are

perhaps the following. Alice and Bob can exchange at most

n � blognc + 2 bits, in only 2 rounds, after which Alice

will know and index i such that x
i

6= y

i

. Alice and Bob can

exchange at most n� blognc+ 4 bits, in at most 4 rounds,

after which Alice will know and index i such thatx
i

6= y

i

and

Bob will know and index j such that x
j

6= y

j

. Furthermore,

i = j unless x and y differ in exactly two places.

1 Introduction

Let f : f0; 1gn! f0; 1g be a Boolean function. The depth

of f , denoted by D(f), is the minimal depth of a fanin-2

circuit, over the basis f^;_;:g, computing f . Karchmer

and Wigderson [KW90] established an elegant correspon-

dence between the depth of a Boolean function f and the

complexity of the following communication problem. Alice

gets a word x 2 f0; 1gn such that f(x) = 0 while Bob gets

a word y 2 f0; 1gn such that f(y) = 1. Clearly x 6= y.

Alice and Bob must find an index 1 � i � n such that

x

i

6= y

i

(the index i should be known to both of them). Let

C(f) be the communication complexity of this problem,

i.e., the number of bits exchanged, in the worst case, by the

best (deterministic) communication protocol that solves the

problem. Karchmer and Wigderson [KW90] show that for

every Boolean function f , the communication complexity

of the communication problem corresponding to f is exactly

equal to the depth of f . In other words, D(f) = C(f).

Though the proof of the correspondence between circuit

depth and communication complexity is extremely sim-

ple, the correspondence is an extremely powerful tool for

studying circuit depth as it allows arguing in a ‘top-down’

manner. Karchmer and Wigderson [KW90] utilized the

correspondence to obtain an Ω(log2
n) lower bound on

the monotone depth of the st-connectivity problem. Raz

1

protocol bits rounds first difference?

trivial n + dlogne 2 yes

logstar n+ log� n log� n yes

SIMPLE n+ 2 n yes

LOGSTAR n+ 2 log� n yes

HAM3 n+ 2 3 no

LOG(c) n+ dlog(c�1)
ne + 1 c yes

Table 1. Protocols for the universal relation.

and Wigderson [RW92] used it to obtain an Ω(n) lower

bound on the monotone depth of the perfect matching prob-

lem. Subsequently, many other papers dealt with or uti-

lized this and similar relations between circuit depth and

communication complexity. Some of them are Edmonds

et al. [EIRS91], Karchmer, Raz and Wigderson [KRW91],

Krause and Waack [KW91], Goldmann and Håstad [GH92],

Håstad and Wigderson [HW93], Szegedy [Sze93], Gold-

mann [Gol94], Roychowdhury et al. [ROS94], and Grigni

and Sipser [GS95]. Chin [Chi90] used the correspondence

to obtain an upper bound on the depth of counting functions.

The communication problem described in the abstract is

usually referred to as the communication problem of the

universal relation. A solution to this communication prob-

lem gives a solution to the communication problem of any

Boolean function.

A trivial upper bound on the communication complexity

of the universal relation is n + dlogne. Alice sends Bob

her word and Bob replies with a dlogne bit index. In his

thesis, Karchmer [Kar89] presents a slightly less trivial up-

per bound of n + log� n. Karchmer also presents a simple

n� 1 lower bound on the communication complexity of the

universal relation.

The thesis of Karchmer [Kar89] leaves a gap of log� n be-

tween the upper and lower bounds on the communication

complexity of the universal relation. This gap was closed

by the unpublished (n+ 2)-bit n-round protocol of [RT96].

We present their protocol here. We then describe a way of

reducing the number of rounds used by this protocol from

n to log� n. We also describe, for every c � 2, a c-round

protocol for the universal relation that exchanges at most

n + dlog(c�1)
ne + 1 bits. These protocols always find the

first difference between the input words. We also present a

completely different (n+ 2)-bit 3-round protocol based on

the Hamming error-correcting code. The difference found

by this protocol is not necessarily the first difference between

the inputs.

Improving the n � 1 lower bound of Karchmer, we show

that any protocol for the universal relation must exchange,

in the work case, at least n+ 1 bits.

The old and new protocols for the universal relation are

compared in Table 1. We think that the existence of a

protocol for the universal relation that exchanges at most

n + 2 bits in a fixed number of rounds is quite surprising.

Note that our protocol that achieves this does not necessarily

find the first difference between x and y. This is not a

coincidence. We show that any (n+O(1))-bit protocol that

always finds the first difference between x and y must be

composed of at least log� n�O(1) rounds. Furthermore, we

show that each such protocol which is composed of only c

rounds must exchange at least n+ dlog(c�1)
ne � 2 bits.

Using the Karchmer-Wigderson correspondece of commu-

nication length and formula depth, our protocols yield a

depth-4 balanced formula of size 2n+3 for the lookup func-

tion. Our protocols also imply the existence of formula

schemes (see [MP77]) of depth n + 2, slightly simplifying

and improving a result of McColl and Paterson [MP77].

See the surveys of Lengauer [Len90] and Lovász [Lov90],

and the forthcoming book by Kushilevitz and Nisan [KN95],

for excellent introductions to communication complexity.

2 Protocols based on the Hamming error cor-

recting code

The protocols described in this section are based on the

Hamming error-correcting code (see van Lint [vL91]). Sim-

ilar coding ideas were employed by Lupanov [Lup73] and

Gaskov [Gas78].

For every x; y 2 f0; 1gn, we let d(x; y) be the Hamming

distance between x and y, i.e., the number of positions in

which x and y differ. For every x 2 f0; 1gn, we let

ball(x) = fy 2 f0; 1gn j d(x; y) � 1g ;

sphere(x) = fy 2 f0; 1gn j d(x; y) = 1g

= ball(x)� fxg :

Let n = 2r � 1, for some r � 1. The binary Hamming

code of length n is a collection C

n

of 2n�r binary words

2

Alice:

send sph(X1)

receive bit

if bit = 0 then

receive Y2

ifX2 6= Y2 then

i k1 + di� (X2; Y2)

else (X2 = Y2)

i ind(X1)

else (bit = 1)

receive Y1

i di� (X1; Y1)

Bob:

receive sph(X1)

if sph(X1) = sph(Y1) then

send 0

send Y2

else

send 1

send Y1

Figure 1. Protocol HAM2.

of length n such that the distance between any two words

x; y 2 C

n

is at least three. The Hamming code is therefore

a single-error correcting code. Furthermore, the Hamming

code is a perfect code, the 2n�r balls of radius one, centered

at the words of C
n

define a partition of f0; 1gn.

Let n = 2r for some r > 1. From the Hamming code of

length n � 1, we can easily construct a collection Ĉ

n

�

f0; 1gn, jĈ
n

j = 2n�r such that the 2n�r spheres centered

at the words of Ĉ
n

define a partition of f0; 1gn. In other

words, for every x 2 f0; 1gn, there is a unique c 2 Ĉ
n

such

that d(x; c) = 1. If C
n�1 is the Hamming code of length

n�1, we let Ĉ
n

= f0x; 1x j x 2 C
n�1g (to each codeword

fromC

n�1 we affix a zero, and a one, and add the two words

to Ĉ
n

). The required property of Ĉ
n

follows easily from the

fact that the Hamming code Ĉ
n�1 is a perfect code.

The collection Ĉ
n

can be defined directly as follows. LetM

be an n� logn matrix with all the different logn bit strings

as rows (in some order). Then

Ĉ

n

= fx 2 f0; 1gn j xM = 0 g :

We assign each word of Ĉ
n

a unique n � r bit label. Let

x 2 f0; 1gn. We let sph(x) be the label of the unique

c 2 Ĉ

n

such that d(x; c) = 1. We let ind(x) be the position

in which x and c differ.

We now describe several interesting protocols based on the

partition of f0; 1gn into disjoint spheres.

2.1 An (n�blognc+ 2)-bit 2-round protocol using
which Alice can find a difference

We start by describing a very simple (n � blognc + 2)-bit

2-round protocol, called HAM2, using which Alice can find

an index i such that x
i

6= y

i

. Protocol HAM2 is described in

Figure 1. The wordsx and y, of lengthn, are broken into two

blocks X1; X2 and Y1; Y2 of lengths k1 and k2 respectively.

If n = 2r + s, where 0 � s < 2r, then k1 = 2r�1 and

k2 = 2r�1
+ s. Note that logk1 = blognc � 1. If x and y

are two distinct words of the same length, we let di� (x; y)

be the index of first position in which x and y differ.

Alice begins by sending sph(X1), the k1� log k1 bit label of

the sphere to whichX1 belongs. Bob compares sph(X1) and

sph(Y1). If sph(X1) = sph(Y1), then Bob sends the bit 0,

followed byY2. Alice now comparesX2 andY2. IfX2 6= Y2,

then Alice clearly knows at least one position in which X2

and Y2 differ. She sets i k1 + di� (X2; Y2). The more

interesting case is when Alice finds out that X2 = Y2. She

then knows that X1 6= Y1 while sph(X1) = sph(Y1). This

means that X1 and Y1 are two different words belonging to

the same sphere. The Hamming distance betweenX1 and Y1

is exactly 2. The two positions in whichX1 and Y1 differ are

exactly ind(X1) and ind (Y1). Alice knows ind (X1) and

she sets i ind (X1).

Suppose now that Bob finds out that sph(X1) 6= sph(Y1).

This clearly means that X1 6= Y1. Bob sends the bit 1,

followed by Y1. Alice can now find the first position in

which X1 and Y1 differ.

At the end of the protocol, i will always correspond to a

position in which x and y differ. In fact, i will always be

one of the first three positions in which x and y differ.

How many bits are exchanged? Alice sends k1� log k1 bits.

Bob replies with either k1 + 1 or k2 + 1 bits. As k1 � k2,

the worst case is k1 + k2 � logk1 + 1 = n� logk1 + 1 =

n � blognc + 2. We have thus established the following

theorem:

3

Alice:

send X0

send sph(X1)

receive bit1

if bit1 = 0 then

receive Y2

ifX2 6= Y2 then

send 0

send d2 di� (X2; Y2)

else (X2 = Y2)

send 1

send d1 ind (X1)

else (bit1 = 1)

receive bit3

if bit3 = 0 then

receive d0

else (bit3 = 1)

receive Y1

send d1 di� (X1; Y1)

Bob:

receive X0

receive sph(X1)

ifX0 = Y0 and sph(X1) = sph(Y1) then

send 0

send Y2

receive bit2

if bit2 = 0 then

receive d2

else (bit2 = 1)

receive d1

else ifX0 6= Y0 then

send 10

send d0 di� (X0; Y0)

else (X0 = Y0 but sph(X1) 6= sph(Y1))

send 11

send Y1

receive d1

Figure 2. Protocol HAM3.

Theorem 2.1 Protocol HAM2 is composed of 2 rounds in

which at most n�blognc+ 2 bits are exchanged. If x 6= y,

then after running the protocol Alice knows a position in

which x and y differ. Furthermore, this position is one of

the first three positions in which x and y differ.

It is possible to obtain a variant of HAM2 in which at most

n�blognc+1 bits are exchanged, for every n that satisfies

n � 2blognc
+ 2blognc. Note that most values of n satisfy

this condition.

2.2 An (n+2)-bit 3-round protocol for the univer-
sal relation

By supplementing HAM2 with a third round in which Alice

sends the dlogne-bit index of the position she found to Bob,

we get a three round protocol, HAM0

3, for the universal

relation. The total number of bits exchanged by HAM0

3 is at

most (n� blognc + 2) + dlogne � n+ 3.

A 3-round protocol, HAM3, for the universal relation which

exchanges at most n + 2 bits, one bit less than HAM0

3, is

decribed in Figure 2. Protocol HAM3 is also schematically

described in Figure 3. Suppose that n = 2r + s, where 0 �

s < 2r. The wordsx and y, of lengthn, are broken this time

into three blocksX0; X1; X2 and Y0; Y1; Y2 of lengths k0; k1

and k2, respectively, where k0 = s and k1 = k2 = 2r�1.

Alice begins by sending X0 and sph(X1). Bob compares

these blocks to Y0 and sph(Y1).

IfX0 = Y0 and sph(X1) = sph(Y1) then Bob sends the bit 0

followed byY2. Alice now compares X2 and Y2. IfX2 6= Y2

then she sends the bit 0 followed by the logk2 = r � 1 bits

of di� (X2; Y2). If X2 = Y2 the Alice sends the bit 1

followed by the logk1 = r � 1 bits of ind(X1). Note that,

as X1 and Y1 belong to the same sphere, these bits describe

a position in which X1 and Y1 differ.

Suppose now that Bob finds out that X0 6= Y0. He sends the

pair 10 followed by the dlogk0e bits of di� (X1; Y1).

Finally, suppose that Bob finds out that X0 = Y0 but

sph(X1) 6= sph(Y1). He then sends the pair 11 followed

by Y1. Alice then responds with di� (X1; Y1).

In any case, Alice and Bob agree on a position in which x

and y agree. A closer look shows that this position must be

one of the first three positions in which x and y differ.

How many bits are exchanged? If X0 = Y0 and sph(X1) =

sph(Y1) (the left branch in Figure 3), then the number of bits

exchanged is k0 + (k1 � logk1) + (1 + k2) + (1 + logk1)

(note that k1 = k2). This is exactly k0 + k1 + k2 + 2 =

n + 2. If X0 6= Y0, then the number of bits exchanged

is k0 + (k1 � logk1) + 2 + dlog k0e � n + 2. Finally, the

number of bits exchanged in the remaining case is k0+(k1�

logk1) + 2 + k2 + logk1 which is again n+ 2.

4

Round 2: Bob

Round 3: Alice

Round 1: Alice

X0 = Y0

X0 , sph(X1)

X0 = Y0 and

diff (X1; Y1)

sph(X1) = sph(Y1) X0 6= Y0 sph(X1) 6= sph(Y1)

11 , Y110 , diff (X0; Y0)0 , Y2

X2 6= Y2 X2 = Y2

0 , diff (X2; Y2) 1 , ind(X1)

Figure 3. The communication pattern of protocol HAM3.

Theorem 2.2 Protocol HAM3 is composed of 3 rounds in

which at most n+ 2 bits are exchanged. If x 6= y, then after

running the protocol Alice and Bob agree on a position in

which x and y differ. Furthermore, this position is one of

the first three positions in which x and y differ.

Protocol HAM3 is the third protocol mentioned in the ab-

stract. Note that in the third case of protocol HAM3

(the case X0 = Y0 but sph(X1) 6= sph(Y1)), Bob does

not have to send the last bit of Y1, Alice can compute

di� (X1; Y1) without it. With this modification, the number

of bits sent in the second round of the protocol is at most

k1 + 1 = k2 + 1 = 2r�1
+ 1, the only exception being the

case n = 7. The number of bits sent in the third round is

always at most logk1+1 = logk2+1 = r. With this modi-

fication, HAM3 is therefore an oblivious 3-round (n+2)-bit

protocol for the universal relation finding one of the first

three differences. For the n = 7 case, a similar protocol is

possible by partitioning the input into two blocks of sizes

k1 = 4 and k2 = 3.

2.3 An (n+ 3)-bit 4-round protocol for the strong
universal relation

We now turn our attention to the communication problem

in which Alice and Bob have to decide whether their inputs

are equal, and agree on a position in which they differ, if

they are not. A protocol solving this problem is said to be

a protocol for the strong universal relation. It is easy to see

that any protocol for the universal relation can be turned into

a protocol for the strong universal relation by increasing the

number of bits exchanged by at most two and increasing the

number of rounds by at most one. At the end of protocol

HAM3, Bob knows whether x = y, so this specific protocol

can be turned into a 4-round (n + 3)-bit protocol for the

strong universal relation by adding a final round in which

Bob sends one bit to Alice, telling her whether the two inputs

are equal. We call the protocol so obtained HAM4.

Theorem 2.3 Protocol HAM4 is a 4-round (n+3)-bit pro-

tocol for the strong universal relation.

If the inputs of Alice and Bob differ, then HAM4, as HAM3,

finds one of the first three differences between them. Proto-

col HAM4, like HAM3, can also be made oblivious.

2.4 An (n�blognc+ 4)-bit 4-round protocol using
which both Alice and Bob can find differences

In this subsection we describe a surprising (n�blognc+4)-

bit 4-round protocol using which Alice can find a position i

such that x
i

6= y

i

and Bob can find a position j such that

x

j

6= y

j

. Note that such a protocol is not a porotocol for the

universal relation as i and j are not necessarily the same.

We begin by describing an (n � blognc + 5)-bit 5-round

protocol, HAM5, for the job. Later we describe a slightly

more complicated protocol that does the same with only 4

rounds of communication. Protocol HAM5, invokes proto-

col HAM4 for the strong universal relation. Protocol HAM4

is composed of 4 rounds of communication. We assume

this time that Bob starts the communication (otherwise an

additional round would be required). We also assume that

HAM4 returns the index 0 if x = y. A description of HAM5

is given in Figure 4.

Alice and Bob partition their words x and y into blocks

X1; X2 and Y1; Y2, as they did before running HAM2. Pro-

tocol HAM5, as protocol HAM2, starts with Alice sending

5

Alice:

send sph(X1)

receive bit

if bit = 0 then

p HAM4(X2; Y2)

if p > 0 then

i k1 + p

else (X2 = Y2)

i ind (X1)

else (bit = 1)

receive Y1

i di� (X1; Y1)

send i

Bob:

receive sph(X1)

if sph(X1) = sph(Y1) then

send 0

p HAM4(X2; Y2)

if p > 0 then

j k1 + p

else (X2 = Y2)

j ind (Y1)

else

send 1

send Y1

receive j

Figure 4. Protocol HAM5.

sph(X1) to Bob. Bob compares sph(X1) and sph(Y1). If

sph(X1) = sph(Y1) then Bob sends the bit 0 and Alice and

Bob run protocol HAM4 on X2 and Y2. If X2 6= Y2 then

Alice and Bob agree on a position in whichX2 and Y2 differ.

IfX2 = Y2, then as x 6= y, it must be the case thatX1 6= Y1.

As X1 and Y1 belong to the same sphere, X1 and Y1 differ

in exactly two positions, namely, in positions ind(X1) and

ind(Y1). Alice knows ind (X1) and Bob knows ind (Y1).

Finally, if sph(X1) 6= sph(Y1), then Bob sends the bit 1

followed by the block Y1. Alice finds the first difference

between X1 and Y1 and sends it to Bob.

It is easy to verify that HAM5 is indeed composed of at most

5 rounds and that the maximal number of bits exchanged is

bounded by either (k1 � logk1) + 1 + (k2 + 3) or (k1 �

logk1) + 1 + 2 logk1. Both expressions are at most n �

blognc+5. We have thus established the following theorem:

Theorem 2.4 Protocol HAM5 is composed of at most 5

rounds in which at most n�blognc+5 bits are exchanged.

If x 6= y, then after running the protocol Alice knows an

index i such that x
i

6= y

i

and Bob knows an index j such

that x
j

6= y

j

. Furthermore, i = j unless x and y differ in

exactly two positions.

Protocol HAM5 invokes HAM4 on X2 and Y2. Protocol

HAM4 divides each of the blocks X2 and Y2 into two

sub-blocks. By initially dividing x of y into three blocks

X1; X2; X3 and Y1; Y2; Y3, of lengths k1; k2 and k3, we can

obtain a 4-round protocol, HAM0

4, which also exchanges at

most n� blognc + 4 bits using which both Alice and Bob

can find indices of positions in which x and y differ.

Protocol HAM0

4 is described in Figure 5. For sake of con-

ciseness, we have not separated the roles of Alice and Bob

in the protocol. It is easy to check that HAM0

4 is composed

of at most 4 rounds of communication. If n = 2r+s, where

0 � s < 2r, we let k1 = 2r�1,k2 = 2r�2 and k3 = 2r�2
+s.

It is easy to see that the number of bits exchanged by HAM0

4

is either n� logk1+3, or n� logk1� logk2+dlog k3e+2,

or at most n � k3 + 2. All these expressions are at most

n� blognc + 4. We have thus obtained:

Theorem 2.5 Protocol HAM0

4 is composed of at most 4

rounds in which at most n�blognc+4 bits are exchanged.

If x 6= y, then after running the protocol Alice knows an

index i such that x
i

6= y

i

and Bob knows an index j such

that x
j

6= y

j

. Furthermore, i = j unless x and y differ in

exactly two positions.

For most values of n, it is possible to choose the values of

k1,k2 and k3 a little bit better so that the total number of bits

exchanged by HAM0

4 is at most n � blognc + 3.

3 Protocols for finding the first difference

In this section we describe two (n + 2)-bit protocols for

finding the first difference between the inputs. The first

protocol, described in Subsection 3.1, is extremely simple. It

uses, however, a very large number of rounds. In Subsection

3.2 we reduce the number of rounds used from n to log� n+

2, without increasing the total number of bits exchanged. We

show in the next section that the number of rounds cannot

be reduced further without increasing the number of bits

exchanged. We end the section with a family of protocols

that presents an essentially optimal tradeoff between the

number of rounds and the number of bits exchanged.

6

Alice sends sph(X1)

Alice sends sph(X2)

if sph(X1) = sph(Y1) and sph(X2) = sph(Y2)

then

Bob sends 0

Bob sends Y3

ifX3 = Y3 then

Alice sends 0

Alice sends ind (X2)

if ind(X2) = ind(Y2) then

Bob sends 0

Alice sets i ind (X1)

Bob sets j ind(Y1)

else (ind (X2) 6= ind (Y2))

Bob sends 1

Alice and Bob set i j k1 + ind (X2)

else (X3 6= Y3)

Alice sends 1

Alice sends di� (X3; Y3)

Alice and Bob set

i j k1 + k2 + di� (X3; Y3)

else if sph(X1) 6= sph(Y1) then

Bob sends 10

Alice sends ind (X1)

Bob sends di� (X1; Y1)

Alice and Bob set i j di� (X1; Y1)

else (sph(X1) = sph(Y1) , sph(X2) 6= sph(Y2))

Bob sends 11

Alice sends ind (X2)

Bob sends di� (X2; Y2)

Alice and Bob set i j k1 + di� (X2; Y2)

Figure 5. Protocol HAM0

4.

3.1 A simple (n + 2)-bit protocol finding the first
difference

In this subsection we describe an elementary (n+2)-bit pro-

tocol for the universal relation that always finds the first dif-

ference. This protocol is due to Rudich and Tardos [RT96].

It is included here as it has not been published yet.

Protocol SIMPLE is the first protocol mentioned in the ab-

stract. It is described in Figure 6. Although the pseudo-code

of SIMPLE is not as concise as that of HAM3, protocol SIM-

PLE is conceptually simpler.

Protocol SIMPLE is composed of two phases. Excatly n

bits are exchanged in the first phase and excatly 2 bits in the

second. Alice and Bob trasmit their bits interchangingly.

We let a1; a3; : : : be the bits sent by Alice and b1; b3; : : : be

the bits sent by Bob. Alice begins by sending a1 x1.

The subsequent bits sent by Alice are determined by the

following rules:

(a) No difference found yet If x2x4 : : :xi = b2b4 : : : bi

then Alice sends a
i+1 x

i+1.

(b) Difference just found If x2x4 : : :xi�2 = b2b4 : : : bi�2

but x
i

6= b

i

then Alice sends a
i+1 1.

(c) Difference found earlier If x2x4 : : :xi�2 6=

b2b4 : : : bi�2 then Alice sends a
i+1 0.

Bob follows an analogous set of rules. In the pseudo-code

given in Figure 6, the variable lock

A

has the value 0 (Alice is

’unlocked’) as long as no difference is discovered by Alice.

When Alice discovers a difference, she sets lock

A

 1

and becomes ’locked’. She then transmits a 1. All the

subsequent bits sent by Alice, if there are any, will be 0’s.

We let last1 (c1; c2; : : :) be the index of the last 1 in the

sequence c1; c2; : : :. Note that if i = 2last1 (a1; a3; : : :)�1,

i.e., a
i

= 1 but a
j

= 0 for j > i, and if Alice is locked, then

Alice discovered her first difference, i.e., became locked, in

position i� 1. Similarly, if j = 2last1 (b2; b4; : : :) and Bob

is locked, then Bob became locked in position j � 1. The

streams a1; a3; : : : and b2; b4; : : : are known to both Alice

and Bob. If Alice, for example, is told that Bob became

locked, she can therefore identify the position in which he

became locked.

At the end of the first stage, there are three candidates for

the position of the first difference between x and y. This

position can either be the position in which Alice locked, if

she did, the position in which Bob locked, if he did, or, the

last position.

In the second stage of the protocol Alice and Bob inform

each other whether they became locked. It is easy to see

that if at least one of Alice and Bob did lock, then the first

difference between x and y corresponds to the position in

which the first of them locked. If none of them locked,

then x1x2 : : :xn�1 = y1y2 : : : yn�1. As Alice and Bob are

promised that x 6= y, they can deduce that x
n

6= y

n

.

We have thus established the following theorem:

Theorem 3.1 Protocol SIMPLE finds the first difference

between x and y by exchanging exactly n+ 2 bits.

Any protocol PROT that finds the first difference between x

and y can be easily transfored into a protocol PROT� for the

strong universal relation (see Subsection 2.3 for a definition).

7

Alice:

lock

A

 0

send a1 x1

for i 2 to n� 1 by 2 do

f

receive b
i

if lock

A

= 1 then

send a
i+1 0

else (lock
A

= 0)

if x
i

= b

i

then

send a
i+1 x

i+1

else (x
i

6= b

i

)

lock

A

 1

send a
i+1 1

g

if n is even then receive b
n

send lock

A

receive lock

B

i

A

n

2�last1 (a1; a3; : : :)� 2 if lock
A

= 1

n otherwise

i

B

n

2�last1 (b2; b4; : : :)� 1 if lock
B

= 1

n otherwise

i minfi
A

; i

B

g

Bob:

lock

B

 0

for i 1 to n� 1 by 2 do

f

receive a
i

if lock

B

= 1 then

send b
i+1 0

else (lock
B

= 0)

if y
i

= a

i

then

send b
i+1 y

i+1

else (y
i

6= a

i

)

lock

B

 1

send b
i+1 1

g

if n is odd then receive a
n

receive lock

A

send lock

B

i

A

n

2�last1 (a1; a3; : : :)� 2 if lock
A

= 1

n otherwise

i

B

n

2�last1 (b2; b4; : : :) � 1 if lock
B

= 1

n otherwise

i minfi
A

; i

B

g

Figure 6. Protocol SIMPLE.

Protocol PROT� simply runs PROT on the inputsx0 and y1.

If the first difference occurs in positionn+1, Alice and Bob

infer that x = y. We thus obtain:

Theorem 3.2 Protocol SIMPLE� checks whether x = y,

and finds the first difference between them, if they are not

equal, by exchanging exactly n+ 3 bits.

As described, protocol SIMPLE requires n+ 1 rounds, if n

is odd, or n + 2 rounds, if n is even. It is possible to

reduce the number of rounds to n as follows. Assume, for

concreteness, that n is odd. The first stage then ends with

Bob receiving the bit a
n

from Alice. Bob, however, does not

compare a
n

with y
n

and never locks on the n-th position.

Bob may therefore send lock

B

together with b
n�1, before

receiving a
n

. Alice may then send lock

A

together with a
n

.

It is interesting to note that the last two bits of Alice have

to distinguish between only three possibilities: (i) Alice

became locked before position n � 1; (ii) Alice became

locked at positionn� 1; (iii) Alice did not become locked.

If Alice is not locked while sending a

n

, then a

n

may be

arbitrarily set to 0. With this modification Alice and Bob

never examine x
n

and y
n

.

3.2 Finding the first difference in a limited num-
ber of rounds.

The protocol described in the previous subsection was very

simple. It uses, however, n rounds of communication. In

this subsection we describe more complicated protocols that

find the first difference in a limited number of rounds. Sur-

prisingly, using the slack in the last round of SIMPLE (two

bits are used to distinguish three possibilities) one can reduce

the number of rounds to log� n + 2 without increasing the

length. The result is a protocol, named LOGSTAR, which

is the second protocol mentioned in the abstract.

The number of rounds cannot be reduced below log� nwith-

out increasing the number of bits sent. For every c � 2, we

present a c-round protocol, LOG(c), for the universal re-

lation that exchanges at most n + dlog(c�1)
ne + 1 bits.

LOG(c) always finds the first difference between the inputs.

8

The length of LOG(c) is within three of the lower bound for

this problem presented in the next section.

We start with a description, for any s � 2, of a protocol

LOG
s

. The protocol LOGSTAR and the protocols LOG(c)

are obtained by chooing appropriate values of the parame-

ter s.

Define a sequence a1 = 2s � 2 and a

i+1 = 2ai � 1. For

any n � 1, protocol LOG
s

starts by splitting x and y into

k + 1 blocks as follows. Let k be the smallest number

for which
P

k

i=1 ai � n � 1. We break x into blocks

X1; : : : ; Xk

; X

k+1, where X
i

, for 2 � i � k is of length

a

k+1�i, Xk+1 is composed of a single bit, and X1 is of

length at most a
k

. The word y is broken into blocks

Y1; : : : ; Yk; Yk+1 of corresponding lengths. Note that the

lengths of the blocks X2; : : : ; Xk+1 and Y2; : : : ; Yk; Yk+1

decrease dramatically (the blocks X1 and Y1 are leftover

blocks and may be of any size in the range 1 to a
k

).

Protocol LOG
s

is similar to the protocol SIMPLE. The play-

ers alternate this time, however, in sending blocks rather than

just bits.

The first phase of the protocol consists of k rounds. The

number of bits sent in the i-th round is jX
i

j = jY

i

j =

a

k+1�i. As in SIMPLE, both Alice and Bob begin the pro-

tocol by being ‘unlocked’. Alice transmits in the odd num-

bered rounds and Bob in the even numbered ones. Let A
i

be

the block sent by Alice in the i-th round, and let B
i

be the

block sent by Bob in the i-th round. Alice starts by sending

A1 X1. The block sent by Alice in the (i+1)-st round of

the first phase, where i � 2, is determined by the following

rules:

(a) No difference found yet If X2X4 : : :Xi

=

B2B4 : : :Bi

then Alice sends A
i+1 X

i+1.

(b) Difference just found If X2X4 : : :Xi�2 =

B2B4 : : :Bi�2 but X
i

6= B

i

then, Alice becomes

locked, and instead of sending X

i+1 , she sends

t di� (X

i

; B

i

), the position of the first difference

between X
i

and B
i

. Here 1 � t � jX

i

j � a

k+1�i <

2ak�i = 2jXi+1j, thus t can be sent as an a

k�i

-bit

block. Note that t 6= 0, so the block sent by Alice

when she becomes locked in a non-zero block.

(c) Difference found earlier If X2X4 : : :Xi�2 6=

B2B4 : : :Bi�2 (Alice is locked), then Alice sends an

all-zero block of the appropriate length.

The blocks sent by Bob are determined by analogous rules.

It is easy to see that the last non-zero block sent by Alice/Bob

marks the position in which she/he became locked, if they

did. The block size a
i+1 is defined to be 2ai�1, and not 2ai ,

to ensure this property.

After the first phase, at most two positions in the blocks

X1 : : :Xk�1 and Y1 : : :Yk�1 are candidates for being the

first difference between x and y. If A
i

is the last non-zero

block sent by Alice, then the position in X
i�1 whose index

is coded in A

i

is the first of these candidates. If B
j

is the

last non-zero block sent by Bob, then the position in X
j�1

whose index is coded in B
j

is the second candidate. This is

so, since if the first difference between x and y is the t-th

bit of X
i

, where i < k, then A

i+1 = t or B
i+1 = t, by

case (b), and all subsequent blocks sent by the player that

sent A
i+1 or B

i+1 are all-zero blocks. Unfortunately all

positions in the next to last blockX
k

, as well the last bit, are

also candidates.

The second phase of the protocol consists again of two

rounds, as in protocol SIMPLE. The first of these rounds

coincides with the last round of the first phase. Let us as-

sume, for concretness, that Alice was the last to transmit in

the first phase. Otherwise, the roles of Alice and Bob are

reversed. First, Alice sends a 0 if she is unlocked, and a 1

otherwise. Next, Bob sends a bits to describe one of the

following 2a possibilities:

(1) Bob sends 0a to say that he is locked.

(2) Bob sends the binary representation of t, where 1 �

t � jX

k

j � a1 = 2a�2 to say that he is unlocked but

Y

k

6= A

k

and t is the position of the first difference

between these blocks.

(3) Bob sends 1a to say that he is unlocked and Y
k

= A

k

.

It is easy to see that after the second round, both players can

deduce the position of the first difference.

Protocol LOG
s

finds the first difference in k + 1 oblivious

rounds of communication in which exactly n + s bits are

exchanged (k is defined above).

First we take s = 2 and let LOGSTAR = LOG2. In this

case a

i

> exp(i�1)
(1) where exp(i) is the exponentiation

function 2x iterated i times. Thus n > a

k�1 > exp(k�2)
(1)

and therefore log� n � k � 1. Thus we have

Theorem 3.3 LOGSTAR is an oblivious protocol for the

universal relation that finds the first position of difference

by exchanging n+ 2 bits in at most log� n+ 2 rounds.

In order to have fewer than log� n rounds, we increase the

parameter s and thus the length of the protocol. For an

arbitrary integer parameter c � 2 we define LOG(c) to be

LOG

s

for the smallest s � 2 such that it has at most c

rounds. If s > 2 we have a
i

> exp(i)(s� 1) thus

Theorem 3.4 If log(c�1)
n > 1 then LOG(c) is an oblivi-

ous protocol for the universal relation that finds the first posi-

tion of difference by exchanging at mostn+dlog(c�1)
ne+1

bits in c rounds.

9

4 Lower bounds

In this section we present some simple lower bounds that

show that the protocols obtained in the previous sections are

only a few bits away from being optimal.

We start with an n + 1 lower bound for the length of any

protocol for the universal relation, for n > 2. This is a

slight improvement over the n � 1 lower bound of Karch-

mer [Kar89] and comes within 1 of the upper bound we

presented. For n = 1 there is no need for communication.

For n = 2, Alice and Bob simply need to exchange the first

bits of their inputs. For 3 � n � 6 the lower bound of

n+1 can be achieved by a simple protocol, while for n � 7

we do not know whether optimal protocols for the universal

relation use n+ 1 or n + 2 bits.

Before we go ahead and prove the lower bounds, we call

attention to a subtle point. A protocol for the universal

relation has to work only for pairs of inputs (x; y), where

x 6= y. All the protocols for the universal relation that we

presented in this paper work even if x = y. Alice and Bob

always agree on the same index i. Ifx = y, then this index is

of course an index of a position in which x and y agree. It is

not difficult to see that any protocol for the universal relation

can be modified, if necessary, to have this property, without

increasing the number of bits exchanged or the number of

rounds used. All the protocols we consider in this section

are therefore assumed to be of this form.

Theorem 4.1 Any protocol for the n-bit universal relation

uses in the worst case at least n+ 1 bits, for n > 2.

Proof: Let us consider a protocol P for the universal rela-

tion. As discussed above, we allow Alice and Bob to have

an arbitrary pair (x; y) of n-bit inputs, including the case

x = y. For any specific final transcript T of the conversa-

tion the set of pairs (x; y) resulting in T must be of the form

A

T

� B

T

where A
T

; B

T

� f0; 1gn.

First we claim that for any final transcript T we have

(i) jA
T

\B

T

j � 2,

(ii) if jA
T

\B

T

j = 2 then jA
T

j = jB

T

j = 2, and

(iii) if jA
T

\B

T

j = 1 then either jA
T

j = 1 or jB
T

j = 1.

Indeed, any set A
T

� B

T

violating the above conditions

would have three different n bit strings x, y, and z with

x; y 2 A

T

and y; z 2 B

T

. But then there is no consistent

way Alice and Bob can find the position in which the input

pairs (x; y), (x; z) and (y; z) differ. Note that each of these

pairs result in the same transcript T .

Now suppose the protocol P has length n. We may sup-

pose, without loss of generality, that each full transcript

has length n. Let us consider a partial transcript T of

length n � 1. It determines the set A
T

� B

T

of input

pairs resulting in this partial transcript. Note that this set

can be partitioned into two sets satisfying (i)–(iii) above,

as T has two possible extensions to a final transcript. This

observation is enough to verify the following claim.

For any partial transcript T of length n� 1 we have

(iv) jA
T

\B

T

j � 2 and

(v) if jA
T

\B

T

j = 2 then jA
T

j = 2 or jB
T

j = 2.

The sets A
T

� B

T

corresponding to the 2n�1 partial tran-

scripts T of length n� 1 partition the set f0; 1gn� f0; 1gn

of all inputs. We see from (iv) that at most two of the 2n

diagonal elements can be in one class of the partition. By

counting we get that each class has to contain exactly two

diagonal elements. By (v), we get that the size of each set

A

T

� B

T

is at most 2n+1. Counting gives, now, that the

size of each such set is exactly 2n+1 and thus A
T

= f0; 1gn

and jB
T

j = 2 or B
T

= f0; 1gn and jA
T

j = 2. It is clear,

though, that, if n > 2, and from such a state, a position in

which the two inputs differ cannot be found by exchanging

only a single additional bit.

The contradiction proves the theorem. 2

It is easy to see that any protocol in which Alice finds an

index i such that x
i

6= y

i

when such an index exists, must

exchange in the worst case, at least n � dlogne + 1 bits.

Indeed, after finding such an index Alice can send it to Bob

to get a protocol for the universal relation, which must ex-

change at least n+1 bits. Our (n�blognc+2)-bit protocol

HAM2 comes within two of this bound. The modified pro-

tocol mentioned after Theorem 2.1 comes within one of this

bound, for most values of n.

It is interesting to note that HAM2 does not necessarily find

the first difference. This is not a coincidence. Any protocol

after which Alice knows the first position of difference if

one exists, must exchange, in the worst case, at least n � 1

bits. Indeed, after such a protocol Alice knows which of

the two inputs is lexicographically first, and can send this

information to Bob. But deciding the order of two non-equal

inputs requires at least n bits in the worst case. We remark

that the n � 1 lower bound is achieved by the protocol in

which Bob sends all of his input but the last bit.

Finally we prove a lower bound for protocols for the uni-

versal relation finding the first position of difference in a

limited number of rounds.

A protocol for the universal relation is said to be symmet-

ric, if it for any pair of inputs x and y, where x 6= y, the

index found by the protocol when Alice receives x and Bob

receives y is equal to the index found when Alice receives y

10

and Bob receives x. Clearly, every protocol for the uni-

versal function that finds the first difference is a symmetric

protocol.

Theorem 4.2 Let P be a symmetric protocol for the uni-

versal relation on n-bit strings. If P consists of c rounds of

communication, then the worst case length of P is at least

n+ dlog(c�1)
ne � 2.

Note that for any number c the length of the c round protocol

LOG(c) comes within three of this lower bound.

We start with a folklore result on bipartite graph covers.

Lemma 4.3 Suppose that the edges of the complete

graphK
n

are colored, using an arbitrary number of colors,

in such a way that the subgraph determined by any one color

is bipartite. Then, there is a vertex with at least logn edges

of different colors incident to it.

Proof: Let X be the set of colors, and for any color c 2 X,

let V
c

be the set of vertices incident to an edge of color c.

Let f
c

: V
c

! f0; 1g be a good coloring of the subgraph

determined by the edges of color c. For a vertex v let

G

v

= f g : X ! f0; 1g j
g(c) = f

c

(v) for every

c 2 X such that v 2 V
c

g :

Clearly, if v has k edges of different color incident to it, then

G

v

contains a 2�k fraction of all the functions g : X !

f0; 1g. Suppose now that v 6= w and that the edge (v; w)

is colored by c. If g 2 G

v

\ G

w

, then g(c) = f

c

(v) 6=

f

c

(w) = g(c). This contradiction shows that the sets G
v

are pairwise disjoint. Thus one of them has a relative size at

most 1=n and thus the corresponding vertex has k � logn

adjecent colors. 2

Lemma 4.4 Suppose that the edges of the complete

graphK
n

are colored, using an arbitrary number of colors,

in such a way that the subgraph determined by any one color

is bipartite. Suppose that Alice receives a vertex v and that

Bob receives a vertex w of this graph and that their goal is

to find the color of the edge (v; w), if v 6= w. If P is a de-

terministic c-round m-bit protocol for solving this problem,

and log(c�1)
n > 1, then

logn < m � blog(c�1)
mc + 2 :

Proof: We prove by induction on c the stronger inequality

n � 2m�blog(c�1)
mc+2

� 2 :

For the base case c = 1, we have n � 2, since one round of

communication is as effective as none.

For the inductive step suppose the protocol P has c + 1

rounds. Suppose Alice starts the communication. Based on

her input vertex v, she sends a string x
v

to Bob. The length

of this string may depend on v. We distinguishvertices with

short initial message from vertices with long initial message

by defining

S = f v j jx

v

j � m� t g ;

L = f v j jx

v

j > m� t g ;

where t = blogmc.

Let us consider the vertices in L first. Clearly, for any such

vertex Alice is to receive at most t � 1 bits from Bob, thus

she finally decides on one of 2t�1 possible colors. Thus, no

vertex inL is adjacent to more than 2t�1 differently colored

edges, so by Lemma 4.3 we have jLj � 22t�1

� 2m=2.

Now we turn toS. For anm�t bit stringx letS
x

= fv 2 S j

x is a prefix of the conversation between Alice and Bob when

they both get v g. These sets clearly partitionS and it is also

clear that if Alice and Bob get two different vertices from S

x

then their conversation is also a prefix of x. Thus they find

the color of the connecting edge in the graph spanned by S
x

in the remaining part of the protocol. In this part they use

at most t bits, and since the first round of communication

ended within x, they actually use at most c rounds. Thus

we can bound the size of S
x

by the inductive hypothesis:

jS

x

j � 2t�blog(c�1)
tc+2
� 2. Summing over all possible x

we get

jSj � 2m�t

(2t�blog(c�1)
tc+2
� 2)

= 2m�blog(c) mc+2
� 2m�t+1

:

To finish the proof we only have to note that

n = jSj+ jLj � 2m�blog(c) mc+2
� 2m�t+1

+ 2m=2

� 2m�blog(c)mc+2
� 2 :

2

Proof of Theorem 4.2: We may suppose log(c�1)
n > 1,

since otherwise Theorem 4.1 implies our result. Consider

the the complete graph whose vertices are the n-bit strings

and color the edge betweenx and y with the position the pro-

tocol P finds when applied to x and y. This is well defined

as P is symmetric. Clearly, each monochromatic subgraph

is bipartite thus Lemma 4.4 is applicable and implies the

theorem. 2

5 Formulae for the lookup function

The lookup function is a function of 2n+n inputs defined as

follows: L
n

(x1; : : : ; xn; y0; : : : ; y2n�1) = y

x1:::xn
. By the

11

seminal result of Karchmer and Wigderson [KW90], any

protocol for the strong universal relation yields a fanin-2

Boolean formula for the lookup function. The depth of the

formula is the maximal number of bits exchanged by the

protocol. (Note, however, that not every formula for the

lookup function is obtained from such a protocol, as any

formula that corresponds to a protocol reads every y input

exactly once.)

Protocol SIMPLE� yields, therefore, a depth n+ 3 fan-in 2

formula of size at most 2n+3 for comutingL
n

. This formula

can be made to consist of alternating levels of AND and OR

gates.

Protocol HAM4 yields a depth 4 unbounded fan-in formula

of size at most 2n+3 for L
n

. As HAM4 can be made obliv-

ious, the gates at each level of this formula can be made to

have the same fan-in. The gates at the bottom level all have

fan-in 2.

6 Concluding remarks and open problems

We presented three protocols, HAM3, SIMPLE and

LOGSTAR, for the universal relation. Each of these three

protocols exchanges at most n+ 2 bits. Although our lower

bound is only n + 1, we conjecture that the upper bound

presented by these protocols is tight.

Conjecture 6.1 For large enough n, any protocol for the

n-bit universal relation must exchange, in the worst case, at

least n+ 2 bits.

Our next conjecture is more subtle and a bit harder to state.

The protocols SIMPLE and LOGSTAR both find the first

position of difference by exchanging at most n+2 bits. The

advantage of LOGSTAR is its small number of rounds. No-

tice, however, that SIMPLE has advantages too. At the end

of SIMPLE, one of the players knows whether the playres

received the same input. Another advantage is that if the

playes received different inputs, then the transcript of the

conversation determines how the inputs differ at the agreed

upon position, which player has a 1 there. It is easy to see

that these two statements are equivalent for any protocol for

the universal relation and are also equivalent to the state-

ment that each invalid (i.e., equal) pair of input results in a

different transcript of communication. We call a protocol

for the universal relation robust if it satisfies any of the three

equivalent conditions above. Note that both SIMPLE and

HAM3 are robust protocols for the universal relation. The

following conjecture asserts that the high number of rounds

in SIMPLE cannot be reduced significantly without loosing

one of robustness, being oblivious, or the property of always

finding the first difference. We remark, that for n > 5, one

can modify SIMPLE slightly to reduce the number of rounds

to n � 4 without losing either good property.

Conjecture 6.2 Any robust oblivious protocol for the n-bit

universal relation that exchanges at most n + 2 bits and

always finds the first difference must have at least n�O(1)

rounds of communication.

Acknowledgment

We would like to thank Noga Alon for some helpful dis-

cussions and for making the cooperation between the two

co-authors possible. We would also like to thank Steven

Rudich for allowing us to include a description of the pro-

tocol from [RT96].

References

[Chi90] A. Chin. On the depth complexity of the count-

ing functions. Information Processing Letters,

35:325–328, 1990.

[Dun88] P.E. Dunne. The complexity of Boolean networks.

Academic Press, 1988.

[EIRS91] J. Edmonds, R. Impagliazzo, S. Rudich, and

J. Sgall. Communication complexity towards

lower bounds on circuit depth. In Proceedings

of the 32nd Annual IEEE Symposium on Founda-

tions of Computer Science, San Juan, Puerto Rico,

pages 249–257, 1991.

[Gas78] S.B. Gaskov. The depth of Boolean functions.

Problemy Kibern., 34:265–268, 1978. (In Rus-

sian).

[GH92] M. Goldmann and J. Håstad. A simple lower

bound for monotone clique using a communication

game. Information Processing Letters, 41:221–

226, 1992.

[Gol94] M. Goldmann. Communication complexity and

lower bounds for threshold circuits. In Vwani

Roychowdhury, Kai-Yeung Siu, and Alon Orlit-

sky, editors, Theoretical Advances in Neural Com-

putation and Learning. Kluwer, 1994.

[GS95] M. Grigni and M. Sipser. Monotone separation of

logarithmic space from logarithmic depth. Journal

of Computer and System Sciences, 50, 1995.

[HW93] J. Håstad and A. Wigderson. Composition of the

universal relation. In J.-Y. Cai, editor, Advances in

Computational Complexity Theory, DIMACS Se-

ries in Discrete Mathematics and Theoretical Com-

puter Science, pages 119–134. American Mathe-

matical Society, 1993.

12

[Kar89] M. Karchmer. Communication Complexity: A New

Approach to Circuit Depth. PhD thesis, The MIT

Press, 1989.

[KN95] E. Kushilevitz and N. Nisan. Communication

Complexity. draft, 1995.

[KRW91] M. Karchmer, R. Raz, and A. Wigderson. On

proving super-logarithmic depth lower bounds via

the direct sum in communication complexity. In

Proceedings of the 6th Annual Structure in Com-

plexity Theory Conference, pages 299–304, 1991.

[KW90] M. Karchmer and A. Wigderson. Monotone cir-

cuits for connectivity require super-logarithmic

depth. SIAM Journal on Discrete Mathematics,

3:255–265, 1990.

[KW91] M. Krause and S. Waack. Variation ranks of

communication matrices and lower bounds for

depth two circuits having symmetric gates with

unbounded fan-in. In Proceedings of the 32nd

Annual IEEE Symposium on Foundations of Com-

puter Science, San Juan, Puerto Rico, pages 777–

782, 1991.

[Len90] T. Lengauer. VLSI theory. In J. van Leeuwen, ed-

itor, Handbook of Theoretical Computer Science,

Volume A, Algorithms and Complexity, chapter 16,

pages 835–868. Elsevier and The MIT Press, 1990.

[Lov90] L. Lovász. Communication complexity: A sur-

vey. In B.H. Korte, editor, Paths, Flows and VLSI

Layout. Springer Verlag, 1990.

[Lup73] O.B. Lupanov. Complexity of the universal

parallel-series network of depth 3. Trudy Matem.

Inst. Steklov, 133:127–131, 1973. (In Russian).

[MP77] W.F. McColl and M.S. Paterson. The depth of all

Boolean functions. SIAM Journal on Computing,

6:373–380, 1977.

[PM71] F.P. Preparata and D.E. Muller. On the delay re-

quired to realize Boolean functions. IEEE Trans-

actions on Computers, C-20:459–461, 1971.

[ROS94] V.P. Roychowdhury, A. Orlitsky, and K.Y. Siu.

Lower bounds on threshold and related circuits via

communication complexity. IEEE Transactions on

Information Theory, 40:467–474, 1994.

[RT96] S. Rudich and G. Tardos. Private communication.

[RW92] R. Raz and A. Wigderson. Monotone circuits for

matching require linear depth. Journal of the ACM,

39(3):736–744, July 1992.

[Spi71] P.M. Spira. On the time necessary to compute

switching functions. IEEE Transactions on Com-

puters, C-20:104–105, 1971.

[Sze93] M. Szegedy. Functions with bounded symmetric

communication complexity, programs over com-

mutative monoids, and ACC. Journal of Computer

and System Sciences, 47, 1993.

[vL91] J.H. van Lint. Introduction to Coding Theory.

Springer-Verlag, 1991. Second Edition.

13

