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Abstra
t

The following problem was raised by M. Watanabe. Let P be a self-interse
ting 
losed

polygon with n verti
es in general position. How manys steps does it take to untangle P , i.e., to

turn it into a simple polygon, if in ea
h step we 
an arbitrarily relo
ate one of its verti
es. It is

shown that in some 
ases one has to move all but at most O((n logn)

2=3

) verti
es. On the other

hand, every polygon P 
an be untangled in at most n � 
(

p

n) steps. Some related questions

are also 
onsidered.

1 Introdu
tion

Suppose we have a self-interse
ting 
losed polygon P on the s
reen of our 
omputer, whose verti
es

are p

1

; p

2

; : : : ; p

n

in this order, and no three verti
es are 
ollinear. We are allowed to modify P so

that in ea
h step we 
an grab a vertex and move it to an arbitrary new position. (For simpli
ity,

we assume that the s
reen is very large, so we are not limited by its size.) At the 5th Cze
h-Slovak

Symposium on Combinatori
s in Prague in 1998, Mamoru Watanabe asked the following question.

Is it true that every polygon P 
an be untangled, i.e., turned into a non
rossing polygon, in at most

"n steps, for some absolute 
onstant " < 1?

The aim of this note is to answer this question in the negative.

Given another 
losed polygon Q with verti
es q

1

; q

2

; : : : ; q

n

(in this order), let f(P;Q) denote

the number of \
ommon points" of P and Q, i.e., the number of indi
es i, for whi
h q

i

= p

i

. Let

f(P ) denote the largest number of points that 
an be kept �xed when we untangle P . Using our

notation,

f(P ) = max

Q

f(P;Q);

�
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where the maximum is taken over all non
rossing 
losed polygons with n verti
es. See Fig. 1.

Figure 1. For a star-polygon P with n verti
es, we have f(P ) =

n+1

2

It is easy to see that every polygon P 
an be untangled in at most n�

p

n moves. That is, we

have

Proposition 1. For every polygon P with n verti
es, we have f(P ) >

p

n.

Proof: Assume without loss of generality that p

n

is a vertex of the 
onvex hull of fp

1

; p

2

; : : : ; p

n

g,

and let p

�(1)

; p

�(2)

; : : : ; p

�(n�1)

be the other points of P , listed in 
lo
kwise order of visibility around

p

n

. A

ording to a wellknown lemma of Erd}os and Szekeres [ES35℄, every sequen
e of length k has a

monotone subsequen
e of length d

p

ke. Therefore, there is a sequen
e 1 � i

1

< i

2

< i

3

< : : : � n�1

of length d

p

n� 1e su
h that either �(i

1

) < �(i

2

) < �(i

3

) < : : : or �(i

1

) > �(i

2

) > �(i

3

) > : : : is

true. In either 
ase, the points p

n

; p

�(i

1

)

; p

�(i

2

)

; : : : indu
e a non
rossing 
losed polygon Q

0

. Let Q

denote the n-gon obtained from Q

0

by subdividing its sides with as many points as ne
essary, to
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a
hieve that the index of every point p

n

; p

�(i

1

)

; p

�(i

2

)

; : : : be the same in P as in Q. Clearly, we have

f(P;Q) � d

p

n� 1e+ 1 >

p

n, as required. 2

Our main result 
an now be formulated as follows.

Theorem 2. For every suÆ
iently large n, there exists a 
losed polygon P with n verti
es, whi
h


annot be untangled in fewer than n� 
(n log n)

2=3

moves. That is, we have f(P ) � 
(n log n)

2=3

;

where 
 is a 
onstant.

Let G be a graph with vertex set V (G) and edge set E(G), respe
tively. A drawing of G is a

representation of G in the plane su
h that every vertex 
orresponds to a point, and every edge is

represented by a Jordan ar
 
onne
ting the 
orresponding two points without passing through any

vertex other than its endpoints. Two edges are said to 
ross ea
h other if they have an interior

point in 
ommon. The 
rossing number 
r(G) of G is de�ned as the minimum number of 
rossing

pairs of ar
s in a drawing of G.

For any partition of the vertex set of G into two disjoint parts, V

1

and V

2

, let E(V

1

; V

2

) � E(G)

denote the set of edges with one endpoint in V

1

and the other in V

2

. De�ne the bise
tion width of

G as

b(G) = min jE(V

1

; V

2

)j;

where the minimum is taken over all partitions V (G) = V

1

[ V

2

su
h that jV

1

j; jV

2

j � 2n=3.

Theorem 2 is established by a random 
onstru
tion. The proof is based on the following 
onse-

quen
e of a weighted version of the Lipton-Tarjan separator theorem for planar graphs.

Lemma 3. [PSS94℄,[SV94℄ Let G be a graph of n verti
es with degrees d

1

; d

2

; : : : : : : ; d

n

. Then

b

2

(G) � (1:58)
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16
r(G) +

n

X

k=1

d

2

k

!

;

where b(G) and 
r(G) denote the bise
tion width and the 
rossing number of G, respe
tively.

Corollary 4. Let G be a graph of n verti
es with degrees d

1

; d

2

; : : : ; d

n

. Then, for any edge disjoint

subgraphs G

1

; G

2

; : : : ; G

j

� G, we have

j

X

i=1

b(G

i

) � 1:58j

1=2

 

16
r(G) +

n

X

k=1

d

2

k

!

1=2

:

Proof: Let d

ik

denote the degree of the k-th vertex in G

i

. Corollary 4 immediately follows from

Lemma 3. Indeed, applying Lemma 3 to ea
h G

i

separately and adding up the resulting inequalities,

we obtain

j

X

i=1

b

2

(G

i

) � (1:58)

2

0

�

16

j

X

i=1


r(G

i

) +

j

X

i=1

n

X

k=1

d

2

ik

1

A
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� (1:58)

2

 

16
r(G) +

n

X

k=1

d

2

k

!

:

Therefore, we have

0

�

j

X

i=1

b(G

i

)

1

A

2

� j

j

X

i=1

b

2

(G

i

) � (1:58)

2

j

 

16
r(G) +

n

X

k=1

d

2

k

!

;

as required. 2

Corollary 5. Let G be a graph of n verti
es with degrees d

1

; d

2

; : : : ; d

n

. Then, for any 1 < s � n,

one 
an remove at most

8:6

�

n

s

�

1=2

 

16
r(G) +

n

X

i=1

d

2

i

!

1=2

edges from G so that every 
onne
ted 
omponent of the resulting graph has fewer than s verti
es.

Proof: Partition G by subsequently subdividing ea
h of its large 
omponents into two roughly

equal halves as follows. Start the pro
edure by deleting b(G) edges of G so that it falls into two

parts, ea
h having at most

2

3

jV (G)j =

2

3

n verti
es. As long as there is a 
omponent H � G whose

size is at least s, by the removal of b(H) edges, 
ut it into two smaller 
omponents, ea
h of size at

most (2=3)jV (H)j. When there are no su
h 
omponents left, stop.

Let H denote the family of all 
omponents arising at any level of the above pro
edure (e.g., we

have G 2 H if G is 
onne
ted). De�ne the order of any element H 2 H as the largest integer k, for

whi
h there is a 
hain

H

0

�

6= H

1

�

6= : : :

�

6= H

k

(1)

in H su
h that H

k

= H. For any k, let H

k

denote the set of all elements of H of order k. Thus,

H

0

is the set of the 
omponents in the �nal de
omposition.

For any �xed k, the elements of H

k

are pairwise (vertex) disjoint. Re
all that in a 
hain (1)

we have jV (H

1

)j � s and the ratio of the sizes of any two 
onse
utive members is at least 3=2.

Therefore, the number of verti
es in any element of H

k

is at least (3=2)

k�1

s, whi
h in turn implies

that for k � 1

j

k

:= jH

k

j �

n

(3=2)

k�1

s

=

(2=3)

k�1

n

s

:

Applying Corollary 4 to the subgraphs in H

k

, we obtain that the total number of edges removed,

when they are �rst subdivided during our pro
edure, is at most

1:58 � (2=3)

(k�1)=2

�

n

s

�

1=2

 

16
r(G) +

n

X

i=1

d

2

i

!

1=2

;

Summing up over all k � 1, we 
on
lude that the total number of edges deleted during the whole

pro
edure does not ex
eed the number 
laimed. 2
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2 Proof of Theorem 2

We start with an auxiliary lemma.

Lemma 6. Let H

b

denote the graph (
y
le) de�ned on the vertex set V = f1; 2; : : : ; tg, whose edges

are (1; 2); (2; 3); : : : ; (t; 1). Let H

r

be a randomly sele
ted Hamilton 
y
le on the same vertex set,

i.e., let

E(H

r

) = f(�(1); �(2)); (�(2); �(3)); : : : ; (�(t); �(1))g;

where � is a random permutation of V .

Then, for every s < t and K, the probability that the 
rossing number of H = H

b

[ H

r

is at

most K satis�es

Prob[
r(H) � K℄ �

 

t

D

!

2
�

2t

s

�

D

s

t�D

(t�D)!

;

where D = b35

p

t(K + t)=s
.

Proof: We refer to the edges of H

b

and H

r

as bla
k and red edges, respe
tively.

Let s be a positive integer. The degree of every vertex in H is at most 4, so by Corollary 5

we 
an delete at most 8:7[t(16
r(H) + 16t)=s℄

1=2

= 34:8[t(
r(H) + t)=s℄

1=2

� D from H so that all


omponents of the resulting graph have fewer than s verti
es.

Consequently, if we want to give an upper bound on Prob[
r(H) � K℄, it is suÆ
ient to bound

the probability that H 
an be de
omposed into sets of size smaller than s by the deletion of pre
isely

D bla
k and pre
isely D red edges. In what follows, we estimate this probability.

If we su

eed in deleting the edges as required, then we 
an (greedily) group the 
omponents of

the remaining graph into at most 2t=s parts, ea
h having fewer than s verti
es. Let H denote the

resulting partition of V . The D bla
k edges that are deleted 
an be 
hosen in

�

t

D

�

di�erent ways.

The remaining bla
k edges form D paths. Ea
h set in H is the union of the vertex sets of a few of

these paths, thus there are at most (2t=s)

D

possibilities for the partition H, on
e the deleted bla
k

edges have been 
hosen.

We 
onsider the red Hamiltonian 
y
le to be pi
ked with an orientation. There are

�

t

D

�

di�erent

ways how to pi
k the starting points of the D deleted red edges.

The probability that a randomly sele
ted red Hamiltonian 
y
le \respe
ts" a �xed partition of

V into parts of size smaller than s, ex
ept for the edges originating at a �xed set of size D, is at

most s

t�D

=(t�D)!. Indeed, when we start drawing H

r

randomly at a point, and we rea
h a vertex

x whi
h is not the starting point of a deleted red edge, then the probability that the endpoint of

the red edge starting at this point belongs to the part of the partition whi
h 
ontains x is less than

s divided by the number of verti
es in V not yet visited by the initial portion of H

r

. Summarizing:

the probability that H 
an be de
omposed into sets of size smaller than s by the deletion of D
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bla
k and D red edges is at most

 

t

D

!

2

�

2t

s

�

D

s

t�D

(t�D)!

;

and the lemma follows. 2

Now we are in a position to establish Theorem 2.

Consider a regular n-gon and let p

1

; p

2

; : : : ; p

n

be a random permutation of its verti
es. Let P

denote the 
losed polygon obtained by 
onne
ting the p

i

-s in this order. We 
laim that with high

probability f(P ) � 
(n log n)

2=3

, where 
 is a 
onstant.

For any positive integer t, we have f(P ) � t if and only if there is a t-element subset T �

fp

1

; p

2

; : : : ; p

n

g su
h that there is a non
rossing 
losed polygon Q with verti
es q

1

; q

2

; : : : ; q

n

; in this

order, with q

i

= p

i

whenever p

i

2 T .

To estimate the probability of this event for a �xed t-element set T , de�ne two Hamilton 
y
les,

H

b

and H

r

, on the vertex set T as follows. Let H

b


onsist of all edges of the 
onvex hull of T .

These edges are 
alled bla
k. A vertex p

i

2 T is 
onne
ted to another vertex p

j

2 T by an edge

of H

r

, if p

i

and p

j

are 
onsequtive in the 
y
li
 order indu
ed on T by the random permutation.

That is, if i < j, then there is no index k with i < k < j su
h that and p

k

2 T or there is no index

k with k < i or j < k with p

k

2 T . The edges in H

r

are said to be red. Let H = H

b

[H

r

.

Suppose now that there is a non
rossing 
losed polygon Q with verti
es q

1

; q

2

; : : : ; q

n

; su
h

q

i

= p

i

whenever p

i

2 T . By slightly 
hanging the positions of its verti
es not belonging to T , if

ne
essary, we may a
hieve that the no three verti
es of Q are 
ollinear.

Consider the drawing of H, in whi
h every vertex is represented by itself, every bla
k edge is

represented by a straight line segment, and every red edge by the 
orresponding portion of Q. In

this drawing, there is no 
rossing between edges of the same 
olor. Sin
e every edge of Q 
an 
ross

the bla
k 
y
le (the boundary of the 
onvex hull of T ) in at most two points, we obtain the the

number of 
rossings, and hen
e 
r(H), are at most 2n. Thus, we have

Prob[f(P ) � t℄ �

 

n

t

!

Prob[
r(H) � 2n℄:

Noti
e that any �xed set T uniquely determines H

b

, but H

r

is a uniformly distributed random

Hamiltonian 
y
le on T determined by the random permutation p

1

; : : : ; p

n

. After substituting

t = 150(n log n)

2=3

and applying Lemma 6 with K = 2n and s = 101n

1=3

log

4=3

n, Theorem 2

follows by 
omputation:

Prob[f(P ) � t℄ �

 

n

t

! 

t

D

!

2

�

3t

s

�

D

s

t�D

(t�D)!

Here D = b35

p

t(K + t)=s
 < t= log n and hen
e we get

Prob[f(P ) � t℄ � 2

�t

:
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3 Related problems and remarks

1. Proposition 1 (with a weaker 
onstant) also follows from the main result in [PW98℄: Every

planar graph with m verti
es admits a 
rossing-free drawing in the plane su
h that its verti
es are

mapped into arbitrarily prespe
i�ed points and ea
h of its edges are represented by a polygonal


urve with fewer than Cm bends, where C is a 
onstant. (Apply this result to the 
y
le with

verti
es p

d

p

Cne

; p

d2

p

Cne

; p

d3

p

Cne

; : : : ; where ea
h of these points has to be mapped into itself.)
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Figure 2. A polygon with one 
rossing whi
h 
annot be untangled in few moves.

2. It is easy to see that any polygon of n verti
es and only one 
rossing pair of edges 
an

be untangled in dn=4e moves. Indeed, deleting the two 
rossing edges, the polygon falls into two

disjoint paths. Let p

1

; : : : ; p

m

, m � n=2 denote the verti
es of one of these paths in their natural

order. We move p

1


lose to the 
rossing of the two deleted edges and we move p

i


lose to p

m+2�i

for i = 2; : : : ; dm=2e. One 
an do this in a way to obtain a simple polypon. Figure 2 shows an

example of a polygon with a single 
rossing that 
annot be untangled with o(n) moves and it seems

that one 
annot untangle it moving substantially fewer than n=4 verti
es.

Obviously, if a polygon has 
 
rossings, then it 
an be untangled without moving the verti
es

of its longest 
rossing-free se
tion, whose length is at least dn=(2
)e. This bound is naturally far

from being optimal.

More generally, we 
an raise the following

Problem 1. Let P be a polygon of n verti
es with the property that every edge of P 
rosses at

most k other edges. Is it true that P 
an be untangled so that at least 


k

n verti
es remain �xed,

for a suitable 
onstant 


k

> 0 depending only on k?

The answer to this question is in the aÆrmative in the spe
ial 
ase when every edge e of the

polygon is disjoint from all other edges, whose distan
es from e along P are larger than a 
onstant

k.

3. One 
an ask similar questions for straight-line drawings of planar graphs rather than 
losed

polygons. Now we are allowed to relo
ate any vertex, keeping all of its 
onne
tions straight. Our

goal is to get rid of all 
rossings, moving as few verti
es as possible.

Problem 2. Let P be a (not ne
essarily 
rossing-free) straight-line drawing of a planar graph with

n verti
es. Can P be untangled leaving n

"

verti
es �xed, for an absolute 
onstant " > 0?

4. Corollary 5 is of some independent interest. In a forth
oming paper, Djidjev and Vrto [DV01℄

establish a similar relation between the 
utwidth and the 
rossing number of a graph, but neither

of the two statements implies the other.
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