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Abstrat

The following problem was raised by M. Watanabe. Let P be a self-interseting losed

polygon with n verties in general position. How manys steps does it take to untangle P , i.e., to

turn it into a simple polygon, if in eah step we an arbitrarily reloate one of its verties. It is

shown that in some ases one has to move all but at most O((n logn)

2=3

) verties. On the other

hand, every polygon P an be untangled in at most n � 
(

p

n) steps. Some related questions

are also onsidered.

1 Introdution

Suppose we have a self-interseting losed polygon P on the sreen of our omputer, whose verties

are p

1

; p

2

; : : : ; p

n

in this order, and no three verties are ollinear. We are allowed to modify P so

that in eah step we an grab a vertex and move it to an arbitrary new position. (For simpliity,

we assume that the sreen is very large, so we are not limited by its size.) At the 5th Czeh-Slovak

Symposium on Combinatoris in Prague in 1998, Mamoru Watanabe asked the following question.

Is it true that every polygon P an be untangled, i.e., turned into a nonrossing polygon, in at most

"n steps, for some absolute onstant " < 1?

The aim of this note is to answer this question in the negative.

Given another losed polygon Q with verties q

1

; q

2

; : : : ; q

n

(in this order), let f(P;Q) denote

the number of \ommon points" of P and Q, i.e., the number of indies i, for whih q

i

= p

i

. Let

f(P ) denote the largest number of points that an be kept �xed when we untangle P . Using our

notation,

f(P ) = max

Q

f(P;Q);

�
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where the maximum is taken over all nonrossing losed polygons with n verties. See Fig. 1.

Figure 1. For a star-polygon P with n verties, we have f(P ) =

n+1

2

It is easy to see that every polygon P an be untangled in at most n�

p

n moves. That is, we

have

Proposition 1. For every polygon P with n verties, we have f(P ) >

p

n.

Proof: Assume without loss of generality that p

n

is a vertex of the onvex hull of fp

1

; p

2

; : : : ; p

n

g,

and let p

�(1)

; p

�(2)

; : : : ; p

�(n�1)

be the other points of P , listed in lokwise order of visibility around

p

n

. Aording to a wellknown lemma of Erd}os and Szekeres [ES35℄, every sequene of length k has a

monotone subsequene of length d

p

ke. Therefore, there is a sequene 1 � i

1

< i

2

< i

3

< : : : � n�1

of length d

p

n� 1e suh that either �(i

1

) < �(i

2

) < �(i

3

) < : : : or �(i

1

) > �(i

2

) > �(i

3

) > : : : is

true. In either ase, the points p

n

; p

�(i

1

)

; p

�(i

2

)

; : : : indue a nonrossing losed polygon Q

0

. Let Q

denote the n-gon obtained from Q

0

by subdividing its sides with as many points as neessary, to
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ahieve that the index of every point p

n

; p

�(i

1

)

; p

�(i

2

)

; : : : be the same in P as in Q. Clearly, we have

f(P;Q) � d

p

n� 1e+ 1 >

p

n, as required. 2

Our main result an now be formulated as follows.

Theorem 2. For every suÆiently large n, there exists a losed polygon P with n verties, whih

annot be untangled in fewer than n� (n log n)

2=3

moves. That is, we have f(P ) � (n log n)

2=3

;

where  is a onstant.

Let G be a graph with vertex set V (G) and edge set E(G), respetively. A drawing of G is a

representation of G in the plane suh that every vertex orresponds to a point, and every edge is

represented by a Jordan ar onneting the orresponding two points without passing through any

vertex other than its endpoints. Two edges are said to ross eah other if they have an interior

point in ommon. The rossing number r(G) of G is de�ned as the minimum number of rossing

pairs of ars in a drawing of G.

For any partition of the vertex set of G into two disjoint parts, V

1

and V

2

, let E(V

1

; V

2

) � E(G)

denote the set of edges with one endpoint in V

1

and the other in V

2

. De�ne the bisetion width of

G as

b(G) = min jE(V

1

; V

2

)j;

where the minimum is taken over all partitions V (G) = V

1

[ V

2

suh that jV

1

j; jV

2

j � 2n=3.

Theorem 2 is established by a random onstrution. The proof is based on the following onse-

quene of a weighted version of the Lipton-Tarjan separator theorem for planar graphs.

Lemma 3. [PSS94℄,[SV94℄ Let G be a graph of n verties with degrees d

1

; d

2

; : : : : : : ; d

n

. Then

b

2

(G) � (1:58)
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16r(G) +

n

X

k=1

d

2

k

!

;

where b(G) and r(G) denote the bisetion width and the rossing number of G, respetively.

Corollary 4. Let G be a graph of n verties with degrees d

1

; d

2

; : : : ; d

n

. Then, for any edge disjoint

subgraphs G

1

; G

2

; : : : ; G

j

� G, we have

j

X

i=1

b(G

i

) � 1:58j

1=2

 

16r(G) +

n

X

k=1

d

2

k

!

1=2

:

Proof: Let d

ik

denote the degree of the k-th vertex in G

i

. Corollary 4 immediately follows from

Lemma 3. Indeed, applying Lemma 3 to eah G

i

separately and adding up the resulting inequalities,

we obtain

j

X

i=1

b

2

(G

i

) � (1:58)

2

0

�

16

j

X

i=1

r(G

i

) +

j

X

i=1

n

X

k=1

d

2

ik

1

A
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� (1:58)

2

 

16r(G) +

n

X

k=1

d

2

k

!

:

Therefore, we have

0

�

j

X

i=1

b(G

i

)

1

A

2

� j

j

X

i=1

b

2

(G

i

) � (1:58)

2

j

 

16r(G) +

n

X

k=1

d

2

k

!

;

as required. 2

Corollary 5. Let G be a graph of n verties with degrees d

1

; d

2

; : : : ; d

n

. Then, for any 1 < s � n,

one an remove at most

8:6

�

n

s

�

1=2

 

16r(G) +

n

X

i=1

d

2

i

!

1=2

edges from G so that every onneted omponent of the resulting graph has fewer than s verties.

Proof: Partition G by subsequently subdividing eah of its large omponents into two roughly

equal halves as follows. Start the proedure by deleting b(G) edges of G so that it falls into two

parts, eah having at most

2

3

jV (G)j =

2

3

n verties. As long as there is a omponent H � G whose

size is at least s, by the removal of b(H) edges, ut it into two smaller omponents, eah of size at

most (2=3)jV (H)j. When there are no suh omponents left, stop.

Let H denote the family of all omponents arising at any level of the above proedure (e.g., we

have G 2 H if G is onneted). De�ne the order of any element H 2 H as the largest integer k, for

whih there is a hain

H

0

�

6= H

1

�

6= : : :

�

6= H

k

(1)

in H suh that H

k

= H. For any k, let H

k

denote the set of all elements of H of order k. Thus,

H

0

is the set of the omponents in the �nal deomposition.

For any �xed k, the elements of H

k

are pairwise (vertex) disjoint. Reall that in a hain (1)

we have jV (H

1

)j � s and the ratio of the sizes of any two onseutive members is at least 3=2.

Therefore, the number of verties in any element of H

k

is at least (3=2)

k�1

s, whih in turn implies

that for k � 1

j

k

:= jH

k

j �

n

(3=2)

k�1

s

=

(2=3)

k�1

n

s

:

Applying Corollary 4 to the subgraphs in H

k

, we obtain that the total number of edges removed,

when they are �rst subdivided during our proedure, is at most

1:58 � (2=3)

(k�1)=2

�

n

s

�

1=2

 

16r(G) +

n

X

i=1

d

2

i

!

1=2

;

Summing up over all k � 1, we onlude that the total number of edges deleted during the whole

proedure does not exeed the number laimed. 2
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2 Proof of Theorem 2

We start with an auxiliary lemma.

Lemma 6. Let H

b

denote the graph (yle) de�ned on the vertex set V = f1; 2; : : : ; tg, whose edges

are (1; 2); (2; 3); : : : ; (t; 1). Let H

r

be a randomly seleted Hamilton yle on the same vertex set,

i.e., let

E(H

r

) = f(�(1); �(2)); (�(2); �(3)); : : : ; (�(t); �(1))g;

where � is a random permutation of V .

Then, for every s < t and K, the probability that the rossing number of H = H

b

[ H

r

is at

most K satis�es

Prob[r(H) � K℄ �

 

t

D

!

2
�

2t

s

�

D

s

t�D

(t�D)!

;

where D = b35

p

t(K + t)=s.

Proof: We refer to the edges of H

b

and H

r

as blak and red edges, respetively.

Let s be a positive integer. The degree of every vertex in H is at most 4, so by Corollary 5

we an delete at most 8:7[t(16r(H) + 16t)=s℄

1=2

= 34:8[t(r(H) + t)=s℄

1=2

� D from H so that all

omponents of the resulting graph have fewer than s verties.

Consequently, if we want to give an upper bound on Prob[r(H) � K℄, it is suÆient to bound

the probability that H an be deomposed into sets of size smaller than s by the deletion of preisely

D blak and preisely D red edges. In what follows, we estimate this probability.

If we sueed in deleting the edges as required, then we an (greedily) group the omponents of

the remaining graph into at most 2t=s parts, eah having fewer than s verties. Let H denote the

resulting partition of V . The D blak edges that are deleted an be hosen in

�

t

D

�

di�erent ways.

The remaining blak edges form D paths. Eah set in H is the union of the vertex sets of a few of

these paths, thus there are at most (2t=s)

D

possibilities for the partition H, one the deleted blak

edges have been hosen.

We onsider the red Hamiltonian yle to be piked with an orientation. There are

�

t

D

�

di�erent

ways how to pik the starting points of the D deleted red edges.

The probability that a randomly seleted red Hamiltonian yle \respets" a �xed partition of

V into parts of size smaller than s, exept for the edges originating at a �xed set of size D, is at

most s

t�D

=(t�D)!. Indeed, when we start drawing H

r

randomly at a point, and we reah a vertex

x whih is not the starting point of a deleted red edge, then the probability that the endpoint of

the red edge starting at this point belongs to the part of the partition whih ontains x is less than

s divided by the number of verties in V not yet visited by the initial portion of H

r

. Summarizing:

the probability that H an be deomposed into sets of size smaller than s by the deletion of D
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blak and D red edges is at most

 

t

D

!

2

�

2t

s

�

D

s

t�D

(t�D)!

;

and the lemma follows. 2

Now we are in a position to establish Theorem 2.

Consider a regular n-gon and let p

1

; p

2

; : : : ; p

n

be a random permutation of its verties. Let P

denote the losed polygon obtained by onneting the p

i

-s in this order. We laim that with high

probability f(P ) � (n log n)

2=3

, where  is a onstant.

For any positive integer t, we have f(P ) � t if and only if there is a t-element subset T �

fp

1

; p

2

; : : : ; p

n

g suh that there is a nonrossing losed polygon Q with verties q

1

; q

2

; : : : ; q

n

; in this

order, with q

i

= p

i

whenever p

i

2 T .

To estimate the probability of this event for a �xed t-element set T , de�ne two Hamilton yles,

H

b

and H

r

, on the vertex set T as follows. Let H

b

onsist of all edges of the onvex hull of T .

These edges are alled blak. A vertex p

i

2 T is onneted to another vertex p

j

2 T by an edge

of H

r

, if p

i

and p

j

are onsequtive in the yli order indued on T by the random permutation.

That is, if i < j, then there is no index k with i < k < j suh that and p

k

2 T or there is no index

k with k < i or j < k with p

k

2 T . The edges in H

r

are said to be red. Let H = H

b

[H

r

.

Suppose now that there is a nonrossing losed polygon Q with verties q

1

; q

2

; : : : ; q

n

; suh

q

i

= p

i

whenever p

i

2 T . By slightly hanging the positions of its verties not belonging to T , if

neessary, we may ahieve that the no three verties of Q are ollinear.

Consider the drawing of H, in whih every vertex is represented by itself, every blak edge is

represented by a straight line segment, and every red edge by the orresponding portion of Q. In

this drawing, there is no rossing between edges of the same olor. Sine every edge of Q an ross

the blak yle (the boundary of the onvex hull of T ) in at most two points, we obtain the the

number of rossings, and hene r(H), are at most 2n. Thus, we have

Prob[f(P ) � t℄ �

 

n

t

!

Prob[r(H) � 2n℄:

Notie that any �xed set T uniquely determines H

b

, but H

r

is a uniformly distributed random

Hamiltonian yle on T determined by the random permutation p

1

; : : : ; p

n

. After substituting

t = 150(n log n)

2=3

and applying Lemma 6 with K = 2n and s = 101n

1=3

log

4=3

n, Theorem 2

follows by omputation:

Prob[f(P ) � t℄ �

 

n

t

! 

t

D

!

2

�

3t

s

�

D

s

t�D

(t�D)!

Here D = b35

p

t(K + t)=s < t= log n and hene we get

Prob[f(P ) � t℄ � 2

�t

:
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3 Related problems and remarks

1. Proposition 1 (with a weaker onstant) also follows from the main result in [PW98℄: Every

planar graph with m verties admits a rossing-free drawing in the plane suh that its verties are

mapped into arbitrarily prespei�ed points and eah of its edges are represented by a polygonal

urve with fewer than Cm bends, where C is a onstant. (Apply this result to the yle with

verties p

d

p

Cne

; p

d2

p

Cne

; p

d3

p

Cne

; : : : ; where eah of these points has to be mapped into itself.)
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Figure 2. A polygon with one rossing whih annot be untangled in few moves.

2. It is easy to see that any polygon of n verties and only one rossing pair of edges an

be untangled in dn=4e moves. Indeed, deleting the two rossing edges, the polygon falls into two

disjoint paths. Let p

1

; : : : ; p

m

, m � n=2 denote the verties of one of these paths in their natural

order. We move p

1

lose to the rossing of the two deleted edges and we move p

i

lose to p

m+2�i

for i = 2; : : : ; dm=2e. One an do this in a way to obtain a simple polypon. Figure 2 shows an

example of a polygon with a single rossing that annot be untangled with o(n) moves and it seems

that one annot untangle it moving substantially fewer than n=4 verties.

Obviously, if a polygon has  rossings, then it an be untangled without moving the verties

of its longest rossing-free setion, whose length is at least dn=(2)e. This bound is naturally far

from being optimal.

More generally, we an raise the following

Problem 1. Let P be a polygon of n verties with the property that every edge of P rosses at

most k other edges. Is it true that P an be untangled so that at least 

k

n verties remain �xed,

for a suitable onstant 

k

> 0 depending only on k?

The answer to this question is in the aÆrmative in the speial ase when every edge e of the

polygon is disjoint from all other edges, whose distanes from e along P are larger than a onstant

k.

3. One an ask similar questions for straight-line drawings of planar graphs rather than losed

polygons. Now we are allowed to reloate any vertex, keeping all of its onnetions straight. Our

goal is to get rid of all rossings, moving as few verties as possible.

Problem 2. Let P be a (not neessarily rossing-free) straight-line drawing of a planar graph with

n verties. Can P be untangled leaving n

"

verties �xed, for an absolute onstant " > 0?

4. Corollary 5 is of some independent interest. In a forthoming paper, Djidjev and Vrto [DV01℄

establish a similar relation between the utwidth and the rossing number of a graph, but neither

of the two statements implies the other.
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