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Abstract

We introduce and discuss generalizations of the problem of independent transversals. Given a

graph property R, we investigate whether any graph of maximum degree at most d with a vertex

partition into classes of size at least p admits a transversal having property R. In this paper we

study this problem for the following properties R: “acyclic”, “H-free”, and “having connected

components of order at most r”.

We strengthen a result of [12]. We prove that if the vertex set of a d-regular graph is partitioned

into classes of size d + ⌊d/r⌋, then it is possible to select a transversal inducing vertex disjoint

trees on at most r vertices. Our approach applies appropriate triangulations of the simplex and

Sperner’s Lemma. We also establish some limitations on the power of this topological method.

We give constructions of vertex-partitioned graphs admitting no independent transversals

that partially settles an old question of Bollobás, Erdős and Szemerédi. An extension of this

construction provides vertex-partitioned graphs with small degree such that every transversal

contains a fixed graph H as a subgraph.

Finally, we pose several open questions.

1 Introduction

Let G be a graph and let P be a partition of V (G) into sets V1, . . . , Vn. A transversal (of P) is a

subset T of V (G) for which |T ∩ Vi| = 1 for each i = 1, . . . , n. The starting point of our discussion

is the following theorem of Haxell.

Theorem 1.1 [11] Let G be a graph of maximum degree d and V1 ∪ . . . ∪ Vn = V (G) be a partition

of its vertex set with |Vi| ≥ 2d. Then there is a transversal T which is an independent set in G.

This theorem seems to have appeared first explicitly in Haxell [11], although it is also a conse-

quence of a more general result of Meshulam [15] and implicitly, even earlier, of Haxell [10]. The result

has two proofs: one combinatorial [10] and another via combinatorial topology [1]; it is not clear
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how closely these two arguments are related. The statement also has several applications in different

problems of graph theory, see [4, 7, 11]. In the present paper we set to study the generalizations of

Theorem 1.1 in two different directions.

1.1 Acyclic transversals with bounded components

The first generalization we consider here was introduced in [12] in order to improve on a result of

Alon, Ding, Oporowski and Vertigan [7]. For a fixed degree d and component size r, let us define

p(d, r) to be the smallest integer such that any graph with maximum degree at most d partitioned

into classes of size at least p(d, r) has a transversal that induces components of size at most r.

Theorem 1.1 can then be rephrased as p(d, 1) ≤ 2d. In [12] a generalization of the combinatorial

argument of [10] implied that p(d, r) ≤ d + ⌊d/r⌋ for any d and r. This was known to hold with

equality only when r = 1 and d is a power of 2 [13, 17]. In Corollary 3.4 we establish p(d, 1) = 2d

for every d.

Unfortunately, for r > 1 even the asymptotical truth escapes us. The estimate is not tight in

general: p(2, 2) = 2 as shown in [12]. In fact, the best lower bound known for r > 1 is p(d, r) ≥ d and

even p(d, 2) = d is possible at the moment. There was hope that a generalization of the “topological”

argument could provide stronger upper bounds. In the present paper we provide this missing proof

via Sperner’s Lemma and appropriate triangulations of the simplex. Alas, we end up with the

exact same result which follows from the combinatorial counterpart. For the proof we construct

triangulations which generalize the ones of Aharoni, Chudnovsky and Kotlov [1] and then finish

along the lines of Aharoni and Haxell [2] applying Sperner’s Lemma for our appropriately defined

colored triangulation. In fact, in Corollary 2.6 we obtain a slightly stronger statement. We prove

that if the class sizes are at least d + ⌊d/r⌋, then a transversal could be selected inducing connected

components which are trees on at most r vertices.

One of our main tools for this strengthening is a triangulation from [1]. In Corollary 2.4 we

obtain a bound p(d, forest) ≤ d on the minimum class size p(d, forest) such that any graph of

maximum degree at most d partitioned into classes of size p(d, forest) has a transversal inducing

a forest. We allow multigraphs in this definition. With Construction 3.3 we show that this bound

is optimal for even d. For simple graphs the analogous value might be somewhat lower though.

Our best construction here is Construction 3.7 for H = K3. For an even d this construction gives

a maximum degree d graph Gd whose vertices are partitioned into classes of size
⌈

3
4d

⌉

− 1 and no

transversal of Gd is triangle-free.

In Corollary 2.9 we note that our proof implies that the r-component complex Kr(G) of a d-regular

graph G with many (more than (m + 1)(d − 1 + (d + 1)/r)) vertices is m-connected. Here Kr(G)

denotes the simplicial complex defined on the vertex set of G, where a subset forms a simplex if all

connected components of the induced subgraph is of order at most r.

Unfortunately our proof does not decide the asymptotics of p(d, r) for r > 1. Thus it is natural
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to investigate “how good” such proofs could become with a possibly more clever choice of colored

triangulations. With Construction 3.2 of Section 3 we find that for r = 2, where the truth is between

d and 3
2d, there is an intrinsic limit of 5

4d to where such type of arguments could improve the upper

bound. In particular, for d = 2, the combinatorial proof [12] of p(2, 2) = 2 cannot be substituted by

a topological argument.

1.2 H-free transversals

The second direction we intend to generalize Theorem 1.1 is about H-free-transversals. Given a

fixed graph H, let p(d,H) be the smallest integer such that any graph of maximum degree at most

d partitioned into classes of size at least p(d,H) admits a transversal with no subgraph isomorphic

to H. Theorem 1.1 can be phrased as p(d,K2) ≤ 2d. We find the case of H = Kk particularly

interesting, but at this point we are only able to provide a lower bound which we conjecture to be

best possible.

For any r-regular graph H on n vertices and for any d divisible by r, in Corollary 3.8 we prove

that p(d,H) ≥ n
(n−1)r d. The special case of the same construction establishes p(d, 1) = p(d,K2) = 2d

for every d. Earlier this was only known for powers of 2. (See Jin [13] and Yuster [17].)

Construction 3.3 is a modified version of the above construction and provides a partial solution

for a problem of Bollobás, Erdős and Szemerédi [9] studied by several researchers [4, 5, 13, 17, 6]. Let

∆(r, n) be the largest integer such that any r-partite graph Gr(n) with vertex classes Vi of size n each

and of maximum degree less than ∆(r, n) contains an independent transversal, i.e., an independent

set containing one vertex from each Vi. Define ∆r = limn→∞ ∆(r, n)/n, where the limit is easily seen

to exist. Trivially ∆(2, n) = n, thus ∆2 = 1. Graver (c.f. [9]) showed ∆3 = 1. Bollobás, Erdős and

Szemerédi [9] proved that
2

r
≤ ∆r ≤

1

2
+

1

r − 2
,

thus establishing µ = limr→∞ ∆r ≤ 1/2. Alon [4] showed ∆r ≥ 1/(2e) for every r. This was improved

to ∆r ≥ 1/2 by Haxell [11] thus eventually settling a conjecture of [9] and establishing µ = 1/2.

Exact values of ∆r were known only when r = 3, 5 or a power of 2. Alon [6] observed that a theorem

of Aharoni and Haxell [3] also gives ∆r ≥
⌈

r
2(r−1)

⌉

. This can be paired with the constructions of Jin

[13] to provide ∆r = r
2r−1 for r = 2p. For other integers r, the upper bounds of Jin were somewhat

improved by Alon, but exact results were not known.

Here we extend the above for every even r. More precisely, in Corollary 3.6 we prove that for

every r ≥ 2 even and for every n,

∆(r, n) =

⌈

rn

2(r − 1)

⌉

.
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2 Transversals spanning bounded connected components

Given a graph G, a simplicial complex K, and a mapping l : V (K) → V (G), the pair (K, l) is called a

G-labeled simplicial complex. If l is clear from the context we simply use K to denote the G-labeled

complex. A 1-dimensional simplex {x, y} of K is called ruined if l(x) and l(y) are adjacent in G.

An r-dimensional simplex S of K is called ruined if the graph of ruined 1-dimensional faces of S is

connected and spans all r + 1 vertices of S. The m-dimensional solid ball is denoted by Bm; its

boundary, the (m − 1)-dimensional sphere is Sm−1. S−1 is just the empty set.

The link of a simplex σ in a simplicial complex is defined as lkK(σ) := {τ ∈ K : τ ∩σ = ∅, τ ∪σ ∈

K}. The join of two simplicial complexes with disjoint vertex sets is defined as K ∗ K′ := {τ ∪ τ ′ :

τ ∈ K, τ ′ ∈ K′}. For a more detailed discussion of the topological concepts we refer the reader to the

excellent survey of Björner [8].

Throughout this paper when talking about a subdivision of a complex, we mean PL-subdivision,

when we speak of a triangulation of the sphere Sm or ball Bm we mean PL-triangulation, where

PL stands for piecewise linear. This technical property is needed to assure key properties like the

following: the link of a simplex of a PL-triangulated sphere or ball is itself a PL-triangulated sphere

unless the simplex is in the boundary of the ball [8]. We mention here that one can avoid PL-

triangulations and triangulated balls and spheres by using an alternative homologic approach, and

speaking about boundaries of chains. This alternative treatment is somewhat less intuitive, and

requires a homologic version of Sperner’s theorem, but it avoids most technical difficulties.

A triangulation T ′ of Bm is called a filling of the triangulation T of Sm−1 if T is the boundary

of T ′. A G-labeled triangulation (T ′, l′) of Bm is called a filling of the G-labeled triangulation (T , l)

of Sm−1, if T ′ is a filling of T and l′|V (T ) = l.

We say that a simplex σ is multi-colored if all its vertices are assigned distinct colors.

We use Sperner’s Lemma [16]. It states that an appropriately colored subdivision of a multi-

colored simplex contains a multi-colored simplex.

Lemma 2.1 [16] Let T be a triangulation of the n dimensional simplex σ. Suppose that the vertices

of T are colored by n + 1 colors, such that

(1) each vertex of σ receives a different color (i.e., σ is multi-colored) and

(2) the vertices of T on any face τ of σ are colored by the colors of the vertices of τ .

Then there exists a multi-colored n-dimensional simplex in T .

As a warm-up let us discuss forest transversals. The next theorem is our tool to construct forest

transversals in graphs.

Theorem 2.2 Let m ≥ 0 and d ≥ 0 be arbitrary integers. Let G be a graph of maximum degree d

and W be a designated subset of the vertices V (G), |W | > md. Every G-labeled triangulation (T , l)

of Sm−1 has a G-labeled filling (T ′, l′), such that
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(i) l′(v) ∈ W for every v ∈ V (T ′) \ V (T ).

(ii) Every cycle of ruined edges is contained in T .

(iii) Every path of ruined edges with both endpoints in T is fully contained in T .

For the proof we use the following triangulation constructed by Aharoni, Chudnovsky and Kotlov

[1].

Lemma 2.3 [1, Lemma 1.2] Given a triangulation T of Sm−1, there is a filling T ′ of T and an

ordering of the new vertices V (T ′)\V (T ) = {v1, . . . , vs} such that for all i, the vertex vi is connected

to at most 2m vertices of V (T ) ∪ {v1, . . . , vi−1}. �

Proof of Theorem 2.2. The triangulation of Lemma 2.3 provides a filling of T such that we

add the vertices one by one and each new vertex is connected to at most 2m older ones. Since

|W | > md we can ensure that the label of each new vertex is chosen such that there is only at most

one ruined edge from that vertex going to an older vertex. Thus we avoid the creation of cycles of

ruined edges and also paths of ruined edges connecting vertices of T . �

An immediate application of Theorem 2.2 is for forest-transversals. Let us recall that p(d, forest)

is the smallest integer, such that any d-regular graph partitioned into classes of size at least p(d, forest)

has a cycle-free transversal.

Corollary 2.4 p(d, forest) ≤ d.

Proof. Suppose G is a graph of maximum degree d and V (G) = V1 ∪ . . . ∪ Vn, |Vi| ≥ d. We

consider the (n − 1)-dimensional simplex σ with vertex set {v1, . . . , vn}. We create a G-labeled

triangulation (T , l) of σ, such that

• for every vertex x of the triangulation and face τ of σ containing x, l(x) ∈ ∪i:vi∈τVi and

• the graph of ruined edges induces a forest.

We proceed by cell-induction, i.e., subdivide and label the faces of σ in an arbitrary nondecreasing

order of their dimension. We start by labeling each vertex vi by an arbitrary element l(vi) of Vi.

Let τ be an m-dimensional face of σ, m > 0, whose boundary is subdivided and G-labeled. Let

W = ∪i:vi∈τVi. As |W | ≥ (m + 1)d > md, we can apply Theorem 2.2 to obtain an appropriate

labeled subdivision of τ . Notice that we do not create a cycle of ruined edges disjoint from the

boundary, because of condition (ii). Cycles of ruined edges intersecting the boundary could not be

created either because of condition (iii).

Eventually the whole simplex σ is subdivided without creating a cycle of ruined edges. If each

vertex of this triangulation is colored with the index of the class of its label, then the assumptions

of Sperner’s Lemma are satisfied and the existence of a full-dimensional multi-colored simplex is

guaranteed. The labels of this multi-colored simplex determine a transversal with no cycle. �

For multigraphs the bound in Corollary 2.4 is tight for even d, as it is witnessed by doubling the

edges of any family of graphs which provide p(d/2, 1) = d. These graphs are given in Construction 3.3.
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Our best example for simple graphs is weaker. Construction 3.7 for H = K3 shows that the analogous

value ps(d, forest) for simple graphs satisfies ps(d, forest) ≥ 3
4d for even d.

Next we prove a strengthening of the bounded component transversal result from [12]. Our main

tool is the following theorem about the existence of labeled fillings with certain properties.

Theorem 2.5 Let m ≥ 0 and r ≥ 1 be arbitrary integers. Let G be a graph of maximum degree

d ≥ r − 1 and designated subset W ⊆ V (G) of size |W | > m(d − 1 + (d + 1)/r). Then a G-labeled

triangulation (T , l) of Sm−1 admits a G-labeled filling (T ′, l′) satisfying the following properties:

(a) l′(v) ∈ W for every v ∈ V (T ′) \ V (T ).

(b) Every cycle of ruined edges of (T ′, l′) is contained in T .

(c) There is no ruined edge between V (T ) and V (T ′) \ V (T ).

(d) The ruined r-simplices of (T ′, l′) are contained in T .

For a vertex w of a graph G, N(w) denotes the set of vertices adjacent to w.

Proof. We prove the theorem by induction on m. For m = 0 the statement is trivial.

Suppose m > 0. We construct T ′ in three phases.

First we apply the “excising technique” of [1] to create an inner “crust” which contains no ruined

edges going to the boundary. We excise the vertices of T one by one from the inner boundary and

use the induction hypothesis for (m − 1) in each step.

In the second phase we fill (the inner boundary of) the crust constructed in the first phase. We

use Theorem 2.2 here. We obtain a filling S0 of T satisfying properties (a)-(c). But we may create

a number of ruined r-simplices in this phase.

Finally, in the third phase we remove the ruined r-simplices constructed in the second phase.

We remove them one by one and fill up the resulting “holes”. We use the induction hypothesis for

(m − 1) in each step.

Let us start with the first phase. We take the vertices u1, . . . , ut of V (T ) and excise them

one by one. We do this by creating an increasing sequence T = T0 ⊆ T1 ⊆ · · · ⊆ Tt of labeled

complexes. The complex Ti satisfies properties (a)-(d), furthermore it has an “inner boundary” T ′
i

with V (T ′
i )∩V (T ) = {ui+1, . . . , ut}, such that T ′

i is a triangulation of Sm−1 and the union of Ti with

any filling of T ′
i is a filling of T . We start with T0 = T ′

0 = T . For i > 0 consider the vertex ui and

its link lkT ′
i−1

({ui}), which is an (m − 2)-sphere. (Note that we talk about PL-triangulations.) By

induction there is a G-labeled filling T̃i of this link, with subset W̃i = W\N(l(ui)) satisfying properties

(a)-(d). (We naturally assume here, and later in this proof, that the set of new vertices introduced in

a filling is disjoint from the set of old vertices, that is we have (V (T̃i)\V (lkT ′
i−1

({ui})))∩V (Ti−1) = ∅.)

Observe that |W̃i| ≥ |W | − d > (m − 1)(d − 1 + (d + 1)/r). We then create Ti by adding the join

of T̃i with ui to Ti−1. This operation excises ui from the interior boundary of Ti. More formally, let

Ti = Ti−1∪(T̃i∗{∅, {ui}}) and we obtain the inner boundary T ′
i = (T ′

i−1 \(T̃i ∗{∅, {ui}}))∪T̃i. By the

choice of W̃i, we do not add a ruined edge going to ui. By property (c) of the induction hypothesis
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there are no ruined edges added going to other vertices of V (T ). In conclusion, the newly introduced

ruined edges are “separated” from the old ones, that is there are no ruined edges between V (Ti−1)

and V (Ti) \ V (Ti−1). Thus properties (a)-(d) hold for Ti by the induction hypothesis.

Eventually all vertices of V (T ) excised from the inner boundary. Hence Tt is a crust having

properties (a)-(d) and its inner boundary T ′
t is disjoint from T .

As the second phase of the construction, we apply Theorem 2.2 to fill T ′
t such that the new labels

are from W . This is possible, because our extra condition on the maximum degree ensures that

m(d− 1 + (d + 1)/r) ≥ md. Let S0 be the union of Tt and this filling of T ′
t . Clearly, S0 is a filling of

T satisfying properties (a), (b), and (c).

In the third phase of our construction we get rid of any ruined r-simplices in S0 \ T that we

may have created in the second phase. For m < r no such simplices are created, so property (d) is

automatically satisfied. For m ≥ r our plan is to modify S0 to get rid of all ruined r-simplices one by

one. We will change our triangulation locally and be careful not to spoil properties (a), (b), and (c).

In one step we remove a ruined r-simplex σ /∈ T , together with all the simplices containing it, thus

creating an m-dimensional “hole” in Bm. Then we fill up this hole differently, such that we do not

create new ruined r-simplices, properties (a)-(c) are still satisfied, while σ is gone. Since the number

of ruined simplices was finite to begin with, after applying this operation finitely many times we will

have a triangulation T ′ with no ruined r-simplices outside of T .

Suppose that Si is the filling of T we obtained after getting rid of the ith ruined r-simplex in

S0. Fix an arbitrary ruined r-simplex σi+1 of Si \ T . In fact σi+1 ∈ S0 \ Tt. The link lkSi
(σi+1)

of the r-simplex σi+1 in Si is a triangulated Sm−r−1. We find a filling S̃i of lkSi
(σi+1) using the

induction hypothesis for the designated subset Wi ⊆ W containing the non-neighbors of the labels

of the vertices of σi+1. Formally, let Nσi+1
be the set of vertices of G that are neighbors to the label

of some vertex of σi+1 and let Wi = W \ Nσi+1
. Then |Nσi+1

| ≤ d(r + 1) − (r − 1), since σi+1 is a

ruined r-simplex. Hence

|Wi| ≥ |W | − |Nσi+1
| > m(d − 1 + (d + 1)/r) − dr − d + r − 1 = (m − r)(d − 1 + (d + 1)/r),

i.e., we can indeed use the induction hypothesis.

Now we are ready to define Si+1. First we remove all simplices from Si which contain σi+1. This

of course creates an m-dimensional “hole” in Bm. Then in order to fill it, we add all simplices of the

form σ′ ∪ σ̃, where σ′ $ σi+1 and σ̃ ∈ S̃i. That is, we add S̃i ∗ δσi+1, where δσi+1 is the boundary

complex of σi+1.

Starting from the filling Si of T we replaced a subcomplex with another, both of them triangulated

Bm and having lkSi
(σi+1) ∗ δσi+1 as their boundary, so the resulting complex Si+1 is also a filling

of T . There are no ruined edges between V (σi+1) and V (Si+1) \ V (Si) because of the choice of

Wi. All other edges between V (Si) and V (Si+1) \ V (Si) are also edges between lkSi
(σi+1) and

V (S̃i)\ lkSi
(σi+1), hence not ruined by property (c) of the induction hypothesis. In conclusion, there

are no ruined edges between the newly introduced vertices and the “old” vertices. Thus, we did not
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spoil properties (b) or (c), and did not create any new ruined r-simplices. Clearly, property (a) is

also maintained.

The ruined simplex σi+1 is gone, so the number of ruined r-simplices decreased by one. After

finitely many steps we obtain a filling T ′ of T satisfying properties (a)-(d). �

The following corollary is immediate.

Corollary 2.6 Let r be an arbitrary positive integer. Let G be a graph of maximum degree d, and

let P be a partition V1 ∪ . . . ∪ Vm = V (G) such that |Vi| ≥ d + ⌊d/r⌋ for i = 1, . . . ,m. Then there

exists a transversal T of P such that the connected components of the induced subgraph G|T are trees

on at most r vertices.

Proof. It is enough to prove the statement for r ≤ d + 1 (for higher values of r the statement of

the Corollary is weaker than the one for r = d + 1).

We construct a transversal T of P such that the connected components of the induced subgraph

G|T are trees on at most r vertices.

Let us denote the vertices of the (n − 1)-dimensional simplex σ by v1, . . . , vn.

Our goal is to define a G-labeled subdivision of the complex consisting of the faces of σ such that

• for every vertex x of the subdivision of a face τ of σ we have l(x) ∈ ∪i:vi∈τVi

• the subdivision has no cycle of ruined edges and

• has no ruined r-simplex.

We, again, proceed by cell-induction. As a start, we label each vertex vi of σ by an arbitrary

vertex l(vi) ∈ Vi. Suppose we are given an m ≥ 1-dimensional face τ of σ with a labeled subdivision of

its boundary. Then, by the previous theorem, it is possible to extend this triangulation to the interior

of τ without creating ruined r-simplices and cycles, such that the labels are from the set ∪i:vi∈τVi. We

just note that |∪i:vi∈supp(τ)Vi| ≥ (d+⌊d/r⌋)(m+1) ≥ (d+d/r−(r−1)/r)(m+1) > (d−1+(d+1)/r)m.

Eventually, the whole simplex σ has such a labeled triangulation. Assigning color i to the vertices

with label from Vi we obtain a colored triangulation respecting the assumptions of Sperner’s Lemma.

Thus, a multi-colored simplex could be found. The labels of the vertices of this multi-colored simplex

form a transversal having the desired property. �

We also obtained a new proof of the following statement on finding transversals with bounded

connected components (which are not necessarily acyclic).

Corollary 2.7 [12, Theorem 4.1] For arbitrary positive integers r and d,

p(d, r) ≤ d +

⌊

d

r

⌋

.

For a graph G let Kr(G) denote the simplicial complex defined on the vertices of G, which contains

all simplices inducing connected components of size at most r in G. In particular K1(G) is called the

independent set complex of G, it consists of the the independent sets of G. We refer to K2(G) as the
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induced matching complex of G. Using this notation Theorem 2.5 could be stated in the language of

topology.

A simplicial complex K is said to be m-connected if its body ||K|| (the corresponding topological

space) is m-connected, i.e., every continuous f : Si → ||K|| can be extended to a continuous map

Bi+1 → ||K|| for −1 ≤ i ≤ m (in other words f is nullhomotopic). The m-connectedness of Kr(G)

can be described using fillings of G-labeled triangulations.

In the remainder of this section a G-labeled simplex is called multi-labeled if the labels of its

vertices are all distinct.

Proposition 2.8 For a graph G, and m, r ≥ 0 the complex Kr(G) is m-connected if and only if the

following holds for all −1 ≤ i ≤ m: Every G-labeled triangulation of Si without a ruined, multi-labeled

r-simplex has a filling without a ruined, multi-labeled r-simplex.

Proof. Notice that for any complex K the map l : V (K) → V (G) is a simplicial map l : K →

Kr(G) if and only if the G-labeled complex (K, l) has no ruined, multi-labeled r-simplex. Indeed,

the image under l of a ruined, multi-labeled r-simplex is a set of r + 1 distinct vertices spanning a

connected subgraph in G, and such a set is not a simplex of Kr(G). To see the reverse direction

assume S is a simplex of K but its image under l is not a simplex of Kr(G). Then l(S) contains

r + 1 distinct vertices spanning a connected subgraph, and taking inverse images of these we find a

ruined, multi-labeled, r-dimensional face of S.

Both directions of the proposition is a simple consequence of the above observation and the

simplicial approximation theorem.

Assume first that the filling property is satisfied. We need to show that every continuous map

f : Si → ||Kr(G)|| is nullhomotopic for i ≤ m. By the simplicial approximation theorem, there

exist a triangulation T of Si and a simplicial map l : T → Kr(G) such that its affine extension

||l|| : Si → ||Kr(G)|| is homotopic to f . (In fact, any fine enough triangulation T will do here.)

Therefore, it is enough to to show that ||l|| is nullhomotopic by finding a continuous extension to

Bi. As (T , l) has no ruined, multi-labeled r-simplex it has a filling (T ′, l′) that has no ruined,

multi-labeled r-simplex. Thus l′ : T ′ → Kr(G) is a simplicial map and its affine extension ||l′|| is a

continuous function extending ||l|| to the ball Bi+1.

For the reverse implication assume Kr(G) is m-connected. Let i ≤ m, and let (T , l) be a G-

labeled triangulation of Si without ruined, multi-labeled r-simplices. Now l is simplicial map from

T to Kr(G) and its affine extension ||l|| is a continuous map from ||T || ∼= Si to ||Kr(G)||. Therefore

it can be extended to a continuous map f : Bi+1 → ||Kr(G)||. We use simplicial approximation for f

and find a suitable triangulation T ′ of Bi+1 and get a simplicial map l′ : T ′ → Kr(G) approximating

f . As f |Si = ||l|| we can make sure that the boundary of the complex T ′ is T and l and l′ agree on

T . This means that l′ is a filling of l with no ruined, multi-labeled r-simplices. �
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Corollary 2.9 Let m ≥ 0 and r ≥ 1 be arbitrary integers. If G is a graph on more than m(d − 1 +

(d + 1)/r) vertices with maximum degree d ≥ r − 1, then Kr(G) is (m − 1)-connected.

Proof. By Proposition 2.8 we need to show that a G-labeled triangulation of Si without ruined,

multi-labeled simplices has a filling still without ruined, multi-labeled simplices for i < m. Theo-

rem 2.5 applies here with W = V (G) and states the existence of a filling without any new ruined

r-simplices, much less ruined, multi-labeled simplices. �

3 Constructions

3.1 Non-fillable labeled triangulations

First we give bounds on the connectedness of Kr(G) for r = 1 and 2. The examples are very similar

to each other. The graphs constructed are disjoint unions of smaller graphs and we use the simple

observation that for the disjoint union of two graphs G and G′ the complex Kr(G∪G′) is the join of

the complexes Kr(G) and Kr(G
′).

Our first example shows that Corollary 2.9 (and thus also Theorem 2.5) is best possible when

r = 1. Note that independent set complexes are widely studied and several lower bound on their

connectedness and acyclicity is known. The one closest to our result is Proposition 3.1 in [15] a

special case of which claims that K1(G) is (⌈γ̃(G)/2⌉ − 2)-acyclic over the reals for any graph G.

Here γ̃(G) is the total domination number, the cardinality of the smallest set S of vertices in G such

that every vertex of G is a neighbor of a vertex in S. Using the obvious bound γ̃(G) ≥ n/d, where

n is the number of vertices of G and d is the maximum degree we obtain the same bound on the

acyclicity of K1(G) as Corollary 2.9 gives for its connectedness. We remark that in the r = 1 case

our argument also naturally generalizes to show that K1(G) is (⌈γ̃(G)/2⌉ − 2)-connected.

Construction 3.1

Take G1 to be the disjoint union of m copies of Kd,d. It has 2md vertices, one too few for Corollary 2.9

to show that the independent set complex K1(G1) is (m − 1)-connected. We show that K1(G) is

homotopy equivalent to Sm−1 and therefore it is not (m − 1)-connected.

The complex K1(Kd,d) consists of two disjoint (d − 1)-simplices, so it is homotopy equivalent to

S0. As G1 consists of m copies of Kd,d, the complex K1(G1) is the m-fold join of K1(Kd,d) and

therefore homotopy equivalent to Sm−1 as claimed. �

Although Corollary 2.9 is best possible in general for r = 1, the independence complex K1(G)

can be arbitrarily more connected for particular graphs G, than what is guaranteed by this result.

For the cycle Corollary 2.9 gives that K1(Cn) is (⌈n/4⌉ − 2)-connected. Kozlov [14] determined

the homotopy type of of the independent set complex of cycles and his result implies the stronger

statement that K1(Cn) is ⌊(n + 1)/3⌋ − 2 connected.

10



For r > 1 we don’t know whether Corollary 2.9 is tight. The following construction for r = 2

shows that in this case the lower bound of 3
2md − 1

2m on the size of the graph in Corollary 2.9

cannot be lowered below 5
4md. For r = d = 2 the construction gives 5

2m, which is tight. Clearly, this

construction bounds also how far the lower bound on the size of W in Theorem 2.5 can be lowered.

In [12] a combinatorial argument establishes that p(2, 2) = 2. Notice that the standard topological

proof of the same fact (similar to the proofs of Corollaries 2.4 and 2.6) through the method of Aharoni

and Haxell [2] is impossible. It would require a strengthening of Theorem 2.5 for the r = d = 2 case,

which is impossible by the example below.

Construction 3.2

Let d be even. A blown-up five-cycle Hd/2 is a graph on the vertex set ∪4
j=0Aj , |Aj | = d/2, where

x ∈ Aj and y ∈ Al are connected if and only if j − l ≡ ±1 modulo 5. Let G2 be the disjoint union

of k copies of the blown-up five-cycle Hd/2. We claim that K2(G2) is homotopy equivalent to S2k−1

and therefore it is not (2k − 1)-connected.

As in the previous construction it is enough to prove that for a single blown-up five cycle Hd/2 the

complex K2(Hd/2) is homotopy equivalent to the circle S1. This implies that K2(G2) is homotopy

equivalent to the k-fold join of S1, which is S2k−1.

The maximal simplices of the independent set complex K1(Hd/2) are the sets Aj ∪ Aj+2 for

0 ≤ j ≤ 4. Here (and later in this construction) the indices are understood modulo 5. This complex

is easily seen to be homotopy equivalent with the cycle S1. The maximal simplices of K2(Hd/2) are

the same simplices together with the simplices {x, y}∪Aj , where x ∈ Aj−2, y ∈ Aj+2 and 0 ≤ j ≤ 4.

Any 1-simplex spanning an edge in Hd/2 is contained in a unique maximal simplex of K2(Hd/2). If

a non-maximal simplex of a simplicial complex is contained in a unique maximal simplex then one

can collapse this face, i.e., remove all simplices containing it and the remaining complex is homotopy

equivalent to the one before the collapse. Therefore we can collapse any 1-simplex of K2(Hd/2)

which spans an edge in Hd/2,d/2 and the remaining complex is homotopy equivalent to K2(Hd/2). As

the maximal simplices containing these 1-simplices are distinct we can collapse all the 1-simplices

spanning an edge simultaneously and the remaining complex is still homotopy equivalent to (in fact

a strong deformation retract of) K2(Hd/2). Notice, that the complex remaining after collapsing all

the 1-simplices corresponding to edges of Hd/2 is exactly K1(Hd/2). Therefore K2(Hd/2) is homotopy

equivalent to K1(Hd/2) and to S1. �

This example shows that with parameters m = 2k, r = 2 an d even, |V (G)| = 5(d/2)k = 5
4dm,

the statement of Corollary 2.9 is not true. The question remains open, whether the topological proof

for r = 2 could be strengthened from 3
2dm or the counterexample improved from 5

4dm.
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3.2 Partitioned graphs without independent transversals

Let n, d, k ≥ 1 be integers such that d ≥ kn/(2k − 1). In this section we construct a graph Gk,n,d of

maximum degree at most d, together with a vertex set partition into 2k disjoint subsets V1, . . . , V2k

of size |Vi| = n, i = 1, . . . , 2k, such that there exists no independent transversal with respect to this

partition, i.e., every subset T ⊆ V (G) with the property |T ∩ Vi| = 1, i = 1, . . . , 2k, spans at least

one edge.

Construction 3.3

If n ≤ d, then Gk,n,d could be chosen to be the disjoint union of k ≥ 1 complete bipartite graphs

Kn,n, the bipartite classes forming the vertex partition into 2k parts.

Thus we can assume d < n and by our condition n ≤ 2d− d
k < 2d. Let i = 2d−n, q = ⌈d−i

i ⌉ and

r = d − qi. We have 1 ≤ r ≤ i ≤ d − 1 and 1 ≤ q ≤ k − 1.

The graph Gk,n,d is the disjoint union of 2q + 1 complete bipartite graphs Hi with vertex sets

Ai ∪ Bi, i = 1, . . . , 2q + 1 and an independent set W of 2(k − q − 1)n points. The graph Hq+1 is

isomorphic to Kd−i+r,d−i+r and all other graphs Hi are isomorphic to Kd,d.

The partition classes are defined as follows. For i = 1, . . . q, Vi = Ai ∪ B′
i+1, where B′

j ⊆ Bj is

an arbitrary (d − i)-element subset of Bj. Symmetrically, for i = 1, . . . q, Vq+1+i = Bq+1+i ∪ A′
q+i,

where A′
j ⊆ Aj is an arbitrary (d − i)-element subset of Aj . The leftover elements are divided into

two classes: Vq+1 = B1 ∪ (∪q+1
j=2(Bj \ B′

j)) and V2q+2 = A2q+1 ∪ (∪2q
j=q+1(Aj \ A′

j)). This way all the

classes are of size 2d − i = n. In case q < k − 1, then W 6= ∅ and we create the required 2k classes

by arbitrarily partitioning the independent set W .

V1 V2 V4 V5

V3

V6

B4 B5B3B2B1

A1 A2 A3 A4 A5

Figure 1: The partitioned graph G3,5,3

Suppose for a contradiction that there exists an independent transversal T of Gk,n,d. If T ∩Bi 6= ∅

for some index i ≤ q, then T ∩ Ai = ∅ because T is independent. Therefore T ∩ Bi+1 6= ∅ as well,

since T is a transversal. Thus, eventually, T ∩ Bq+1 6= ∅, since Vq+1 ⊆ ∪q+1
j=1Bj ensures that there is

at least one index i ≤ q + 1 with T ∩ Bi 6= ∅. For symmetric reasons T ∩ Aq+1 6= ∅, which provides

the contradiction sought after. �
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Generalization of this construction will be presented in the next subsection. We prefer to discuss

the important special case of independent transversals in this formulation, because we find it more

transparent, than the (more intuitive) way of Construction 3.7. We remark that if k = d is a power

of 2 and n = 2d − 1, then our graphs are the same as the one used by Yuster [17], but our vertex

partitions are different.

Taking the parameters d = k, and n = 2d − 1 our construction establishes p(d, 1) = 2d for every

d. Previously this only was known for powers of 2 [13, 17].

Corollary 3.4 For every integer d ≥ 1,

p(d, 1) = 2d.

�

The same construction partially answers a question of Bollobás, Erdős, and Szemerédi [9], which

was studied extensively by a number of researchers. Let us recall that ∆(r, n) denotes the largest

integer such that any r-partite graph Gr(n) with vertex classes Vi of size n each and of maximum

degree less than ∆(r, n) contains an independent transversal, i.e., an independent set containing one

vertex from each Vi. The limit ∆r = limn→∞ ∆(r, n)/n is easily seen to exist.

Haxell [11] showed µ = limr→∞ ∆r = 1/2, but until very recently the exact values of ∆r were

known only for r = 2, 3, [9], and r = 4, 5 [13]. Alon [6] observed that the method of [11] actually

implies ∆r ≥
⌈

r
2(r−1)

⌉

. Thus Jin’s construction [13] is optimal and for powers of 2 one has ∆r =
r

2(r−1) .

Here we extend the above result for all even r and determine not only ∆r, but all the values

∆(r, n) in this case. The following Proposition appears in [6] and is an immediate consequence of a

theorem of Aharoni and Haxell [3].

Proposition 3.5 [6, Proposition 5.2]

∆(r, n) ≥

⌈

rn

2(r − 1)

⌉

.

For each r even and for arbitrary n our construction provides graphs of maximum degree d =

⌈ rn
2(r−1)⌉ with no independent transversal. Hence we have

Corollary 3.6 For every integer n ≥ 1 and r ≥ 2 even,

∆(r, n) =

⌈

rn

2(r − 1)

⌉

.

Therefore for every r even we have

∆r =
r

2(r − 1)
.
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3.3 Partitioned graphs without H-free transversals

Construction 3.7

Let H be an r-regular graph on n vertices and let d be a multiple of r. We prove a lower bound on

p(d,H) (see definition in Section 1.2) by giving an inductive construction. For every c < n
n−1 · d

r we

construct a graph of maximum degree at most d with a vertex partition into classes of size c which

does not admit an H-free transversal. We proceed by induction on c. For a positive integer j, let

H(j) be a blow-up of H, such that each vertex is replaced with j independent vertices and each edge

is replaced with a copy of Kj,j.

For c ≤ d/r, one can take the blow-up H(c) of H, with the independent sets being the classes of

its vertex partition.

Now let d
r < c < n

n−1 ·
d
r and suppose we have a graph G̃ with vertex partition Ṽ1 ∪ . . .∪ Ṽm, and

class size |Ṽi| = nc − nd/r containing no H-free transversal. Such a partitioned graph exists by our

induction hypothesis since our assumption on c guarantees that nc − nd/r < c.

Our graph G will contain a copy of G̃ and m copies H1, . . . ,Hm of H(d/r). The vertex partition

of G will consist of mn classes of size c. For each i and j, 1 ≤ i ≤ m, 1 ≤ j ≤ n, we define a class

V j
i = W j

i ∪ W̃ j
i of G, where W j

i is the set of d/r independent vertices corresponding to vertex j of

H in Hi and W̃ 1
i ∪ . . . ∪ W̃ n

i is an arbitrary partition of Ṽi into parts of size |W̃ j
i | = c − d/r. Note

that the size of Ṽi is n(c − d/r) and that the size of each class V j
i is c.

It remains to see why there is no H-free transversal. Suppose there is one, denoted by T . Since

T is H-free, for each copy Hi of H(d/r) there is a j, 1 ≤ j ≤ n, such that T ∩ W j
i = ∅. That is

T ∩ W̃ j
i 6= ∅, since T is a transversal with respect to the V j

i . Thus for each i, 1 ≤ i ≤ m, T ∩ Ṽi 6= ∅.

So T contains a transversal of G̃ with respect to the sets Ṽi, which cannot be H-free, a contradiction.

�

Corollary 3.8 Let H be an r-regular graph on n vertices and d be a multiple of r. Then we have

p(d,H) ≥
n

(n − 1)r
d.

Note that for H = K3 this corollary gives p(d,K3) ≥
3
4d.

4 Remarks and open problems

Given an arbitrary graph property R, define p(d,R) to be the smallest integer p such that any graph

G of maximum degree d with a vertex partition into classes of size p admits a transversal spanning

a subgraph having property R. We propose the general question of determining p(d,R) for various

graph properties R. In this paper we investigated this function when R is “H-free”, “acyclic”, or

“having connected components of order at most r”.
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The most interesting open question regarding H-free transversals is the case of cliques, in par-

ticular triangle-free transversals. Currently we only know 3
4d ≤ p(d,K3) ≤ d. For regular H we

conjecture that our construction is optimal. For non-regular H we don’t even have a conjecture.

Our other most important problem is the asymptotic determination of p(d, r) for any fixed r,

when d tends to infinity. This problem is already open for r = 2. The lone existing lower bound [12]

makes even p(d, 2) = d a possibility. This in fact was shown to be true for d = 2 ([12]). The smallest

unknown case is p(3, 2) which is either 3 or 4. The question is whether every partition of the vertex

set of a 3-regular graph into subsets of size 3 allows for a transversal inducing only a matching.

An interesting line of research is to investigate the limits of the triangulation-method of Aharoni

and Haxell more thoroughly, i.e., to decide whether Corollary 2.9 (or Theorem 2.5) is optimal. Let

us formulate a special case of this problem more precisely. Suppose C is a constant, 5/4 ≤ C < 3/2.

Given any G-labeled triangulation of Sm−1 containing no ruined 2-simplex, does there exist an

extension into a Bm with no ruined 2-simplex, provided |V (G)| > Cmd? In other words, what is

the smallest number of vertices in a d-regular graph, which guarantees the m-connectedness of the

induced matching complex.

We know that p(d, forest) = d but the graphs showing the lower bound have parallel edges. It

would be interesting to find (at least asymptotically) the minimum class size for a vertex partition of

simple d-regular graphs that ensures the existence of a cycle-free transversal. This value is between

⌈3
4d⌉ and d.

The numbers ∆r for odd r ≥ 7 are extremely intriguing. Currently it is known that

r

2(r − 1)
≤ ∆r ≤ ∆r−1 =

r − 1

2(r − 2)
.

The fact that ∆2 = ∆3 (or ∆4 = ∆5) means that the freedom of an extra class of size n besides the

first two (or the first four) does not help to prevent an independent transversal. It would be very

interesting to decide whether this phenomenon is just an artifact of the parameters being too small

or there is something deeper going on implying ∆2l = ∆2l+1 for every l. We vote for the latter.
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