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Abstra
t

We 
onsider a generalization of the theorem of Erd}os and Szekeres on monotone

subsequen
es.

1 Introdu
tion

The 
lassi
 lemma of P�al Erd}os and Gy�orgy Szekeres [2℄ about monotone subsequen
es 
an

also be formulated as a Ramsey-type 
oloring statement.

Theorem 1 [2℄ Let H

0

and H

1

be linear orderings of the n-element set V . De�ne a 2-
oloring

of the edges of the 
omplete graph on vertex set V by 
oloring the edge uv blue if the order

of u and v in H

0

agrees with that in H

1

, and 
oloring it red otherwise. Then there exists a

mono
hromati
 
lique of size d

p

ne.

Moreover, this result is best possible. That is there exist linear orderings H

0

; H

1

su
h that

in the 
orresponding 
oloring the largest mono
hromati
 
lique is of size d

p

ne.

In the present paper we 
onsider a generalization of this Theorem.
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Let H = (H

0

; : : : ; H

d

) be a list of d + 1 linear orderings on a �nite set V . Let us 2

d

-
olor

the edges of the 
omplete graph on the vertex set V by 
oloring the edge uv with the 
olor

(


1

; : : : ; 


d

) 2 f0; 1g

d

, where 


i

= 0 if H

i

agrees with H

0

on fu; vg, and 


i

= 1 otherwise.

The �rst natural generalization of Theorem 1 
oming into mind is about determining the

size of the largest mono
hromati
 subset one 
an guarantee. As it turns out this question is

solved easily with repeated appli
ations of the Erd}os-Szekeres Theorem.

Instead, we 
on
entrate on the property of a mono
hromati
 subset in a 2-edge-
oloring,

that it does not 
ontain all the 
olors. We will try to determine the size of the largest subset

missing at least one of the 2

d


olors. This generalization was raised in 
onne
tion with some

problems in analysis (spe
i�
ally the problem whether any 
ompa
t set of positive Lebesgue

measure in d-spa
e admits a 
ontra
tion onto a ball [5℄) and we found it interesting on its own


ombinatorial right as well.

Let us make things more pre
ise by introdu
ing a few de�nitions. For ~
 2 f0; 1g

d

we 
all

a subset U � V ~
-free if U spans a subgraph with no edge of 
olor ~
. We de�ne m

~


(V;H) to

be the size of the maximal ~
-free subset in V . Let m(V;H) = max

~


m

~


(V;H) and m(n; d) =

minm(V;H) where the maximum ranges over the 
olors ~
 2 f0; 1g

d

and the minimum ranges

over the n element sets V and the lists H of (d+ 1) linear orderings of V .

PROBLEM: Determine m(n; d). Find the order of magnitude for �xed d � 0.

All orders of magnitude, and all the O, o, �, and 
 notations in this paper are in the

variable n with respe
t to a �xed d unless otherwise stated.

We trivially have m(n; 0) = 1. For d = 1 our problem redu
es to the theorem of Erd}os

and Szekeres and one gets m(n; 1) = d

p

ne. For d > 1 however, the problem starts to get

interesting. A trivial lower bound is m(n; d) � m(n; 1) = d

p

ne for d � 1.

For an easy upper bound of m(n; d) = O(n

d

d+1

) one 
an generalize the 
onstru
tion usually

asso
iated with the se
ond part of Theorem 1.

Constru
tion 1

Let n = n

d+1

0

, let V 
onsist of the (d+1)-tuples from f0; : : : ; n

0

�1g letH = (H

0

; : : : ; H

d

) su
h

that H

i

extends the natural ordering a

ording to the i

th


oordinate (Label the 
oordinates

from 0 to d). Let ~
 2 f0; 1g

d

be a 
olor. We de�ne a partition of V into at most (3n

0

� 2)

d

mono
hromati
 subsets R

~a

, where ~a 2 f�(n

0

� 1); : : : ; 0; 1; : : : 2n

0

� 2g

d

. Let

R

~a

= f(x

0

; x

1

; : : : ; x

d

) 2 V : ~a = (x

1

; : : : ; x

d

) + x

0

(2~
� (1; : : : ; 1))g:
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It is 
lear that ea
h R

~a

is mono
hromati
 in the 
olor ~
, thus a ~
-free subset does not 
ontain

more than one element of it. This implies m

~


(V;H) � (3n

0

� 2)

d

and sin
e ~
 was arbitrary we

have m(n; d) � m(V;H) � (3n

0

� 2)

d

= O(n

d

d+1

). 2

The problem of obtaining a de
ent lower bound resisted our attempts so far. Currently we

do not know anything better than m(n; d) �

p

n. This is immediate from the Erd}os-Szekeres

Theorem and proves unne
essarily too mu
h. It provides a subset of size d

p

ne free of not just

one, but half of the 
olors.

With the hope that it might shed some light on the problem, L. P�osa (see in [4℄) suggested

a related simpler question. Instead of d+1 linear orderings 
onsider a d-tuple P = (P

1

; : : : ;P

d

)

of partitions of a base set V . With the aid of these partitions, we de�ne a 2

d

-edge-
oloring

of the 
omplete graph on vertex set V by letting ~
 = (


1

; 


2

; : : : ; 


d

) 2 f0; 1g

d

be the 
olor

of the edge uv, where 


i

= 0 if u and v are in the same 
lass of P

i

and 


i

= 1 otherwise.

We de�ne the analogue of m

~


(V;H); m(V;H), and m(n; d) for this 
oloring. For ~
 2 f0; 1g

d

let r

~


(V;P) be the size of the maximal ~
-free subset of V . Let r(V;P) = max

~


r

~


(V;P),

and r(n; d) = min r(V;P), where the maximum ranges over the 
olors ~
 2 f0; 1g

d

and the

minimum ranges over the n element sets V and the d-tuples P of partitions of V . Our goal is

also similar: the determination of r(n; d).

In Se
tion 2 we 
onsider this problem on partitions. As it turns out Constru
tion 1 
an

be translated into the language of partitions. We also prove a mat
hing lower bound in

Theorem 2, thus obtain a pre
ise answer for many values of the parameter n: r(n

d+1

0

; d) = n

d

0

.

This implies the asymptoti
 
hara
terization of r(n; d): r(n; d) � n

d

d+1

. This result was

independently proved by L. P�osa (for d = 2) and Gy. Petruska [4℄.

In Se
tion 5 we 
onsider the random version of the original problem. We show that

Constru
tion 1 is very typi
al in the following sense. If we 
hoose d + 1 linear orderings

independently and uniformly from all linear orderings of the set V , then almost always

m(V;H) = �(n

d

d+1

). We also prove a stronger 
on
entration result about the value ofm(V;H).

After 
onsidering a simpler variant, and the random version of our original problem it

might seem plausible to 
onje
ture that m(n; d) = �(n

d

d+1

). As we show in Se
tion 4 this,

however, is not the 
ase. We improve on Constru
tion 1 to obtain m(n; d) = O(n

e

d

), with an

exponent satisfying e

d

<

d

d+1

for d � 2. For example we have m(n; 2) = O(n

5=8

)� n

2=3

. For

large values of d we have e

d

= 1� 2=d+ o(1=d), where the o bound is in the variable d.
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2 Partitions

Theorem 2 Let P

1

; : : : ;P

d

be d partitions of the n element set V . Let us de�ne a 2

d

-edge-


oloring of K

n

on vertex set V by letting ~
 = (


1

; 


2

; : : : ; 


d

) 2 f0; 1g

d

to be the 
olor of the

edge uv, where 


i

= 0 if u and v are in the same 
lass of P

i

and 


i

= 1 otherwise.

There exists a 
olor ~
 and a ~
-free subset B � V , with jBj � n

d

d+1

.

Theorem 2 was also proved independently by P�osa for d = 2, and Petruska [4℄ for arbitrary

d. Their proofs are di�erent from ours.

We obtain Theorem 2 as a 
onsequen
e of a stronger statement.

Theorem 3 In the setting of Theorem 2 there exist subsets B

0

; B

1

; : : : ; B

d

of V , where B

i

is

(0; : : : ; 0; 1; 1 : : : ; 1

| {z }

i

)-free, and

1

d+ 1

d

X

i=0

jB

i

j � n

d

d+1

:

Proof of Theorem 3. We pro
eed by indu
tion on d. The 
ase d = 1 is immediate. Now let us

assume that the statement is true for d� 1.

Consider the restri
tions of P

2

; : : : ;P

d

to the 
lasses S

1

; : : : ; S

k

of P

1

. By the indu
tion

hypothesis there exist subsets B

j

0

; : : : ; B

j

d�1

of S

j

for every j (1 � j � k), su
h that

1

d

d�1

P

i=0

jB

j

i

j �

jS

j

j

1�1=d

and B

j

i

does not use the 
olor (0; : : : ; 0; 1; : : : ; 1

| {z }

i

) 2 f0; 1g

d�1

. We de�ne B

i

:=

[

k

j=1

B

j

i

� V for 0 � i � d� 1. The set B

i

of size jB

i

j =

k

P

j=1

jB

j

i

j is (

d

z }| {

0; : : : ; 0; 1 : : :1

| {z }

i

)-free.

Let B

d

be one of the largest 
lasses in P

1

and let t = jB

d

j. B

d

is 
learly (1; : : : ; 1)-free. We

obtain

d

X

i=0

jB

i

j =

d�1

X

i=0

jB

i

j+ t =

d�1

X

i=0

k

X

j=1

jB

j

i

j+ t =

k

X

j=1

d�1

X

i=0

jB

j

i

j+ t � d

k

X

j=1

jS

j

j

d�1

d

+ t:

Using jS

j

j � t we estimate jS

j

j

d�1

d

� jS

j

jt

�1=d

to get

d

X

i=0

jB

i

j � d

k

X

j=1

jS

j

j

d�1

d

+ t � dt

�1=d

k

X

j=1

jS

j

j+ t = dnt

�1=d

+ t � (d+ 1)n

d

d+1

:

Here the last inequality follows be
ause dnt

�1=d

+ t attains its minimum in t at n

d

d+1

. 2

Re
all the de�nition of r(n; d) from the Introdu
tion.
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Corollary 4 For positive integers d and n

0

we have

r(n

d+1

0

; d) = n

d

0

:

For arbitrary n and �xed d we have

r(n; d) = (1 + o(1))n

d

d+1

:

Proof. Theorem 2 provides the lower bound on r(n; d).

Constru
tion 1 
an be transformed into a 
onstru
tion of partitions and provides the upper

bound. Let n = n

d+1

0

, and V = f0; 1; : : : ; n

0

� 1g

d+1

. For ea
h i = 1; 2; : : : ; d we de�ne the

partition P

i

using the i

th


oordinates: two elements of V are in the same 
lass of P

i

if they

have the same i

th


oordinate. (Coordinates are labeled from 0 to d.)

Take a 
olor ~
 = (


1

; : : : ; 


d

). One 
an partition V into ~
-mono
hromati
 subsets R

~a

of size

n

0

(~a 2 f0; 1; : : : n

0

g

d

). Indeed, let

R

~a

= f(i; ~x) : i 2 f0; 1 : : : ; n

0

� 1g; ~x = ~a+ i~
g;

where the sum in the 
oordinates is 
omputed modulo n

0

.

Thus for any 
olor ~
, the size of the largest ~
-free subset is at most n

d

0

.

2

3 The Random Orders

We prove the following Theorem about the random version of our problem.

Theorem 5 Let V be a set of n elements. Let H

0

; H

1

; : : :H

d

be linear orderings of V 
hosen

independently and uniformly out of all possible linear orderings of V . Let ~
 = (0; 0; : : : ; 0).

Then almost always

m

~


(V;H) = �(n

d

d+1

):

That is for any d there exist 
onstants C

1

= C

1

(d) and C

2

= C

2

(d) su
h that

lim

n!1

Pr(C

1

n

d

d+1

< m

~


(V;H) < C

2

n

d

d+1

) = 1:

Corollary 6 Let V be a set of n elements. Let H

0

; H

1

; : : :H

d

be linear orderings of V 
hosen

independently and uniformly out of all possible linear orderings of V . Then almost always

m(V;H) = �(n

d

d+1

):

5



Proof. It follows from Theorem 5 using the symmetry of 
olors.

2

Proof of Theorem 5. We say that x 2 V dominates y 2 V if x pre
edes y in ea
h of the

orderings H

0

; : : : ; H

d

. In this 
ase we also say that x and y form a dominating pair. A subset

of V is 
alled dominating if every pair of elements of it is dominating. A subset is 
alled

domination-free if it 
ontains no dominating pairs. With these de�nitions m

~


(V;H) is just the

maximum size of a domination-free subset.

Obtaining the lower bound is the easier part of the proof. The probability of a 
ertain

�xed r-subset R � V being dominating is (1=r!)

d

, sin
e ea
h of H

1

; H

2

; : : : and H

d

has to

agree with H

0

on R. Thus

Pr(9 a dominating R � V; jRj = r) �

 

n

r

!

�

1

r!

�

d

<

�

ne

r

�

r

�

e

r

�

rd

=

�

e

d+1

n

r

d+1

�

r

:

Thus we have

Pr(9 a dominating R � V; jRj > 3n

1

d+1

) = o(1):

Domination de�nes a partial ordering on V , where dominating sets 
orrespond to 
hains, and

domination-free subsets 
orrespond to anti
hains. By Dilworth's Theorem the produ
t of the

maximum 
hain size and the maximum anti
hain size is at least n. Thus

Pr(9 a domination-free F � V; jF j >

1

3

n

d

d+1

)! 1:

In the rest of this proof we prove the upper bound. We produ
e the random orderings

of V by 
hoosing independently n points, one for ea
h element of V , in the unit hyper
ube

K = [0; 1)

d+1

, a

ording to a uniform distribution. De�ne H

i

to be the linear ordering given

by the i

th


oordinates of the points. (We label the 
oordinates by 0; 1 : : : ; d.) There are no

\ties" with probability 1.

Let l be the integer with 2

l(d+1)

� n < 2

(l+1)(d+1)

and let k = 2

l

. We partition K into

k

d+1

hyper
ubes of sidelength 1=k. We refer to these hyper
ubes as small
ubes and label ea
h

small
ube with a ve
tor in f0; : : : ; k�1g

d+1

: the point (x

0

; x

1

; : : : ; x

d

) 2 K is in the small
ube

with label (bkx

0


; : : : ; bkx

d


).

The line of a small
ube (a

0

; : : : ; a

d

) is de�ned to be the set of all small
ubes with label

(a

0

+ b; : : : ; a

d

+ b) for some integer b. It is 
lear that two points of V 
hosen from di�erent

small
ubes of the same line form a dominating pair. Thus a domination-free set 
an 
ontain

points from only one small
ube of ea
h line. The number of lines is k

d+1

�(k�1)

d+1

= O(n

d

d+1

).

It is a routine task to prove that almost always there are O(logn= log logn) elements of V in
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ea
h small
ube. Thus we get m

~


(V;H) = O(n

d

d+1

logn= log logn) almost always. In order to

get rid of the logarithmi
 fa
tor we need a further idea.

Let K

0

= fKg. For ea
h i = 1; : : : l let K

i


ontain all sub
ubes of sidelength 1=2

i

,

whi
h are obtained by partitioning the elements of K

i�1

into 2

d+1

sub
ubes ea
h. Thus

jK

i

j = 2

d+1

jK

i�1

j = 2

(d+1)i

. The elements of K

l

are the sub
ubes we 
alled small
ubes. Let

K = [

l

i=0

K

i

.

Let C be a large 
onstant to be 
hosen later. We assign ea
h point of V to a member of

K it is 
ontained in. We do this one by one (in some arbitrary �xed order). In the pro
ess

we do not assign more than C points to any parti
ular member of K, ex
ept maybe to K. If

a sub
ube is assigned to C points we say it is full. We always assign a point to the smallest

possible sub
ube, whi
h is not yet full.

In the simple proof of the weaker upper bound above we basi
ally assigned the points to

the elements of K

l

. This way we 
ould not guarantee that ea
h sub
ube is assigned to only a


onstant number of points. With the use of sub
ubes of larger sizes this short
oming 
an be

�xed.

We have seen above, that a domination-free subset S of V has got points in at most

(d+ 1)2

ld

members of K

l

. It 
an be seen similarly that S has got points in at most (d+ 1)2

id

members of K

i

for every i = 1; : : : l. Sin
e all 
ubes in K n fKg are assigned to at most C

points, S 
ontains at most C(d + 1)

P

l

i=1

2

id

= O(n

d

d+1

) points besides the ones we assigned

to K.

Our goal is to show that we 
an 
hoose a C = C(d) su
h that the probability of at least

C points being assigned to K is o(1). This will �nish the proof of Theorem 5.

Suppose that at least C points are assigned to K. The reason these points are assigned to

K is that the smaller sub
ubes 
ontaining them were already full. Let us de�ne L

i

� K

i

by

re
ursion for i = 0; : : : ; l. We set L

0

= fKg and for i > 0 we let L

i


onsist of the members of

K

i

that are full sub
ubes of a 
ube in L

i�1

. Let L = [

l

i=0

L

i

and set s = jLj. All the elements

of L are full, thus they 
ontain at least Cs points. Noti
e that by the rule we used when

assigning points to 
ubes all these points are 
ontained in [L

l

. The probability of the event

that some �xed set L

l

of at most s small
ubes 
ontains at least Cs out of the n uniformly


hosen random points is at most

�

n

Cs

�

(s=k

d+1

)

Cs

< (2

d+1

e=C)

Cs

.

K 
an be 
onsidered the full 2

d+1

-ary tree of depth l. In this setting L is a subtree of size

s 
ontaining the root. To bound the number of possible sets L we 
an use the formula for

the number of rooted subtrees of size s in an in�nite D = 2

d+1

-ary tree. The bound 2

Ds

is

straightforward. The exa
t number of the latter subtrees is known to be

�

Ds

s

�

=((D� 1)s+1),

see [3℄. Either bound suÆ
e for our proof.

7



Thus we have

Pr(K is full) <

1

X

s=l

 

2

d+1

s

s

! 

2

d+1

e

C

!

Cs

<

1

X

s=l

(2

d+1

e)

s

 

2

d+1

e

C

!

Cs

<

1

X

s=l

(1=2)

s

= 2=2

l

= o(1):

Above we used that L has s � l elements, and that 2

d+1

e(2

d+1

e=C)

C

< 1=2 provided C is

large enough.

2

Corollary 6 shows that the median of m(V;H) is �(n

d

d+1

). Using standard te
hni
 involv-

ing Talagrand's Inequality one 
an improve on Corollary 6 and obtain that m(V;H) is very

strongly 
on
entrated around its median. In parti
ular the expe
ted value of m(V;H) is also

�(n

d

d+1

).

Theorem 7 Let m be the median of m(V;H) and let !(n)!1 arbitrarily slowly. Then

Pr(jm(V;H)�mj > !(n)n

1

2

�

1

2(d+1)

) = o(1):

Proof. We don't in
lude the details here. The proof is a standard appli
ation of Talagrand's

Inequality. For a 
lear explanation of this powerful probabilisti
 tool see for example [1℄. 2

4 The 
onstru
tion

In this se
tion we present a generalization of Constru
tion 1 to improve on the exponent of

the upper bound for m(n; d) provided d � 2.

Theorem 8 We have m(n; d) = O(n

e

d

); with

e

d

= 1� max

i�d+1

P

i�1

j=0

�

d

j

�

i2

d

:

In parti
ular m(n; 2) = O(n

5=8

) and there exists an absolute 
onstant 
 > 0, su
h that for

every �xed d we have

m(n; d) < O

 

n

1�

2

d

+




p

log d

d

3=2

!

:

Proof. We start by de�ning a produ
t operation. Let H

0

= (H

0

0

; : : : ; H

0

d

) be d + 1 linear

orderings on the �nite set V

0

and let H

00

= (H

00

0

; : : : ; H

00

d

) be d+1 linear orderings on the �nite

set V

00

. We de�ne V = V

0

�V

00

to be the Cartesian produ
t and H

0

�H

00

= H = (H

0

; : : : ; H

d

)

to be d + 1 orderings on V , where H

i

is the lexi
ographi
 ordering of V using the orderings

H

0

i

and H

00

i

on the 
oordinates (i = 0; 1; : : : ; d).
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Lemma 9 For any 
olor ~
 2 f0; 1g

d

we have m

~


(V;H) = m

~


(V

0

;H

0

) �m

~


(V

00

;H

00

).

Proof. For the � dire
tion take subsets S

0

of V

0

, and S

00

of V

00

, whi
h are both ~
-free and

noti
e that S

0

� S

00

� V is also ~
-free.

For the � dire
tion of the 
laim take a ~
-free subset S � V . Note that the proje
tion S

0

of S to V

0

is ~
-free, and the sli
e S

a

= fb 2 V

00

j(a; b) 2 Sg is also ~
-free for any a 2 V

0

.

2

In what follows we modify Constru
tion 1 to obtain a list H = (H

0

; : : : ; H

d

) of linear

orderings su
h that m

~


(V;H) is substantially lower for most of the 
olors but it is very high

(in fa
t n) for the remaining 
olors. Then we use the produ
t 
onstru
tion of Lemma 9 for

averaging.

Let 1 � i � d+1 and let us take an i dimensional subspa
e W of IR

d+1

in general position

with respe
t to the 
oordinate axes. In the following we 
onsider d, i and W �xed, and use

the O notation with respe
t to n. Consider (a rotation of) the i dimensional unit square grid

in W . Let V be the n points of this grid 
losest to the origin. Noti
e that the diameter of V

is O(n

1=i

). For i = 0; 1 : : : ; d de�ne H

i

to be the linear ordering given by the ordering of the

i

th


oordinates of the points. (Coordinates are labeled from 0 to d.)

The 
olor of the edge ~u~v (~u;~v 2 V ) depends on whi
h of the 2

d+1

spa
e orthant 
ontains

the ve
tor ~u � ~v. An orthant Q is asso
iated with the same 
olor as �Q, hen
e the 2

d+1

=2


olors. Let us denote by Q

~


the union of the two orthants asso
iated with the 
olor ~
. In the

following 
laim we show that the magnitude of m

~


(V;H) depends only on whether Q

~


\W is

trivial or not.

Claim 10 If Q

~


\W = f0g then m

~


(V;H) = n. If Q

~


\W 6= f0g, then m

~


(V;H) = O(n

i�1

i

).

Proof. The �rst statement simply follows from the de�nition of Q

~


and from the fa
t that

W is 
losed under subtra
tion.

To prove the se
ond statement 
hoose a ve
tor ~v 2 W that lies in the interior of Q

~


. Let

S � V be a subset not 
ontaining the 
olor ~
.

Let us proje
t S in the dire
tion of ~v onto the subspa
e of W orthogonal to ~v and 
all the

proje
ted point set S

0

. Re
all that ~v is in the interior of Q

~


and thus there exists a positive

angle � with the property that any ve
tor within angle at most � from ~v is in Q

~


. Clearly

for any two ve
tors ~u and ~w 2 S the distan
e of their proje
tions ~u

0

; ~w

0

2 S

0

is at least sin�

times the distan
e of ~u and ~w, as otherwise the di�eren
e ~u � ~w (or ~w � ~u) is within angle

� from ~v, making ~
 the 
olor of the edge ~u~v, a 
ontradi
tion. Thus the minimum distan
e in

S

0

is 
onstant, while the diameter is at most the diameter of S, whi
h is O(n

1=i

). A simple

volume 
al
ulation shows that jSj = jS

0

j = O(n

i�1

i

). 2
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Suppose that in the 
onstru
tion above we have l = l(i) 
olors with m

~


(V;H) = O(n

1�1=i

)

and 2

d

� l 
olors with m

~


(V;H) = n. There are 2

d

ways to reverse some of the linear orderings

H

1

; : : : ; H

d

and obtain a di�erent 
onstru
tion H

j

, j = 1; 2; : : : ; 2

d

. For ea
h of them the set

of l 
olors with m

~


(V;H

j

) = O(n

i�1

i

) might be di�erent. Be
ause of symmetry any �xed 
olor

~
 o

urs l times out of the 2

d

with m

~


(V;H

j

) = O(n

1�1=i

).

Now we use the produ
t 
onstru
tion to multiply these 2

d

systems. For the resulting family

(V

�

;H

�

) the values m

~


(V

�

;H

�

) average out for every 
olor ~
,

m

~


(V

�

;H

�

) =

2

d

Y

j=1

m

~


(V;H

j

) = O

�

n

l

i�1

i

+(2

d

�l)

�

= O

�

N

1�

l

i2

d

�

;

where N = jV

�

j = n

2

d

Assuming the next lemma on the value of l (as a fun
tion of i) the �rst statement of

Theorem 8 follows. For the last statement of the theorem noti
e that with the 
hoi
e i =

bd=2 + 10

p

d log d
 Cherno� bound gives

P

i�1

j=0

�

d

j

�

=(i2

d

) = 2=d � O(

q

log d=d

3

) where the O

is with respe
t to d. 2

Lemma 11 If W � IR

d+1

is an i-dimensional subspa
e in general position with respe
t to

the 
oordinate axes, then W nontrivially interse
ts exa
tly 2

P

i�1

j=0

�

d

j

�

of the 2

d+1

orthants of

IR

d+1

.

Proof. The interse
tions of the d + 1 
oordinate hyperplanes of IR

d+1

with W are d + 1

(i�1)-dimensional subspa
es ofW in general position. Thus 
ounting the (d+1)-dimensional

orthants interse
ted nontrivially by W is the same as 
ounting the 
onne
ted parts IR

i

is 
ut

by d+ 1 subspa
es of dimension i� 1 in general position.

Our formula for this number 
an easily be established by a re
urren
e relation. We tried

to �nd the oldest referen
e instead. In 1852 L. S
hl�a
i [6℄ proved that j aÆne hyperplanes in

general position partition the Eu
lidean k-spa
e into a(j; k) =

P

k

t=0

�

j

t

�

parts. Noti
e that he

uses aÆne subspa
es and we use linear subspa
es. We partition the i-spa
e by d + 1 linear

subspa
es of dimension i� 1. Fix one of the subspa
es S and 
onsider aÆne hyperplanes S

1

and S

2

parallel to S that lie on di�erent sides of S. Clearly ea
h part of the i-spa
e interse
ts

exa
tly one of S

1

or S

2

, thus the number of parts in our partition is the total number of parts

S

1

and S

2

is partitioned by the other d of our subspa
es. As the subspa
es di�erent from S

interse
t S

1

and S

2

in aÆne subspa
es in general position we have that both S

1

and S

2

is

partitioned into a(i� 1; d) parts, proving the theorem. 2

In Theorem 8 the value of e

d

is de�ned with the help of the dimension parameter i. The


onstru
tion in the proof works for ea
h value 1 � i � d + 1 and 
hoosing i optimally yields

10



the exponent e

d

. Observe that the 
hoi
e i = d + 1 provides a version of Constru
tion 1

from the Introdu
tion. By 
hoosing i = d we obtain a 
onstru
tion beating the random one

even for small values of d. For d = 2, 3, and 4 this is the optimal 
hoi
e for i and we get

m(n; 2) = O(n

5=8

); m(n; 3) = O(n

17=24

); and m(n; 4) = O(n

49=64

). For d = 5, the optimal


hoi
e is i = 4 that yields m(n; 5) = O(n

51=64

). For large values of d the optimal 
hoi
e for i is

d=2+O(

p

d log d) yielding e

d

= 1�

2

d

+O

�

p

log d

d

3=2

�

, where the O notation refers to asymptoti
s

in d.

5 Con
luding Remarks and Open Problems

Remarks.

1. It would seem natural to try to prove the result of Theorem 3 for the average of jB

~


j's

over all the 2

d


olors ~
, where B

~


� V is a ~
-free subset of maximum size. This is not

possible be
ause there are 
ounterexamples with two partitions, where

4

P

i=1

jB

i

j < 4n

2=3

. An


(n

1�1=(k+1)

) bound trivially follows from Theorem 3 for the average of all the 2

d


olors.

2. Our argument gives a similar result for a 
oloring indu
ed by 2 linear orderings and d� 1

partitions.

3. Sin
e the proof of the 
urrent best lower bound for m(n; 2) provides a subset of size n

1=2


ontaining only 2 of the 4 
olors, it seems reasonable to 
onje
ture, that lim

n!1

m(n; 2)=n

1=2

=

1. We don't know anything better for large d either. As a �rst step it would even be

interesting to see whether there is a 
onstant d for whi
h lim

n!1

m(n; d)=n

1=2

=1.
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