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Abstract

We consider a generalization of the theorem of Erdés and Szekeres on monotone

subsequences.

1 Introduction

The classic lemma of Pal Erdds and Gyorgy Szekeres [2] about monotone subsequences can

also be formulated as a Ramsey-type coloring statement.

Theorem 1 [2] Let Hy and H; be linear orderings of the n-element set V. Define a 2-coloring
of the edges of the complete graph on vertex set V' by coloring the edge uv blue if the order
of u and v in Hy agrees with that in Hy, and coloring it red otherwise. Then there exists a
monochromatic clique of size [\/n].

Moreover, this result is best possible. That is there exist linear orderings Hy, Hy such that

in the corresponding coloring the largest monochromatic clique is of size [\/n].

In the present paper we consider a generalization of this Theorem.
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Let H = (Hy, ..., Hy) be a list of d + 1 linear orderings on a finite set V. Let us 2%-color
the edges of the complete graph on the vertex set V' by coloring the edge uv with the color
(c1,...,cq) € {0,1}¢, where ¢; = 0 if H; agrees with Hy on {u,v}, and ¢; = 1 otherwise.

The first natural generalization of Theorem 1 coming into mind is about determining the
size of the largest monochromatic subset one can guarantee. As it turns out this question is
solved easily with repeated applications of the Erdés-Szekeres Theorem.

Instead, we concentrate on the property of a monochromatic subset in a 2-edge-coloring,
that it does not contain all the colors. We will try to determine the size of the largest subset
missing at least one of the 2¢ colors. This generalization was raised in connection with some
problems in analysis (specifically the problem whether any compact set of positive Lebesgue
measure in d-space admits a contraction onto a ball [5]) and we found it interesting on its own
combinatorial right as well.

Let us make things more precise by introducing a few definitions. For ¢ € {0, 1} we call
a subset U C V' ¢é-free if U spans a subgraph with no edge of color & We define mgz(V,H) to
be the size of the maximal ¢-free subset in V. Let m(V,H) = maxzmgz(V,H) and m(n,d) =
minm(V, ) where the maximum ranges over the colors & € {0,1}¢ and the minimum ranges

over the n element sets V' and the lists # of (d + 1) linear orderings of V.
PROBLEM: Determine m(n,d). Find the order of magnitude for fixed d > 0.

All orders of magnitude, and all the O, o, ©, and () notations in this paper are in the

variable n with respect to a fixed d unless otherwise stated.

We trivially have m(n,0) = 1. For d = 1 our problem reduces to the theorem of Erdés
and Szekeres and one gets m(n,1) = [\/n]. For d > 1 however, the problem starts to get
interesting. A trivial lower bound is m(n,d) > m(n,1) = [\/n] for d > 1.

For an easy upper bound of m(n, d) = O(ndlﬂ) one can generalize the construction usually

associated with the second part of Theorem 1.
Construction 1

Let n = nd™, let V consist of the (d+1)-tuples from {0, ... ,ng—1} let # = (Hy, ..., Hy) such
that H; extends the natural ordering according to the i* coordinate (Label the coordinates
from 0 to d). Let & € {0,1}% be a color. We define a partition of V into at most (3ng — 2)?

monochromatic subsets Rz, where @ € {—(ng — 1),...,0,1,...2n — 2}¢. Let

Ri: = {(zo,x1,...,xq) €V :d = (v1,...,2q) + xo(2¢ — (1,...,1))}.



It is clear that each R; is monochromatic in the color ¢, thus a cé-free subset does not contain
more than one element of it. This implies mz(V, H) < (3ng — 2)¢ and since & was arbitrary we
have m(n,d) < m(V,H) < (3ny — 2) = O(nd%l) O

The problem of obtaining a decent lower bound resisted our attempts so far. Currently we
do not know anything better than m(n,d) > \/n. This is immediate from the Erdds-Szekeres
Theorem and proves unnecessarily too much. It provides a subset of size [y/n]| free of not just
one, but half of the colors.

With the hope that it might shed some light on the problem, L. Pésa (see in [4]) suggested
a related simpler question. Instead of d+1 linear orderings consider a d-tuple P = (Py,. .., Py)
of partitions of a base set V. With the aid of these partitions, we define a 2%edge-coloring
of the complete graph on vertex set V by letting ¢ = (¢, ¢,...,¢q) € {0,1}? be the color
of the edge uv, where ¢; = 0 if v and v are in the same class of P; and ¢; = 1 otherwise.
We define the analogue of ma(V,H),m(V,H), and m(n,d) for this coloring. For ¢ € {0,1}4
let 72(V,P) be the size of the maximal c-free subset of V. Let r(V,P) = maxzrzV,P),
and r(n,d) = minr(V,P), where the maximum ranges over the colors & € {0,1}? and the
minimum ranges over the n element sets V' and the d-tuples P of partitions of V. Our goal is
also similar: the determination of r(n, d).

In Section 2 we consider this problem on partitions. As it turns out Construction 1 can
be translated into the language of partitions. We also prove a matching lower bound in
Theorem 2, thus obtain a precise answer for many values of the parameter n: r(nd™', d) = ng.
This implies the asymptotic characterization of r(n,d): r(n,d) ~ na . This result was
independently proved by L. Pésa (for d = 2) and Gy. Petruska [4].

In Section 5 we consider the random version of the original problem. We show that
Construction 1 is very typical in the following sense. If we choose d + 1 linear orderings
independently and uniformly from all linear orderings of the set V', then almost always
m(V,H) = @(n#l) We also prove a stronger concentration result about the value of m(V, ).

After considering a simpler variant, and the random version of our original problem it
might seem plausible to conjecture that m(n,d) = @(ndiﬂ) As we show in Section 4 this,
however, is not the case. We improve on Construction 1 to obtain m(n,d) = O(n®), with an
exponent satisfying e; < =& for d > 2. For example we have m(n,2) = O(n®/®) < n?/3. For

a1
large values of d we have e; =1 — 2/d + o(1/d), where the o bound is in the variable d.



2 Partitions

Theorem 2 Let Py,..., P, be d partitions of the n element set V. Let us define a 2%-edge-
coloring of K, on vertex set V by letting € = (cy,ca,...,cq) € {0,1}¢ to be the color of the
edge uv, where ¢; = 0 if u and v are in the same class of P; and ¢; = 1 otherwise.

There exists a color & and a ¢-free subset B C V', with |B| > Nt

Theorem 2 was also proved independently by Pésa for d = 2, and Petruska [4] for arbitrary
d. Their proofs are different from ours.

We obtain Theorem 2 as a consequence of a stronger statement.

Theorem 3 In the setting of Theorem 2 there exist subsets By, By, ..., Bg of V', where B; is
0,...,0,1,1...,1)-free, and
—_——

d

d+1Z ne.

Proof of Theorem 3. We proceed by induction on d. The case d = 1 is immediate. Now let us
assume that the statement is true for d — 1.

Consider the restrictions of Ps,..., Py to the classes Si,...,S; of P;. By the induction
. . -1 .
hypothesis there exist subsets By, ..., Bj_; of S; for every j (1 < j < k), such that = ¥ |B/| >
i=0

S;|'="/¢ and B! does not use the color (0,...,0,1,...,1) € {0,1}¢"'. We define B; :=
W—/
(2 k d
. . —_——
Uk_ B/ CV for 0 <i<d—1. The set B; of size |[B;| = 3 |B/|is (0,...,0,1...1)-free.
= —

Let By be one of the largest classes in Py and let ¢t = |By|. By is clearly (1,...,1)-free. We

obtain

d—1 k k d-1
Z|B|_Z|B|+t—ZZ|BJ|+t—ZZ|BJ|+t>d2|5|
=0 j=1 7j=11i=0

Using |S;| < t we estimate |S;|“ > |S;]t=/4 to get
d
d

Z|B|>dZ|S| Tot>dt 1/d2|5|+t—dnt Vd Lt > (d+1)na.

=0 j=1 j=1

~1/d

Here the last inequality follows because dnt + t attains its minimum in ¢ at N, O

Recall the definition of r(n,d) from the Introduction.



Corollary 4 For positive integers d and ng we have
r(ndt, d) = nd.
For arbitrary n and fized d we have
r(n,d) = (14 o(1))n7H.

Proof. Theorem 2 provides the lower bound on r(n, d).

Construction 1 can be transformed into a construction of partitions and provides the upper
bound. Let n = nd™, and V = {0,1,...,n9 — 1}¢*'. For each i = 1,2,...,d we define the
partition P; using the i'® coordinates: two elements of V' are in the same class of P; if they

h

have the same " coordinate. (Coordinates are labeled from 0 to d.)

Take a color &= (c1,...,¢q). One can partition V' into é-monochromatic subsets Rz of size
ng (@ € {0,1,...n9}%). Indeed, let

Rz ={(i,%) :i€{0,1...,n9g — 1}, @ = a + ic},

where the sum in the coordinates is computed modulo ny.
Thus for any color ¢, the size of the largest é-free subset is at most ng.
(Il

3 The Random Orders

We prove the following Theorem about the random version of our problem.

Theorem 5 Let V be a set of n elements. Let Hy, Hy, ... Hy be linear orderings of V' chosen
independently and uniformly out of all possible linear orderings of V.. Let ¢ = (0,0,...,0).
Then almost always

me(V,H) = O(n).
That is for any d there exist constants C; = C1(d) and Cy = Co(d) such that

lim Pr(C’lndLJrl <me(V,H) < 0271#1) =L

n—o0

Corollary 6 Let V be a set of n elements. Let Hy, Hy, ... Hy be linear orderings of V' chosen

independently and uniformly out of all possible linear orderings of V.. Then almost always

m(V,H) = @(nd%l)



Proof. Tt follows from Theorem 5 using the symmetry of colors.
|

Proof of Theorem 5. We say that x € V' dominates y € V if x precedes y in each of the
orderings Hy, ..., Hy. In this case we also say that x and y form a dominating pair. A subset
of V' is called dominating if every pair of elements of it is dominating. A subset is called
domination-free if it contains no dominating pairs. With these definitions mz(V, H) is just the
maximum size of a domination-free subset.

Obtaining the lower bound is the easier part of the proof. The probability of a certain
fixed r-subset R C V being dominating is (1/r!)?, since each of Hi, Hy,... and Hy has to
agree with Hy on R. Thus

1 d r rd r
Pr(3 a dominating R C V, [R|=r) < " (—) < (ﬁ) <9> _ (ed+1L> ,
r) \r! r r rd+1

Thus we have
Pr(3 a dominating R C V, |R| > 3nd_~1H) = o(1).

Domination defines a partial ordering on V', where dominating sets correspond to chains, and
domination-free subsets correspond to antichains. By Dilworth’s Theorem the product of the

maximum chain size and the maximum antichain size is at least n. Thus
. 1 a4
Pr(3 a domination-free ' C V, |F| > gnd+1) — 1.

In the rest of this proof we prove the upper bound. We produce the random orderings
of V' by choosing independently n points, one for each element of V', in the unit hypercube
K =[0,1)4*! according to a uniform distribution. Define H; to be the linear ordering given
by the " coordinates of the points. (We label the coordinates by 0,1...,d.) There are no
“ties” with probability 1.

Let | be the integer with 2!+ < p < 204D+ and let k£ = 2!. We partition K into
k41 hypercubes of sidelength 1/k. We refer to these hypercubes as smallcubes and label each

smallcube with a vector in {0, ..., k—1}4*: the point (z¢,z1,...,24) € K is in the smallcube
with label (| kx|, ..., |kzq]).

The line of a smallcube (ay,...,aq) is defined to be the set of all smallcubes with label
(agp +b,...,aq + b) for some integer b. It is clear that two points of V' chosen from different

smallcubes of the same line form a dominating pair. Thus a domination-free set can contain
points from only one smallcube of each line. The number of lines is k%! — (k—1)4+! = O (n#+1).

It is a routine task to prove that almost always there are O(logn/loglogn) elements of V' in



each smallcube. Thus we get maz(V, H) = O(nd;il logn/loglogn) almost always. In order to
get rid of the logarithmic factor we need a further idea.

Let Ko = {K}. For each i = 1,...1 let K; contain all subcubes of sidelength 1/2¢,
which are obtained by partitioning the elements of K;_; into 2¢*! subcubes each. Thus
IKi| = 251K, 1| = 214417 The elements of K; are the subcubes we called smallcubes. Let
K=U_K;.

Let C' be a large constant to be chosen later. We assign each point of V' to a member of
IC it is contained in. We do this one by one (in some arbitrary fixed order). In the process
we do not assign more than C' points to any particular member of IC, except maybe to K. If
a subcube is assigned to C' points we say it is full. We always assign a point to the smallest
possible subcube, which is not yet full.

In the simple proof of the weaker upper bound above we basically assigned the points to
the elements of K;. This way we could not guarantee that each subcube is assigned to only a
constant number of points. With the use of subcubes of larger sizes this shortcoming can be
fixed.

We have seen above, that a domination-free subset S of V' has got points in at most
(d +1)2' members of K;. It can be seen similarly that S has got points in at most (d + 1)2%
members of KC; for every ¢ = 1,...1. Since all cubes in K\ {K} are assigned to at most C
points, S contains at most C(d + 1) ¥!_, 2 = O(ndlﬂ) points besides the ones we assigned
to K.

Our goal is to show that we can choose a C' = C(d) such that the probability of at least
C' points being assigned to K is o(1). This will finish the proof of Theorem 5.

Suppose that at least C' points are assigned to K. The reason these points are assigned to
K is that the smaller subcubes containing them were already full. Let us define £; C K; by
recursion for i = 0,...,1. We set Ly = {K} and for i > 0 we let £; consist of the members of
KC; that are full subcubes of a cube in £;_;. Let £ = ngoﬁi and set s = |L£|. All the elements
of £ are full, thus they contain at least C's points. Notice that by the rule we used when
assigning points to cubes all these points are contained in UL;. The probability of the event
that some fixed set £; of at most s smallcubes contains at least C's out of the n uniformly
chosen random points is at most (gs)(s/kd“)cs < (24FLe/C) 5.

KC can be considered the full 2%+!-ary tree of depth [. In this setting £ is a subtree of size
s containing the root. To bound the number of possible sets £ we can use the formula for
the number of rooted subtrees of size s in an infinite D = 2% '-ary tree. The bound 27 is
straightforward. The exact number of the latter subtrees is known to be (25)/((D —1)s+1),

see [3]. Either bound suffice for our proof.



Thus we have

Pr(K s full) < 3 (2'”15) <2d;e>cs < i@dﬂe)s (2d;16>05 <S(1/2) = 2/2! = o(1).

s=l s s=l

Above we used that £ has s > [ elements, and that 2%+e(2¢71e/C)¢ < 1/2 provided C is
large enough.

O

Corollary 6 shows that the median of m(V,H) is @(nd;il) Using standard technic involv-
ing Talagrand’s Inequality one can improve on Corollary 6 and obtain that m(V,#) is very

strongly concentrated around its median. In particular the expected value of m(V,H) is also
O (n 7).

Theorem 7 Let m be the median of m(V,H) and let w(n) — oo arbitrarily slowly. Then
Pr(im(V,H) — m| > w(n)n? " 7@0) = o(1).

Proof. We don’t include the details here. The proof is a standard application of Talagrand’s

Inequality. For a clear explanation of this powerful probabilistic tool see for example [1]. O

4 The construction

In this section we present a generalization of Construction 1 to improve on the exponent of

the upper bound for m(n,d) provided d > 2.

Theorem 8 We have m(n,d) = O(n®), with
i1 (d
eq = 1 — max L(j)
d i<d+1 324

In particular m(n,2) = O(n®) and there exists an absolute constant ¢ > 0, such that for

every fized d we have

m(n,d) < O <n1§+cd31?§d>

Proof. We start by defining a product operation. Let H' = (H{,...,H)) be d + 1 linear
orderings on the finite set V' and let #" = (H{/, ..., H]) be d+ 1 linear orderings on the finite
set V". We define V' =V’ x V" to be the Cartesian product and H' x H" = H = (H,,..., Hy)
to be d + 1 orderings on V', where H; is the lexicographic ordering of V' using the orderings
H! and H! on the coordinates (i = 0,1,...,d).

8



Lemma 9 For any color ¢ € {0,1}¢ we have mz(V,H) = maz(V',H') - maz(V", H").

Proof. For the > direction take subsets S’ of V', and S” of V", which are both éfree and
notice that S’ x S” C V is also c-free.

For the < direction of the claim take a cé-free subset S C V. Note that the projection S’
of S to V' is é-free, and the slice S, = {b € V"|(a,b) € S} is also ¢-free for any a € V.

O

In what follows we modify Construction 1 to obtain a list H = (Hy,...,Hy) of linear
orderings such that mz(V,H) is substantially lower for most of the colors but it is very high
(in fact n) for the remaining colors. Then we use the product construction of Lemma 9 for
averaging.

Let 1 < i < d+1 and let us take an 7 dimensional subspace W of IR*" in general position
with respect to the coordinate axes. In the following we consider d, : and W fixed, and use
the O notation with respect to n. Consider (a rotation of) the i dimensional unit square grid
in W. Let V be the n points of this grid closest to the origin. Notice that the diameter of V'
is O(n'/"). Fori =0,1...,d define H; to be the linear ordering given by the ordering of the
i coordinates of the points. (Coordinates are labeled from 0 to d.)

The color of the edge ## (i, 7 € V) depends on which of the 2¢*! space orthant contains
the vector 7@ — 7. An orthant @ is associated with the same color as —@, hence the 2¢+!/2
colors. Let us denote by ()= the union of the two orthants associated with the color ¢. In the
following claim we show that the magnitude of mz(V,H) depends only on whether QzNW is

trivial or not.

Claim 10 If Q:NW = {0} then ma(V, ") = n. If QeNW # {0}, then ms(V,H) = O(n'7).

Proof. The first statement simply follows from the definition of ()7 and from the fact that
W is closed under subtraction.

To prove the second statement choose a vector # € W that lies in the interior of (Jz. Let
S C V be a subset not containing the color ¢.

Let us project S in the direction of ' onto the subspace of W orthogonal to ¥ and call the
projected point set Sy. Recall that ¢ is in the interior of )z and thus there exists a positive
angle a with the property that any vector within angle at most a from ¢ is in Q. Clearly
for any two vectors # and @ € S the distance of their projections g, wy € Sy is at least sin «
times the distance of @ and W, as otherwise the difference @ — @ (or @ — @) is within angle
a from ¢/, making ¢ the color of the edge ##, a contradiction. Thus the minimum distance in
Sp is constant, while the diameter is at most the diameter of S, which is O(n'/?). A simple

volume calculation shows that [S| = |So| = O(n7). O

9



Suppose that in the construction above we have [ = I(i) colors with mz(V,H) = O(n'~'/%)
and 2% — [ colors with mz(V,H) = n. There are 2¢ ways to reverse some of the linear orderings
H,,..., H; and obtain a different construction H’, 7 = 1,2,...,2% For each of them the set
of [ colors with ma(V, H’) = O(n;l) might be different. Because of symmetry any fixed color
¢ occurs [ times out of the 2¢ with ma(V, H’) = O(n'~'/?).

Now we use the product construction to multiply these 2¢ systems. For the resulting family
(V*,H*) the values mgz(V*, H*) average out for every color ¢,

od

me(V, 1) = [LmelV, ) = O (a5 0) = 0 (N'737),

=1

where N = |V*| = n*

Assuming the next lemma on the value of [ (as a function of i) the first statement of
Theorem 8 follows. For the last statement of the theorem notice that with the choice ¢ =
|d/2 + 10+/dTogd| Chernoff bound gives ¥/ (?)/(iZd) = 2/d — O(y/logd/d?) where the O

is with respect to d. O

Lemma 11 If W C R is an i-dimensional subspace in general position with respect to
the coordinate azes, then W nontrivially intersects exactly 2 Z;-;}] (?) of the 241 orthants of
Bd+1.

Proof. The intersections of the d + 1 coordinate hyperplanes of R with W are d + 1
(i —1)-dimensional subspaces of W in general position. Thus counting the (d+ 1)-dimensional
orthants intersected nontrivially by W is the same as counting the connected parts IR’ is cut
by d 4 1 subspaces of dimension ¢ — 1 in general position.

Our formula for this number can easily be established by a recurrence relation. We tried
to find the oldest reference instead. In 1852 L. Schlifli [6] proved that j affine hyperplanes in
general position partition the Euclidean k-space into a(j, k) = ¥F_, (i) parts. Notice that he
uses affine subspaces and we use linear subspaces. We partition the i-space by d + 1 linear
subspaces of dimension ¢ — 1. Fix one of the subspaces S and consider affine hyperplanes S
and Ss parallel to S that lie on different sides of S. Clearly each part of the i-space intersects
exactly one of S; or Sy, thus the number of parts in our partition is the total number of parts
Sy and S5 is partitioned by the other d of our subspaces. As the subspaces different from S
intersect S; and S, in affine subspaces in general position we have that both S; and S5 is
partitioned into a(i — 1, d) parts, proving the theorem. O

In Theorem 8 the value of e; is defined with the help of the dimension parameter i. The

construction in the proof works for each value 1 <7 < d + 1 and choosing ¢ optimally yields

10



the exponent e;. Observe that the choice i = d + 1 provides a version of Construction 1
from the Introduction. By choosing : = d we obtain a construction beating the random one
even for small values of d. For d = 2, 3, and 4 this is the optimal choice for ¢ and we get
m(n,2) = O(n°®),m(n,3) = O(n'"/*), and m(n,4) = O(n*/%*). For d = 5, the optimal
choice is i = 4 that yields m(n,5) = O(n'/%*). For large values of d the optimal choice for i is
d/2+0(\/dlogd) yielding e = 1—2+0 <\§£—3?>, where the O notation refers to asymptotics
in d.

5 Concluding Remarks and Open Problems

Remarks.
1. It would seem natural to try to prove the result of Theorem 3 for the average of |Bz|’s

over all the 2¢ colors & where Bz C V is a c-free subset of maximum size. This is not

4
possible because there are counterexamples with two partitions, where Y |B;| < 4n?/3. An
i=1

Q(n'~Y*+D) hound trivially follows from Theorem 3 for the average of all the 2 colors.

2. Our argument gives a similar result for a coloring induced by 2 linear orderings and d — 1
partitions.

3. Since the proof of the current best lower bound for m(n,2) provides a subset of size n'/?
containing only 2 of the 4 colors, it seems reasonable to conjecture, that lim,_,, m(n,2)/n'/? =
0o. We don’t know anything better for large d either. As a first step it would even be

1/2

interesting to see whether there is a constant d for which lim,,_,,, m(n,d)/n'/* = cc.
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