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Abstrat

We onsider a generalization of the theorem of Erd}os and Szekeres on monotone

subsequenes.

1 Introdution

The lassi lemma of P�al Erd}os and Gy�orgy Szekeres [2℄ about monotone subsequenes an

also be formulated as a Ramsey-type oloring statement.

Theorem 1 [2℄ Let H

0

and H

1

be linear orderings of the n-element set V . De�ne a 2-oloring

of the edges of the omplete graph on vertex set V by oloring the edge uv blue if the order

of u and v in H

0

agrees with that in H

1

, and oloring it red otherwise. Then there exists a

monohromati lique of size d

p

ne.

Moreover, this result is best possible. That is there exist linear orderings H

0

; H

1

suh that

in the orresponding oloring the largest monohromati lique is of size d

p

ne.

In the present paper we onsider a generalization of this Theorem.
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Let H = (H

0

; : : : ; H

d

) be a list of d + 1 linear orderings on a �nite set V . Let us 2

d

-olor

the edges of the omplete graph on the vertex set V by oloring the edge uv with the olor

(

1

; : : : ; 

d

) 2 f0; 1g

d

, where 

i

= 0 if H

i

agrees with H

0

on fu; vg, and 

i

= 1 otherwise.

The �rst natural generalization of Theorem 1 oming into mind is about determining the

size of the largest monohromati subset one an guarantee. As it turns out this question is

solved easily with repeated appliations of the Erd}os-Szekeres Theorem.

Instead, we onentrate on the property of a monohromati subset in a 2-edge-oloring,

that it does not ontain all the olors. We will try to determine the size of the largest subset

missing at least one of the 2

d

olors. This generalization was raised in onnetion with some

problems in analysis (spei�ally the problem whether any ompat set of positive Lebesgue

measure in d-spae admits a ontration onto a ball [5℄) and we found it interesting on its own

ombinatorial right as well.

Let us make things more preise by introduing a few de�nitions. For ~ 2 f0; 1g

d

we all

a subset U � V ~-free if U spans a subgraph with no edge of olor ~. We de�ne m

~

(V;H) to

be the size of the maximal ~-free subset in V . Let m(V;H) = max

~

m

~

(V;H) and m(n; d) =

minm(V;H) where the maximum ranges over the olors ~ 2 f0; 1g

d

and the minimum ranges

over the n element sets V and the lists H of (d+ 1) linear orderings of V .

PROBLEM: Determine m(n; d). Find the order of magnitude for �xed d � 0.

All orders of magnitude, and all the O, o, �, and 
 notations in this paper are in the

variable n with respet to a �xed d unless otherwise stated.

We trivially have m(n; 0) = 1. For d = 1 our problem redues to the theorem of Erd}os

and Szekeres and one gets m(n; 1) = d

p

ne. For d > 1 however, the problem starts to get

interesting. A trivial lower bound is m(n; d) � m(n; 1) = d

p

ne for d � 1.

For an easy upper bound of m(n; d) = O(n

d

d+1

) one an generalize the onstrution usually

assoiated with the seond part of Theorem 1.

Constrution 1

Let n = n

d+1

0

, let V onsist of the (d+1)-tuples from f0; : : : ; n

0

�1g letH = (H

0

; : : : ; H

d

) suh

that H

i

extends the natural ordering aording to the i

th

oordinate (Label the oordinates

from 0 to d). Let ~ 2 f0; 1g

d

be a olor. We de�ne a partition of V into at most (3n

0

� 2)

d

monohromati subsets R

~a

, where ~a 2 f�(n

0

� 1); : : : ; 0; 1; : : : 2n

0

� 2g

d

. Let

R

~a

= f(x

0

; x

1

; : : : ; x

d

) 2 V : ~a = (x

1

; : : : ; x

d

) + x

0

(2~� (1; : : : ; 1))g:
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It is lear that eah R

~a

is monohromati in the olor ~, thus a ~-free subset does not ontain

more than one element of it. This implies m

~

(V;H) � (3n

0

� 2)

d

and sine ~ was arbitrary we

have m(n; d) � m(V;H) � (3n

0

� 2)

d

= O(n

d

d+1

). 2

The problem of obtaining a deent lower bound resisted our attempts so far. Currently we

do not know anything better than m(n; d) �

p

n. This is immediate from the Erd}os-Szekeres

Theorem and proves unneessarily too muh. It provides a subset of size d

p

ne free of not just

one, but half of the olors.

With the hope that it might shed some light on the problem, L. P�osa (see in [4℄) suggested

a related simpler question. Instead of d+1 linear orderings onsider a d-tuple P = (P

1

; : : : ;P

d

)

of partitions of a base set V . With the aid of these partitions, we de�ne a 2

d

-edge-oloring

of the omplete graph on vertex set V by letting ~ = (

1

; 

2

; : : : ; 

d

) 2 f0; 1g

d

be the olor

of the edge uv, where 

i

= 0 if u and v are in the same lass of P

i

and 

i

= 1 otherwise.

We de�ne the analogue of m

~

(V;H); m(V;H), and m(n; d) for this oloring. For ~ 2 f0; 1g

d

let r

~

(V;P) be the size of the maximal ~-free subset of V . Let r(V;P) = max

~

r

~

(V;P),

and r(n; d) = min r(V;P), where the maximum ranges over the olors ~ 2 f0; 1g

d

and the

minimum ranges over the n element sets V and the d-tuples P of partitions of V . Our goal is

also similar: the determination of r(n; d).

In Setion 2 we onsider this problem on partitions. As it turns out Constrution 1 an

be translated into the language of partitions. We also prove a mathing lower bound in

Theorem 2, thus obtain a preise answer for many values of the parameter n: r(n

d+1

0

; d) = n

d

0

.

This implies the asymptoti haraterization of r(n; d): r(n; d) � n

d

d+1

. This result was

independently proved by L. P�osa (for d = 2) and Gy. Petruska [4℄.

In Setion 5 we onsider the random version of the original problem. We show that

Constrution 1 is very typial in the following sense. If we hoose d + 1 linear orderings

independently and uniformly from all linear orderings of the set V , then almost always

m(V;H) = �(n

d

d+1

). We also prove a stronger onentration result about the value ofm(V;H).

After onsidering a simpler variant, and the random version of our original problem it

might seem plausible to onjeture that m(n; d) = �(n

d

d+1

). As we show in Setion 4 this,

however, is not the ase. We improve on Constrution 1 to obtain m(n; d) = O(n

e

d

), with an

exponent satisfying e

d

<

d

d+1

for d � 2. For example we have m(n; 2) = O(n

5=8

)� n

2=3

. For

large values of d we have e

d

= 1� 2=d+ o(1=d), where the o bound is in the variable d.
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2 Partitions

Theorem 2 Let P

1

; : : : ;P

d

be d partitions of the n element set V . Let us de�ne a 2

d

-edge-

oloring of K

n

on vertex set V by letting ~ = (

1

; 

2

; : : : ; 

d

) 2 f0; 1g

d

to be the olor of the

edge uv, where 

i

= 0 if u and v are in the same lass of P

i

and 

i

= 1 otherwise.

There exists a olor ~ and a ~-free subset B � V , with jBj � n

d

d+1

.

Theorem 2 was also proved independently by P�osa for d = 2, and Petruska [4℄ for arbitrary

d. Their proofs are di�erent from ours.

We obtain Theorem 2 as a onsequene of a stronger statement.

Theorem 3 In the setting of Theorem 2 there exist subsets B

0

; B

1

; : : : ; B

d

of V , where B

i

is

(0; : : : ; 0; 1; 1 : : : ; 1

| {z }

i

)-free, and

1

d+ 1

d

X

i=0

jB

i

j � n

d

d+1

:

Proof of Theorem 3. We proeed by indution on d. The ase d = 1 is immediate. Now let us

assume that the statement is true for d� 1.

Consider the restritions of P

2

; : : : ;P

d

to the lasses S

1

; : : : ; S

k

of P

1

. By the indution

hypothesis there exist subsets B

j

0

; : : : ; B

j

d�1

of S

j

for every j (1 � j � k), suh that

1

d

d�1

P

i=0

jB

j

i

j �

jS

j

j

1�1=d

and B

j

i

does not use the olor (0; : : : ; 0; 1; : : : ; 1

| {z }

i

) 2 f0; 1g

d�1

. We de�ne B

i

:=

[

k

j=1

B

j

i

� V for 0 � i � d� 1. The set B

i

of size jB

i

j =

k

P

j=1

jB

j

i

j is (

d

z }| {

0; : : : ; 0; 1 : : :1

| {z }

i

)-free.

Let B

d

be one of the largest lasses in P

1

and let t = jB

d

j. B

d

is learly (1; : : : ; 1)-free. We

obtain

d

X

i=0

jB

i

j =

d�1

X

i=0

jB

i

j+ t =

d�1

X

i=0

k

X

j=1

jB

j

i

j+ t =

k

X

j=1

d�1

X

i=0

jB

j

i

j+ t � d

k

X

j=1

jS

j

j

d�1

d

+ t:

Using jS

j

j � t we estimate jS

j

j

d�1

d

� jS

j

jt

�1=d

to get

d

X

i=0

jB

i

j � d

k

X

j=1

jS

j

j

d�1

d

+ t � dt

�1=d

k

X

j=1

jS

j

j+ t = dnt

�1=d

+ t � (d+ 1)n

d

d+1

:

Here the last inequality follows beause dnt

�1=d

+ t attains its minimum in t at n

d

d+1

. 2

Reall the de�nition of r(n; d) from the Introdution.
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Corollary 4 For positive integers d and n

0

we have

r(n

d+1

0

; d) = n

d

0

:

For arbitrary n and �xed d we have

r(n; d) = (1 + o(1))n

d

d+1

:

Proof. Theorem 2 provides the lower bound on r(n; d).

Constrution 1 an be transformed into a onstrution of partitions and provides the upper

bound. Let n = n

d+1

0

, and V = f0; 1; : : : ; n

0

� 1g

d+1

. For eah i = 1; 2; : : : ; d we de�ne the

partition P

i

using the i

th

oordinates: two elements of V are in the same lass of P

i

if they

have the same i

th

oordinate. (Coordinates are labeled from 0 to d.)

Take a olor ~ = (

1

; : : : ; 

d

). One an partition V into ~-monohromati subsets R

~a

of size

n

0

(~a 2 f0; 1; : : : n

0

g

d

). Indeed, let

R

~a

= f(i; ~x) : i 2 f0; 1 : : : ; n

0

� 1g; ~x = ~a+ i~g;

where the sum in the oordinates is omputed modulo n

0

.

Thus for any olor ~, the size of the largest ~-free subset is at most n

d

0

.

2

3 The Random Orders

We prove the following Theorem about the random version of our problem.

Theorem 5 Let V be a set of n elements. Let H

0

; H

1

; : : :H

d

be linear orderings of V hosen

independently and uniformly out of all possible linear orderings of V . Let ~ = (0; 0; : : : ; 0).

Then almost always

m

~

(V;H) = �(n

d

d+1

):

That is for any d there exist onstants C

1

= C

1

(d) and C

2

= C

2

(d) suh that

lim

n!1

Pr(C

1

n

d

d+1

< m

~

(V;H) < C

2

n

d

d+1

) = 1:

Corollary 6 Let V be a set of n elements. Let H

0

; H

1

; : : :H

d

be linear orderings of V hosen

independently and uniformly out of all possible linear orderings of V . Then almost always

m(V;H) = �(n

d

d+1

):

5



Proof. It follows from Theorem 5 using the symmetry of olors.

2

Proof of Theorem 5. We say that x 2 V dominates y 2 V if x preedes y in eah of the

orderings H

0

; : : : ; H

d

. In this ase we also say that x and y form a dominating pair. A subset

of V is alled dominating if every pair of elements of it is dominating. A subset is alled

domination-free if it ontains no dominating pairs. With these de�nitions m

~

(V;H) is just the

maximum size of a domination-free subset.

Obtaining the lower bound is the easier part of the proof. The probability of a ertain

�xed r-subset R � V being dominating is (1=r!)

d

, sine eah of H

1

; H

2

; : : : and H

d

has to

agree with H

0

on R. Thus

Pr(9 a dominating R � V; jRj = r) �

 

n

r

!

�

1

r!

�

d

<

�

ne

r

�

r

�

e

r

�

rd

=

�

e

d+1

n

r

d+1

�

r

:

Thus we have

Pr(9 a dominating R � V; jRj > 3n

1

d+1

) = o(1):

Domination de�nes a partial ordering on V , where dominating sets orrespond to hains, and

domination-free subsets orrespond to antihains. By Dilworth's Theorem the produt of the

maximum hain size and the maximum antihain size is at least n. Thus

Pr(9 a domination-free F � V; jF j >

1

3

n

d

d+1

)! 1:

In the rest of this proof we prove the upper bound. We produe the random orderings

of V by hoosing independently n points, one for eah element of V , in the unit hyperube

K = [0; 1)

d+1

, aording to a uniform distribution. De�ne H

i

to be the linear ordering given

by the i

th

oordinates of the points. (We label the oordinates by 0; 1 : : : ; d.) There are no

\ties" with probability 1.

Let l be the integer with 2

l(d+1)

� n < 2

(l+1)(d+1)

and let k = 2

l

. We partition K into

k

d+1

hyperubes of sidelength 1=k. We refer to these hyperubes as smallubes and label eah

smallube with a vetor in f0; : : : ; k�1g

d+1

: the point (x

0

; x

1

; : : : ; x

d

) 2 K is in the smallube

with label (bkx

0

; : : : ; bkx

d

).

The line of a smallube (a

0

; : : : ; a

d

) is de�ned to be the set of all smallubes with label

(a

0

+ b; : : : ; a

d

+ b) for some integer b. It is lear that two points of V hosen from di�erent

smallubes of the same line form a dominating pair. Thus a domination-free set an ontain

points from only one smallube of eah line. The number of lines is k

d+1

�(k�1)

d+1

= O(n

d

d+1

).

It is a routine task to prove that almost always there are O(logn= log logn) elements of V in
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eah smallube. Thus we get m

~

(V;H) = O(n

d

d+1

logn= log logn) almost always. In order to

get rid of the logarithmi fator we need a further idea.

Let K

0

= fKg. For eah i = 1; : : : l let K

i

ontain all sububes of sidelength 1=2

i

,

whih are obtained by partitioning the elements of K

i�1

into 2

d+1

sububes eah. Thus

jK

i

j = 2

d+1

jK

i�1

j = 2

(d+1)i

. The elements of K

l

are the sububes we alled smallubes. Let

K = [

l

i=0

K

i

.

Let C be a large onstant to be hosen later. We assign eah point of V to a member of

K it is ontained in. We do this one by one (in some arbitrary �xed order). In the proess

we do not assign more than C points to any partiular member of K, exept maybe to K. If

a subube is assigned to C points we say it is full. We always assign a point to the smallest

possible subube, whih is not yet full.

In the simple proof of the weaker upper bound above we basially assigned the points to

the elements of K

l

. This way we ould not guarantee that eah subube is assigned to only a

onstant number of points. With the use of sububes of larger sizes this shortoming an be

�xed.

We have seen above, that a domination-free subset S of V has got points in at most

(d+ 1)2

ld

members of K

l

. It an be seen similarly that S has got points in at most (d+ 1)2

id

members of K

i

for every i = 1; : : : l. Sine all ubes in K n fKg are assigned to at most C

points, S ontains at most C(d + 1)

P

l

i=1

2

id

= O(n

d

d+1

) points besides the ones we assigned

to K.

Our goal is to show that we an hoose a C = C(d) suh that the probability of at least

C points being assigned to K is o(1). This will �nish the proof of Theorem 5.

Suppose that at least C points are assigned to K. The reason these points are assigned to

K is that the smaller sububes ontaining them were already full. Let us de�ne L

i

� K

i

by

reursion for i = 0; : : : ; l. We set L

0

= fKg and for i > 0 we let L

i

onsist of the members of

K

i

that are full sububes of a ube in L

i�1

. Let L = [

l

i=0

L

i

and set s = jLj. All the elements

of L are full, thus they ontain at least Cs points. Notie that by the rule we used when

assigning points to ubes all these points are ontained in [L

l

. The probability of the event

that some �xed set L

l

of at most s smallubes ontains at least Cs out of the n uniformly

hosen random points is at most

�

n

Cs

�

(s=k

d+1

)

Cs

< (2

d+1

e=C)

Cs

.

K an be onsidered the full 2

d+1

-ary tree of depth l. In this setting L is a subtree of size

s ontaining the root. To bound the number of possible sets L we an use the formula for

the number of rooted subtrees of size s in an in�nite D = 2

d+1

-ary tree. The bound 2

Ds

is

straightforward. The exat number of the latter subtrees is known to be

�

Ds

s

�

=((D� 1)s+1),

see [3℄. Either bound suÆe for our proof.
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Thus we have

Pr(K is full) <

1

X

s=l

 

2

d+1

s

s

! 

2

d+1

e

C

!

Cs

<

1

X

s=l

(2

d+1

e)

s

 

2

d+1

e

C

!

Cs

<

1

X

s=l

(1=2)

s

= 2=2

l

= o(1):

Above we used that L has s � l elements, and that 2

d+1

e(2

d+1

e=C)

C

< 1=2 provided C is

large enough.

2

Corollary 6 shows that the median of m(V;H) is �(n

d

d+1

). Using standard tehni involv-

ing Talagrand's Inequality one an improve on Corollary 6 and obtain that m(V;H) is very

strongly onentrated around its median. In partiular the expeted value of m(V;H) is also

�(n

d

d+1

).

Theorem 7 Let m be the median of m(V;H) and let !(n)!1 arbitrarily slowly. Then

Pr(jm(V;H)�mj > !(n)n

1

2

�

1

2(d+1)

) = o(1):

Proof. We don't inlude the details here. The proof is a standard appliation of Talagrand's

Inequality. For a lear explanation of this powerful probabilisti tool see for example [1℄. 2

4 The onstrution

In this setion we present a generalization of Constrution 1 to improve on the exponent of

the upper bound for m(n; d) provided d � 2.

Theorem 8 We have m(n; d) = O(n

e

d

); with

e

d

= 1� max

i�d+1

P

i�1

j=0

�

d

j

�

i2

d

:

In partiular m(n; 2) = O(n

5=8

) and there exists an absolute onstant  > 0, suh that for

every �xed d we have

m(n; d) < O

 

n

1�

2

d

+



p

log d

d

3=2

!

:

Proof. We start by de�ning a produt operation. Let H

0

= (H

0

0

; : : : ; H

0

d

) be d + 1 linear

orderings on the �nite set V

0

and let H

00

= (H

00

0

; : : : ; H

00

d

) be d+1 linear orderings on the �nite

set V

00

. We de�ne V = V

0

�V

00

to be the Cartesian produt and H

0

�H

00

= H = (H

0

; : : : ; H

d

)

to be d + 1 orderings on V , where H

i

is the lexiographi ordering of V using the orderings

H

0

i

and H

00

i

on the oordinates (i = 0; 1; : : : ; d).

8



Lemma 9 For any olor ~ 2 f0; 1g

d

we have m

~

(V;H) = m

~

(V

0

;H

0

) �m

~

(V

00

;H

00

).

Proof. For the � diretion take subsets S

0

of V

0

, and S

00

of V

00

, whih are both ~-free and

notie that S

0

� S

00

� V is also ~-free.

For the � diretion of the laim take a ~-free subset S � V . Note that the projetion S

0

of S to V

0

is ~-free, and the slie S

a

= fb 2 V

00

j(a; b) 2 Sg is also ~-free for any a 2 V

0

.

2

In what follows we modify Constrution 1 to obtain a list H = (H

0

; : : : ; H

d

) of linear

orderings suh that m

~

(V;H) is substantially lower for most of the olors but it is very high

(in fat n) for the remaining olors. Then we use the produt onstrution of Lemma 9 for

averaging.

Let 1 � i � d+1 and let us take an i dimensional subspae W of IR

d+1

in general position

with respet to the oordinate axes. In the following we onsider d, i and W �xed, and use

the O notation with respet to n. Consider (a rotation of) the i dimensional unit square grid

in W . Let V be the n points of this grid losest to the origin. Notie that the diameter of V

is O(n

1=i

). For i = 0; 1 : : : ; d de�ne H

i

to be the linear ordering given by the ordering of the

i

th

oordinates of the points. (Coordinates are labeled from 0 to d.)

The olor of the edge ~u~v (~u;~v 2 V ) depends on whih of the 2

d+1

spae orthant ontains

the vetor ~u � ~v. An orthant Q is assoiated with the same olor as �Q, hene the 2

d+1

=2

olors. Let us denote by Q

~

the union of the two orthants assoiated with the olor ~. In the

following laim we show that the magnitude of m

~

(V;H) depends only on whether Q

~

\W is

trivial or not.

Claim 10 If Q

~

\W = f0g then m

~

(V;H) = n. If Q

~

\W 6= f0g, then m

~

(V;H) = O(n

i�1

i

).

Proof. The �rst statement simply follows from the de�nition of Q

~

and from the fat that

W is losed under subtration.

To prove the seond statement hoose a vetor ~v 2 W that lies in the interior of Q

~

. Let

S � V be a subset not ontaining the olor ~.

Let us projet S in the diretion of ~v onto the subspae of W orthogonal to ~v and all the

projeted point set S

0

. Reall that ~v is in the interior of Q

~

and thus there exists a positive

angle � with the property that any vetor within angle at most � from ~v is in Q

~

. Clearly

for any two vetors ~u and ~w 2 S the distane of their projetions ~u

0

; ~w

0

2 S

0

is at least sin�

times the distane of ~u and ~w, as otherwise the di�erene ~u � ~w (or ~w � ~u) is within angle

� from ~v, making ~ the olor of the edge ~u~v, a ontradition. Thus the minimum distane in

S

0

is onstant, while the diameter is at most the diameter of S, whih is O(n

1=i

). A simple

volume alulation shows that jSj = jS

0

j = O(n

i�1

i

). 2
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Suppose that in the onstrution above we have l = l(i) olors with m

~

(V;H) = O(n

1�1=i

)

and 2

d

� l olors with m

~

(V;H) = n. There are 2

d

ways to reverse some of the linear orderings

H

1

; : : : ; H

d

and obtain a di�erent onstrution H

j

, j = 1; 2; : : : ; 2

d

. For eah of them the set

of l olors with m

~

(V;H

j

) = O(n

i�1

i

) might be di�erent. Beause of symmetry any �xed olor

~ ours l times out of the 2

d

with m

~

(V;H

j

) = O(n

1�1=i

).

Now we use the produt onstrution to multiply these 2

d

systems. For the resulting family

(V

�

;H

�

) the values m

~

(V

�

;H

�

) average out for every olor ~,

m

~

(V

�

;H

�

) =

2

d

Y

j=1

m

~

(V;H

j

) = O

�

n

l

i�1

i

+(2

d

�l)

�

= O

�

N

1�

l

i2

d

�

;

where N = jV

�

j = n

2

d

Assuming the next lemma on the value of l (as a funtion of i) the �rst statement of

Theorem 8 follows. For the last statement of the theorem notie that with the hoie i =

bd=2 + 10

p

d log d Cherno� bound gives

P

i�1

j=0

�

d

j

�

=(i2

d

) = 2=d � O(

q

log d=d

3

) where the O

is with respet to d. 2

Lemma 11 If W � IR

d+1

is an i-dimensional subspae in general position with respet to

the oordinate axes, then W nontrivially intersets exatly 2

P

i�1

j=0

�

d

j

�

of the 2

d+1

orthants of

IR

d+1

.

Proof. The intersetions of the d + 1 oordinate hyperplanes of IR

d+1

with W are d + 1

(i�1)-dimensional subspaes ofW in general position. Thus ounting the (d+1)-dimensional

orthants interseted nontrivially by W is the same as ounting the onneted parts IR

i

is ut

by d+ 1 subspaes of dimension i� 1 in general position.

Our formula for this number an easily be established by a reurrene relation. We tried

to �nd the oldest referene instead. In 1852 L. Shl�ai [6℄ proved that j aÆne hyperplanes in

general position partition the Eulidean k-spae into a(j; k) =

P

k

t=0

�

j

t

�

parts. Notie that he

uses aÆne subspaes and we use linear subspaes. We partition the i-spae by d + 1 linear

subspaes of dimension i� 1. Fix one of the subspaes S and onsider aÆne hyperplanes S

1

and S

2

parallel to S that lie on di�erent sides of S. Clearly eah part of the i-spae intersets

exatly one of S

1

or S

2

, thus the number of parts in our partition is the total number of parts

S

1

and S

2

is partitioned by the other d of our subspaes. As the subspaes di�erent from S

interset S

1

and S

2

in aÆne subspaes in general position we have that both S

1

and S

2

is

partitioned into a(i� 1; d) parts, proving the theorem. 2

In Theorem 8 the value of e

d

is de�ned with the help of the dimension parameter i. The

onstrution in the proof works for eah value 1 � i � d + 1 and hoosing i optimally yields
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the exponent e

d

. Observe that the hoie i = d + 1 provides a version of Constrution 1

from the Introdution. By hoosing i = d we obtain a onstrution beating the random one

even for small values of d. For d = 2, 3, and 4 this is the optimal hoie for i and we get

m(n; 2) = O(n

5=8

); m(n; 3) = O(n

17=24

); and m(n; 4) = O(n

49=64

). For d = 5, the optimal

hoie is i = 4 that yields m(n; 5) = O(n

51=64

). For large values of d the optimal hoie for i is

d=2+O(

p

d log d) yielding e

d

= 1�

2

d

+O

�

p

log d

d

3=2

�

, where the O notation refers to asymptotis

in d.

5 Conluding Remarks and Open Problems

Remarks.

1. It would seem natural to try to prove the result of Theorem 3 for the average of jB

~

j's

over all the 2

d

olors ~, where B

~

� V is a ~-free subset of maximum size. This is not

possible beause there are ounterexamples with two partitions, where

4

P

i=1

jB

i

j < 4n

2=3

. An


(n

1�1=(k+1)

) bound trivially follows from Theorem 3 for the average of all the 2

d

olors.

2. Our argument gives a similar result for a oloring indued by 2 linear orderings and d� 1

partitions.

3. Sine the proof of the urrent best lower bound for m(n; 2) provides a subset of size n

1=2

ontaining only 2 of the 4 olors, it seems reasonable to onjeture, that lim

n!1

m(n; 2)=n

1=2

=

1. We don't know anything better for large d either. As a �rst step it would even be

interesting to see whether there is a onstant d for whih lim

n!1

m(n; d)=n

1=2

=1.
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