
Multi-Prover Enoding Shemes and Three-Prover Proof

Systems

G�abor Tardos

�

Mathematial Researh Institute of the

Hungarian Aademy of Sienes

Pf: 127, Budapest, H-1364 Hungary

e-mail: tardos�s.elte.hu

Abstrat

Suppose two provers agree in a polynomial p and want to reveal a single value y = p(x) to a veri�er

where x is hosen arbitrarily by the veri�er. Whereas honest provers should be able to agree on any

polynomial p the veri�er wants to be sure that with any (heating) pair of provers the value y he reeives

is a polynomial funtion of x. We formalize this question and introdue multi-prover (quasi-)enoding

shemes to solve it.

Using multi-prover quasi-enoding shemes we are able to develop new results about interative proofs.

The best previous result appears in [BGLR℄ and states the existene of one-round four-prover interative

proof systems for the languages in NP ahieving any onstant error probability with O(logn) random

bits and poly(log logn) answer size. We improve this result in two respets. First we derease the

number of provers to three, and then we derease the answer-size to a onstant. Using unrelated (parallel

repetition) tehniques the same was independently and simultaneously ahieved by [FK℄ with only two

provers. When the error-probability is required to approah zero, our tehnique is more eÆient in

the number of random bits and in the answer size. Showing the fast progress in this entral topi of

theoretial omputer siene in the short time sine these results were ahieved Raz's proof of the parallel

repetition onjeture [R℄ lead to further improvements in the parameters of interative proofs for NP

problems.

1 Introdution

It was established in the past few years that there is a wide ranging and deep onnetion between

multi-prover interative proofs and transparent proofs on the one hand, and the hardness of approxi-

mation on the other. It seems that any progress in the �rst area lears the way for new appliations in

the other (f. the surveys [J℄, [B℄).

Two major results in the �rst area assert that (i) every NP-language has transparent proofs veri�able

with on�dene 1 � � using r = O(log n + j log(�)j) random bits via O(j log(�)j) bit-queries (Arora,

Lund, Motwani, Sudan, Szegedy [ALMSS℄, Arora, Safra [AS℄); (ii) every NP-language has one-round

interative proofs with on�dene 1 � � with a bounded number p of provers, where the veri�er uses

r = O(log n � j log �j) random bits and the answer of eah prover has length � a. The values of the

parameters p and a are ritial for the appliations. Lapidot, Shamir [LS℄ obtained this result with

p = 4 provers and a = poly(logn; log �) answer size; Feige, Lov�asz [FL℄ redued the number of provers

�

The author was visiting the Automation and Computation Institute of the Hungarian Aademy of Sienes, DIMACS

Center and the University of Toronto while part of this researh was done. The author is partially supported by NSF

grants CCR-92-00788, CCR-95-03254 and the (Hungarian) National Sienti� Researh Fund (OTKA) grant F 014919

1

to p = 2 while retaining the polylogarithmi answer size. Bellare, Goldwasser, Lund, Russell [BGLR℄

redued the answer size to a = poly(log logn; log �) while requiring p = 4 provers.

The following folklore onjeture on the ultimate interative proof ombines the strongest aspets of

the results (i) and (ii).

Conjeture. Every NP-language has one-round interative proofs with on�dene 1 � � with p = 2

provers, where the veri�er uses r = O(log n + j log �j) random bits and the answer of eah prover has

length a = O(j log �j).

We ahieve the same with p = 3 provers for �xed on�dene (Theorem 10). Independently Feige and

Kilian [FK℄ ahieved this with two provers using a form of parallel repetition. In ase the on�dene

parameter � goes to zero our tehnique uses both fewer random bits (O(log nj log �j)) and smaller answer

size (O(log

3

�)) than theirs (log n poly(1=�) and poly(1=�)). The best previous result was in [BGLR℄ that

used four provers and had answer size (for �xed on�dene) poly(log logn).

Subsequent to our result Raz [R℄ proved the parallel repetition onjeture and that lead to one-round

interative proofs for NP languages with p = 2 provers, a = O(j log �j) answer size where the veri�er

uses r = O(log nj log �j) random bits to ahieve on�dene 1� �.

Although Raz's result improves upon the parameters of the MIP's in this paper the totally unrelated

proof tehniques here may all for interest. We also onsider multi-prover enoding shemes (MES)

introdued in this paper being of independent interest. Parallel repetition tehniques seem to be harder

to apply for them. Very roughly MES an be thought of as the enoded theorems version of two-prover

interative proofs.

In a MIP for a language L the honest provers enode a \proof" for the statement \x 2 L". A MIP

is required to enode a single bit of information about the proof, namely its validity.

In ontrast MES provers enode a funtion from a given family and the veri�er must be able to

evaluate the funtion at the value (hekpoint) of his hoie. The main point here is that even with

heating provers the answer as a funtion of the hekpoint must be in the family. In other words the

provers must evaluate the same funtion no matter what value the veri�er is asking for.

A preliminary version of this paper appeared in the Proeedings of the 9th Annual Struture in

Complexity Theory Conferene [T℄.

2 Notation

The input (known both to the provers and the veri�er of an interative proof or enoding sheme)

is usually denoted by x. We reserve n to denote the length of x. Below we list the other parameters

ourring in this paper.

� The parameters of multi-prover interative proofs (MIP's) and multi-prover (quasi-)enoding

shemes (MES's, MQS's) (Setion 3) are:

r number of random bits used by the veri�er

p number of provers

q length of the queries to the provers (question-size)

a length of the provers' answers (answer-size)

k on�dene parameter, the error probability must be < � = 2

�k

� The parameters of the funtion families (de�ned in Setion 3) are:

t length of the hekpoint T

z length of the output Z

y length of the index of a funtion

2

� In Setion 4 we shall use polynomials over a �nite �eld F to onstrut interative proofs and

enoding shemes. These polynomials have the following parameters:

d number of variables (dimension of domain)

` bound on the total degree (note that for onveniene we deal with polynomials of total degree

stritly less than `, thus ` = 2 orresponds to the linear ase)

m number of polynomials the veri�er needs to evaluate simultaneously (Setion 5)

All these parameters and even the size of the �eld F are funtions of the input x. We suppose that

all of them are

| positive integers

| polynomially bounded in n

| polynomial time omputable

The error probability � = 2

�k

may depend on the input. However keeping it a onstant ensures that

the number of random bits used is O(log n) whih is ruial for all NP-hardness appliations.

We use � to denote the binary alphabet f0; 1g throughout this paper.

A funtion E : �

�

! �

�

is a good enoding funtion if it is

| polynomial time omputable

| E(�

n

) � �

n

for some absolute onstant

| for any x

1

6= x

2

2 �

n

we have �(E(x

1

); E(x

2

)) > Æ where � is the normalized Hamming distane

and Æ > 0 is an absolute onstant.

Good enoding funtions are known to exist (f. [MS, Chapter 10.11℄).

3 De�nition of enoding shemes

We reall the de�nition of the single round multi-prover interative proof systems of Ben-Or, Gold-

wasser, Kilian, and Wigderson [BGKW℄. We use the notation of [BGLR℄. A MIP onsists of p provers

and a veri�er. Eah prover is a funtion from questions to answers: P

i

: �

q

! �

a

where q is the

question-size and a the answer-size. The veri�er is a polynomial time mahine reeiving the input x

and a random string from �

r

. It produes \questions" Q

1

; : : : ; Q

p

from �

q

then it reeives the \an-

swers" P

i

(Q

i

). Finally it aepts or rejets. We say that this proof system aepts a language L � �

�

with error probability � if

(1) (ompleteness) If x 2 L then there exists a set a provers making the veri�er surely aept.

(2) (soundness) If x 62 L then no set set of provers makes the veri�er aept with probability above �.

Let MIP

1

(r; p; a; q; �) stand for the set of languages aepted by suh a proof system.

Multi-prover enoding shemes (MES) generalize interative proofs. Thinking of the following ex-

ample (similar to the one we use in the proof of Theorem 8) may help to understand the de�nition of

the MES. Suppose the provers enode a univariate polynomial g. Here the input x an determine the

�eld F and the degree `. The veri�er must be able to evaluate the funtion g at any point T of the �eld

with the help of a single question to eah honest prover. He wants to be sure that even with heating

provers the answer he is getting (when not athing the provers) is a degree ` polynomial of T .

De�nition: By funtion family F we mean a olletion F

x

of funtions g : �

t

! �

z

for all strings

x 2 �

�

. Here the parameters t = t(x) and z = z(x) depend on x. We all a funtion family polynomial

3

if the funtions in F

x

an be indexed by the strings �

y

suh that from x, the index of the funtion

g 2 F

x

and T 2 �

t

the value g(T) is polynomial time omputable, and furthermore all the parameters

t = t(x), z = z(x), y = y(x) are polynomially bounded and polynomial time omputable.

A multi-prover enoding sheme (MES) onsists of p provers and a veri�er. The provers are funtions

P

1

; : : : ; P

p

: �

q

! �

a

just as in a MIP. The provers \see" x and the funtion g 2 F

x

they want to

enode (the funtions P

i

depend on them) but not T . The veri�er is polynomial time mahine reading

a hekpoint T 2 �

t

in addition to the input x and the random string R 2 �

r

. It produes the

p queries from �

q

and then reeives the answers from the provers. Finally it produes an output

Z = Z(x;R; T; P

1

: : : ; P

p

) 2 �

z

[frejetg.

We say that the protool desribed is an �-error MES for the funtion-family F if

(i) (ompleteness) for all x and g 2 F

x

there exist provers P

1

; : : : P

p

suh that for all hekpoints

T 2 �

t

and random strings R 2 �

r

we have

Z(x;R; T; P

1

; : : : ; P

p

) = g(T)

(ii) (MES soundness) for all x and provers P

1

; : : : ; P

p

there exists a funtion g 2 F

x

suh that for all

hekpoints T 2 �

t

Prob

R2�

r

�

Z(x;R; T; P

1

; : : : ; P

p

) 62 fg(T); rejetg

�

< �

Note that soundness means that we an interpret any set of provers as a (perhaps imperfet) attempt

to enode a spei� funtion in the family. We all the proess of �nding that funtion the deoding.

Deoding is more obvious in the following de�nition.

A multi-prover quasi-enoding sheme (MQS) for the funtion family F with parameters q, a, r, �

has the same struture as a MES and it satis�es the same ompleteness riterion (i) but the following

di�erent soundness riterion (ii

0

):

(ii

0

) (MQS soundness) For all x and all last provers P

p

there is a (deoding) funtion g : �

r

! F

x

suh that for all sets of provers P

1

; : : : ; P

p�1

and all hekpoints T 2 �

t

Prob

R2�

r

�

Z(x;R; T; P

1

; : : : ; P

p

) 62 fg(R)(T); rejetg

�

< �

The above de�nition of the MQS is neither stronger nor weaker than that of the MES. At an MQS

the deoding depends on the random string R (this is similar to the de�nition of a quasi-orale in [LS℄).

But the deoding does not depend on the �rst p� 1 provers.

Below all MQS have p = 2 provers unless otherwise stated.

4 Existene of the enoding shemes

The main result of this setion is a saled down version of [FL℄ to ahieve a MQS for any polynomial

funtion family F . We start with a transparent-proof-like version of MES (Lemma 1). Take any

polynomial funtion family F . Let the parameters of F be y, t, and z. Take a good enoding funtion

E. We de�ne a \transparent enoding" of the funtions in F

x

. For a funtion g 2 F

x

with index Y

we de�ne E

�

(g) to onsist of Y

0

= E(Y) and a transparent proof for eah T 2 �

t

for the fat that

\Y

0

enodes the index of a funtion mapping T to Z

T

", where Z

T

is the orret value of g(T). We do

not enode T and Z = Z

T

as the veri�er reeives them as part of its input. The length of E

�

(g) is

y

�

= 2

t

poly(n).

Lemma 1. There exists the following type of a polynomial time veri�er V . On input (x; T; Z) V uses

O(log n) random bits, deides whih O(1) bits to read from a string Y

�

2 �

y

�

. This hoie does not

depend on Z. After reading the seleted bits it aepts or rejets. Furthermore V satis�es

4

(a) if Y

�

= E

�

(g) for some g 2 F

x

with Z = g(T) then V aepts with probability 1;

(b) for any x and Y

�

2 �

y

�

there is a g 2 F

x

suh that for all T and all Z with g(T) 6= Z the

probability of aeptane is < 1=2

The proof is a straightforward appliation of [ALMSS℄ using the enoded theorems model of [BFLS℄.

This version is impliit [ALMSS℄ and an be expliitly found in the survey [B℄ (Theorem 5.6) or in

Polishhuk and Spielman's paper [PS℄ (setion 10).

Lemma 2. Let F be a polynomial funtion family with parameters y, t and z and let k be any

parameter. Then there exists a MES for F with z + O(k) provers, using O(k logn) random bits. The

question-size is t+O(log n), the answer-size is 1, and the error probability is at most 2

�k

.

Proof: We start with the transparent enoding E

�

(g) of g in Lemma 1. We use the �rst z provers to

tell the veri�er Z = g(T). Following the standard tehniques of [FRS℄ (for valid proof, see [BFL℄) we

an replae the onstant number of queries to E

�

(g) with a onstant number of provers. The number

of random bits used is still O(log n) and the error-probability inreases to a onstant below one. O(k)

parallel repetition (with di�erent set of provers) gives the lemma. (Naturally, we do not repeat the �rst

z provers.) �

In Lemma 4 we deviate slightly from the tehniques of [FL, LS℄. We shall need the following tehnial

de�nition and lemma:

De�nition: Let F be a �nite �eld, f : F ! F an arbitrary funtion, x 2 F and ` � 0 an integer.

We de�ne f

x`

the best � ` degree approximation for f at x to be the polynomial that oinides with f

for the most values x

0

2 F among all � ` degree polynomials e satisfying e(x) = f(x). We break ties

arbitrarily.

Lemma 3. For any funtion f : F ! F and any polynomial e of degree � ` we have

Prob

x2F

�

e(x) = f(x) but e 6= f

x`

�

<

p

2`=jF j

Proof: The proof is a simple ounting argument using that two di�erent polynomials of degree � `

annot agree on more than ` values. Let a = jfx 2 F jf(x) = e(x)gj. Let S be the set of all � ` degree

polynomials agreeing with f on at least a di�erent values. We denote the number of polynomials in

S agreeing with f at a value x 2 F by g(x). We have

P

x

g(x) � jSja. Let us take two di�erent

polynomials from S and a value x 2 F . We ount the number of times the polynomials agree on x.

This is at most

�

jSj

2

�

` as two polynomials from S agree on at most ` values. On the other hand if we

hoose x �rst we an hoose the two polynomials in

�

g(x)

2

�

di�erent ways to ensure both agree with f

at x, therefore

�

jSj

2

�

` �

X

x

�

g(x)

2

�

If a <

p

2jF j` then the statement of the lemma is trivial. Elementary alulation gives that if on the

other hand a �

p

2jF j` then jSj <

p

2jF j=`. As any polynomial in S other than e agrees with e on at

most ` values, therefore the number of di�erent values of x satisfying the ondition in the lemma is at

most `(jSj � 1) <

p

2jF j` so the statement of the lemma is true again. �

For any question-size q let us take a �eld F , a dimension d, a polynomial time omputable (injetive)

funtion h : �

q

! F

d

and a degree ` suh that the following ondition holds:

(*) For any funtion P : �

q

! F there is a polynomial f : F

d

! F of degree < ` suh that for any

Q 2 �

q

we have P (Q) = f(h(Q)).

Lemma 4. Let F be a funtion family. Suppose there is a MES for F with p provers, r random

bits, q question-size, and � error. Suppose that a hoie of F , d, h and ` satisfy (*). Suppose that

5

the answer-size in the MES for F is a < log jF j. Then there is a MQS for F with 2 provers, using

r+pd log jF j random bits, asking questions of size 2pd log jF j, reeiving an answer of size p` log jF j from

the �rst prover and an answer of size p log jF j from the seond prover and ahieving error probability

< �+ p

p

2`=jF j.

Our protool follows the struture of the protools in [LS℄ and [FL℄. In these protools (and in ours)

the veri�er hooses a random p-tuple R

V

of points in F

d

to be the query it sends to the seond prover

and uses additional randomness to simulate the MES veri�er and produe the query to the �rst prover.

The major di�erene is in the proof of soundness. For the proof we have to deode the provers' strategy

through �nding MES-provers that our MQS-provers are lose to. These MES-provers may depend on

the hoie of R

V

. [FL℄ de�ned the \deoded" prover P

i

at a question Q

i

2 �

q

using both prover's

response when the veri�er behaves randomly onditioned on the given hoie of R

V

and Q

i

. We are

not able to do this here as the distribution of the queries depends on T and our de�nition of P

i

must

not depend on the hekpoint. Therefore we use the seond prover's response to queries very lose to

R

V

to de�ne the deoded P

i

. This has the added advantage of making the deoding depend only on

the seond prover's strategy. We have built this advantage into the de�nition of the MQS.

Proof: We desribe the veri�er. In brakets we tell what the honest provers should do to enode

g 2 F

x

.

[The provers onsider the strategies of the honest provers of the MES enoding of g. These are

funtions P

i

: �

q

! �

a

for i = 1; : : : ; p. We suppose �

a

� F . They onsider < ` degree polynomials

f

i

: F

d

! F satisfying P

i

(Q) = f

i

(h(Q)) for all Q 2 �

q

.℄

The veri�er produes the p queries Q

1

; : : : ; Q

p

asked by the MES-veri�er. He also produes the same

number of random points R

V

= (V

1

; : : : ; V

p

) in F

d

. He sends a anonial representation of the lines

L

i

: F ! F

d

through h(Q

i

) and V

i

to the �rst prover and the points V

i

to the seond prover.

[The �rst prover's response is the set of the univariate polynomials f

�

i

= f

i

(L

i

). The seond prover's

response is the set of values v

i

= f

i

(V

i

).℄

The veri�er �nds values x

i1

suh that L

i

(x

i1

) = V

i

and heks if v

i

= f

�

i

(x

i1

), outputs rejet and

halts if one of these onsisteny heks fails. Otherwise it �nds values x

i0

with L

i

(x

i0

) = h(Q

i

) and

uses the values f

�

i

(x

i0

) as answers from the p MES-provers and outputs what the MES-veri�er outputs.

Completeness of this protool is now lear. It is also easy to hek that the parameters laimed in

the lemma are orret.

In the rest of the proof we prove soundness (ondition (ii

0

)). Let us �x the seond prover. We

de�ne funtions P

i

: (F

d

)

p

� �

q

! �

a

for i = 1; : : : ; p. Let us take R

V

= (V

1

; : : : ; V

p

) 2 (F

d

)

p

and

Q

i

2 �

q

. Let L

i

be the line through h(Q

i

) and V

i

with x

i0

and x

i1

in F suh that L

i

(x

i0

) = h(Q

i

)

and L

i

(x

i1

) = V

i

. For u 2 F let us get R

V

(u) from R

V

by replaing the ith oordinate V

i

by L

i

(u).

Let the funtion f : F ! F be de�ned by f(u) being the ith value in the seond prover's answer for

the question R

V

(u). Now take P

0

i

(R

V

; Q

i

) to be the best < ` degree approximation of f at x

1i

and let

P

i

(R

V

; Q

i

) = P

0

i

(R

V

; Q

i

)(x

i0

).

Consider the provers P

i

(R

V

; Q

i

) for any �xed set of points R

V

. Using the soundness for the MES

we started with there is a funtion g = g(R

V

) 2 F

x

suh that for every T 2 �

t

the veri�er in the

MES onfronted with these provers and T will output something di�erent from g(T) and rejet with

probability less than �. The deoded funtion g we obtained here depends on R

V

whih is part of the

random string used, and on the seond prover as required.

In our protool error an ome from two soures. Either the simulated MES makes the error, or the

simulation fails, that is the �rst prover's response deviates from P

0

1

(R

V

; Q

1

); : : : ; P

0

p

(R

V

; Q

p

) what or

\deoding" gave. We have just bounded the probability of the �rst and Lemma 5 (below) bounds the

probability of the seond type of error. This proves the soundness. �

Lemma 5. For any x, T and any two provers in the protool in Lemma 4 the probability of the

�rst prover's answer being di�erent from P

0

1

(R

V

; Q

1

); : : : ; P

0

p

(R

V

; Q

p

) without the veri�er athing the

provers in the onsisteny heks is less than p

p

2`=jF j.

6

Proof: We prove that the probability for a given index i that the ith part of the �rst prover's response

is di�erent from P

0

i

(R

V

; Q

i

) without being aught in the onsisteny hek is less than

p

2`=jF j. The

lemma follows from summing for all i.

We break down the probability spae aording to all the questions Q

j

(j = 1; : : : ; p) the points V

j

for j 6= i and even aording to the line L

i

going through h(Q

i

) and V

i

. We prove that onditioned

on any ombination of values for these objets the onditional probability of the ith part of the �rst

prover's response deviating from P

0

i

(R

V

; Q

i

) without being aught is less than

p

2`=jF j. This of ourse

implies the same bound for the total probability.

After all the onditions the only thing random is V

i

whih is a random point on the line L

i

. The �rst

prover's answer is now �xed. Let as all the ith part of it e. Let us all f(u) the ith part of the seond

prover's answer when V

i

= L

i

(u). The onsisteny test is passed if f(u) = e(u) with the random value

u = L

�1

i

(V

i

). We have the deviation in the ith oordinate if e is not the best < ` degree approximation

of f at u. Lemma 3 bounds the probability of these two things happening together. �

Here we state what Lemma 4 gives when F , d, h, and ` are hosen the simplest way, i. e. when h is

the identity.

Theorem 6. Let F be a polynomial funtion family with the parameters y � poly(n), t � poly(logn),

z � poly(logn) and let k � poly(logn). Then there exists a 2-prover MQS for F using poly(logn)

random bits, with question- and answer-sizes poly(logn) ahieving error probability 2

�k

.

Proof: We start with Lemma 2 and get a MES using p = poly(logn) provers, poly(logn) randomness,

the question-size is q = poly(logn), answer-size is 1 and error probability < 2

�k�1

. Let d = q, ` = d+1,

and jF j > 2

2k+3

`p

2

(but, say smaller than twie that). We an hose h to be the identity as any funtion

�

d

! F has a multilinear extension F

d

! F , so (*) is satis�ed. The error probability of the MQS

given by Lemma 4 is < 2

�k�1

+ p

p

2`=jF j < 2

�k

. It is easy to hek that all other parameters of the

two-prover MQS are poly(logn). �

5 Three-prover proof systems

In this setion we give eÆient three-prover proof systems for NP with poly(log logn) answer size

(Theorem 8). The nie and simple idea of this proof will help to understand the onstant answer size

proof systems (Theorem 10) in the next setion.

We start with an overview of the proof. The straightforward modi�ation of [FL℄ (saling down

from NEXPTIME to NP and hanging multilinear enoding to multi-lowdegree enoding as in [BFLS℄)

gives Lemma 7, a two-prover proof system for NP using O(log n) random bits and log

2

n answer-size to

ahieve any onstant error probability. This appears in [BGLR℄ in detail. In fat taking a loser look

one may realize that one of the provers gives a very short O(log logn) long answer. The length of the

other prover's answer is log

2

n. (Or for that matter this length an be made log

n for any > 1 by

making h = max(k; (�1) log logn) in the lemma, but that is still too long.) In fat this answer ontains

a onstant number of polynomials of degree log

2

n= log logn over a �eld F of size jF j = poly(logn).

The veri�er uses two values of eah of these polynomials in deiding whether to aept or to rejet.

(It is important here that the veri�er knows whih values it will use before it reeives the answers.)

This makes it possible to replae this prover by two provers providing a quasi-enoding sheme for this

answer. This is an [AS℄-type reursion, inreasing the number of provers to 3.

Lemma 7. [BGLR℄ Let k = O(log n) and h = max(k; log logn). Then there are parameters r =

O(k logn), a = O(k logn2

h

) and q = O(k logn) suh that NP �MIP

1

(r; 2; a; q; 2

�k

).

We shall need further details from the protool proving this. There is a �eld F of size 2

O(h)

, the �rst

prover gives O(k) polynomials over F of degree O(2

h

=h logn) the seond prover gives O(k) values. The

veri�er �rst extrats one value of eah polynomial and ompares them to the values the seond prover

gave. If they di�er he rejets. Otherwise he extrats another value of eah polynomial heks if they

7

are 0 and uses these O(k) bits as input of an O(k) size Boolean iruit, aepts if the iruit omputes

1.

Theorem 8. For any k � poly(log logn) there are parameters r = O(k logn), q = O(k logn), and

a = poly(log logn) suh that NP �MIP

1

(r; 3; a; q; 2

�k

).

Proof: Take any language L 2 NP . We are going to refer to the MIP protool of Lemma 7 (with

k + 1 in plae of k) for L as the original protool and design a new MIP protool with three provers.

The only problem with the original protool is the �rst prover's long answer. This answer onsists of

m = O(k) polynomials. The veri�er uses two values per polynomial only, so it is a natural idea to

enode the answer using MQS for the following funtion family F .

� The input x̂ of size n̂ ontains the size of a �eld F , jF j � poly(n̂), a number m = O(log n̂) and

` = poly(n̂) (and lots of padding).

� A funtion g 2 F

x̂

is indexed by an m-tuple of polynomials (Y

1

; : : : ; Y

m

) of degree < ` over F .

� A hekpoint T onsists of the values T

ij

2 F for i = 1; : : : ;m, j = 0; 1.

� The output Z = g(T) ontains Z

ij

= Y

i

(T

ij

) for i = 1; : : : ;m, j = 0; 1.

This funtion family F is learly polynomial, so by Theorem 6 there exists an MQS for it with all

its parameters being poly(log n̂) ahieving on�dene 1� 2

�

^

k

with any

^

k = poly(log n̂).

Now we transform the original protool. The seond prover remains intat. We replae the �rst

prover by two provers say provers A and B. Here is how the veri�er works. In brakets we give the

honest provers' strategy.

The veri�er omputes the questions Q

1

for the �rst prover and Q

2

for the seond provers in the

original protool. He sends Q

2

to the seond prover but as the �rst prover does not take part in the

protool the veri�er has to work some more. He also omputes the points where the original veri�er

would evaluate the m = O(k) polynomials of degree < ` in the �rst prover's answer. These 2 points per

polynomial onstitutes T . Now he takes the MQS protool for F , �nds (a anonial) x̂ of size n̂ = logn

desribing the orret F , m and ` and omputes the two queries Q

A

and Q

B

aording to the MQS

with on�dene parameter

^

k = k + 1. He sends Q

1

and Q

A

to prover A and Q

1

and Q

B

to prover B.

[The seond prover responds as in the original protool. Provers A and B ompute x̂ and behave as

the honest provers behave in the MQS for F on input x̂ when enoding the funtion indexed by the

�rst prover's answer to Q

1

.℄

The veri�er uses the answers of prover A and B to simulate the MQS-veri�er. If it outputs rejet

then he also rejets. Otherwise he uses the result Z as if it was what the polynomials in the �rst prover's

response evaluate to. He follows the simulation of the original protool and aepts or rejets as it does.

The ompleteness is easy to see again. The parameters laimed are also easy to verify. For example

the number of random bits used in produing Q

1

and Q

2

is r

1

= O(k logn) and to produe Q

A

and Q

B

the veri�er uses r

2

= poly(log logn) more random bits. The same way the answer-sizes and the size of

the additional questions Q

A

and Q

B

are also poly(log logn)

The soundness is left to be proven. Suppose x 62 L. By the de�nition of the MQS for any Q

1

there is

a funtion g

Q

1

: �

r

2

! F

x̂

suh that for any T the probability for random oinipps R

2

in the seond

part Prob

R

2

(Z 62 fg

Q

1

(R

2

)(T); rejetg) < 2

�k�1

. As g

Q

1

(R

2

) 2 F

x̂

is indexed by a possible answer of

the �rst prover, for any �xed R

2

we an onsider g to be a funtion from the questions (Q

1

) to the

answers of the �rst prover. This is a strategy for the �rst prover, thus taking it together with the seond

prover's strategy they yield aeptane with probability < 2

�k�1

by the soundness of the original pro-

tool. Aeptane an ome from two errors, either Z = g

Q

1

(R

2

)(T) (and the original protool makes

an error), or Z 62 fg

Q

1

(R

2

)(T); rejetg (the MQS protool errs) and the probability of either is less than

2

�k�1

. So the total probability of an input x 62 L being aepted is < 2

�k

. �

8

6 Constant answer-size

In this setion we redue poly(log logn) answer-size of Theorem 8 to a onstant (Theorem 10). Our

starting point is the MIP in Lemma 7 again. We redue the answer-size by replaing both provers by a

two-prover quasi-enoding sheme eah enoding what their answer would be, the same way we replaed

one of them in the preeding setion. The number of the resulting four provers an be dereased to

three by \merging" the �rst provers of eah sheme. This does not ause a problem sine the seond

prover alone is enough for the deoding. This is the only point in this paper where we make use of this

feature of an MQS.

There are several problems to overome to implement the strategy outlined above. First we annot

use an enoding sheme for the same funtion family F as in the preeding setion as the output of that

is several elements of the �eld F used in the two-prover MIP, eah of length log logn so we ould not

hope for shorter answer-size. To overome this diÆulty we use a good enoding funtion E to enode

the output and only ask for a randomly hosen onstant number of bits from the result.

Even after reduing the size of the output of the funtion family we annot use Theorem 6 to get

a onstant answer-size MQS. We have to go bak to Lemma 4 and �nd better values of F , d, and `

satisfying (*). In order to get onstant answer-size jF j and ` must be onstants. As the total number of

random bits must be kept O(log n) the dimension d has to be O(log n). (Here n is the size of the input

for the MIP, not the size of the input of this funtion family.) The tehnique of [ALMSS℄ (last step of

the reursion, robust enoding) is appliable here, yields linear funtions (` = 2) but only allows for an

enoding of a witness of length O(log n). As the �rst prover's answer in the Lemma 7 MIP is longer,

we must use a di�erent tehnique. A simple observation allows us to enode longer, poly(logn) length

witnesses with onstant `, jF j and answer-size (Theorem 9). We remark here that the same trik an

be used in the [ALMSS℄ proof to save one of the three steps of the reursion there.

Theorem 9. Let F be a polynomial funtion family. Let k be a parameter and suppose the parameters

of F satisfy y � poly(n), t = O(k logn) and z = O(k). Then there exists a MQS for F using O(k

3

p

n)

random bits, with question-size O(k

3

p

n) and with answer size O(k

3

) ahieving error probability < 2

�k

.

Proof: We start with Lemma 2 and get a MES for F with p = O(k) provers, r = O(k logn) random

bits, the question-size is q = O(k logn), the answer-size is 1, and the error probability is < 2

�k�1

. The

hoie of F , d, ` and h in Theorem 6 does not suÆe here, we have to hoose them di�erently. First and

foremost we want to keep ` down, but we also want to keep the number of random bits under ontrol.

Let s = q= logn. We take d = 2s

p

n, ` = 2s + 1, jF j > 2

2k+3

`p

2

(but at most twie as muh).

Let us hoose h : �

q

! F

d

to be polynomial time omputable injetive funtion suh that its image

ontains only points with 2s oordinates 1 and the rest 0. Suh funtion exists as we were areful

enough to ensure

�

d

2s

�

> 2

q

. There exists a degree 2s monomial for any point in h(�

q

) making it 1

and making all other point in h(�

q

) 0, so any funtion on h(�

q

) an be extended to F

d

to a polyno-

mial of degree 2s. This makes our hoie of h and ` satisfy the ondition they have to for Lemma 4 to

apply. It is easy to hek that the parameters Lemma 4 gives are the ones we laimed in the theorem. �

Theorem 10. Let k = O(log logn) be a parameter. Then there are parameters r = O(k logn),

q = O(k logn) and a = O(k

3

) suh that NP �MIP

1

(r; 3; a; q; 2

�k

).

We remark here that the proof of the parallel repetition theorem [R℄ improves this result in two

respets. It dereases the number of provers to two and the answer-size to O(k). The onjeture in

the introdution alls for further improvement in the number of random bits to O(k + logn). Suh

improvement is not likely to be possible via parallel repetition tehniques (f. [FK2℄).

Before the formal proof we give an outline and de�ne the funtion families used in the protool.

As in the proof of Theorem 8 we are going to use our provers in pairs to enode the two provers'

response in the Lemma 7 MIP for the same NP language. The �rst prover response onsists of m

polynomials, and the veri�er uses two values per polynomial, one for onsisteny hek against the

seond prover's response, the other as input to evaluate a small Boolean iruit. We must make our

funtion family's output short, therefore it's natural to build the iruit in the hekpoint so the output

9

of the funtion family ontains only the output of the iruit rather than its input. For the onsisteny

hek we use a good enoding funtion for the strings that should be equal in the two provers' answers

and build in the hekpoint a few positions of the enoded string and let the output of the polynomial

funtion families ontain the so de�ned substring only.

Let us �x a good enoding funtion E. Let the absolute onstant be the expansion of E, i. e.

jE(Y)j = jY j. We start with desribing the funtion families we are going to use in this onstrution.

We use F

0

to enode the �rst prover's response, and F

00

to enode the seond prover's response. Here

we de�ne F

0

:

� The input x̂ of length n̂ for F

0

ontains the size of a �eld F , jF j � poly(n̂); and parameters

m = O(log n̂), ` � poly(n̂), and z = O(log n̂) (and padding).

� A funtion g 2 F

0

x̂

is indexed by an m-tuple of univariate polynomials (Y

1

; : : : ; Y

m

) of degree < `

over F .

� A hekpoint T onsists of elements T

ij

2 F for i = 1; : : : ;m, j = 0; 1; z bit-positions from

f1; : : : ; m log jF jg; and an O(m) size Boolean iruit C on m input variables.

� To ompute the output Z = g(T) �rst ompute the onatenation of the values Y

i

(T

i1

) 2 F . Let

us all Z

0

this string of length m log jF j. The �rst z bits of the output ontain the bits from E(Z

0

)

spei�ed in T . The last bit of the output is the output of the iruit C on the input bits that are

the truth values of Y

i

(T

i0

) = 0. So, onfusingly, the length of the output is z + 1.

Let us desribe F

00

now.

� The input x̂ of length n̂ for F

00

ontains two numbers y

2

� poly(log n̂) and z = O(log n̂) (and

padding).

� The funtions g 2 F

00

x̂

are indexed with strings Y of length y

2

.

� A hekpoint T ontains z bit-positions from f1; : : : ; y

2

g.

� The output Z = g(T) is the z bits appearing in E(Y) in the positions given by T .

Both F

0

and F

00

are learly polynomial.

Proof of Theorem 10: Let L 2 NP be an arbitrary language. We are going to show that the following

MIP protool works for L and and has the parameters laimed in the theorem.

We will refer to the MIP protool for L in Lemma 7 (with error probability 2

�k�2

) as the original

protool with the �rst and seond provers. Our protool also uses the eÆient MQS for F

0

and F

00

(with error probability 2

�k�2

) laimed in Theorem 9.

We all the three provers of our MIP protool for L prover A, prover 1B, and prover 2B. We desribe

what our veri�er does. In brakets we give the honest provers' strategy.

The protool uses the struture of the original protool desribed after Lemma 7. The veri�er

omputes the �eld F , the degree ` and the number m there. It �nds an x̂

1

of length n̂ = logn

desribing the orret F , m, `, and a number z = O(k). It �nds another x̂

2

of the same length

desribing y

2

= m log jF j and z.

[As all this omputation was based on x alone we may suppose the provers \know" x̂

1

and x̂

2

.℄

� The veri�er simulates the original veri�er and omputes the queries Q

1

for the �rst prover and

Q

2

for the seond.

� It omputes the two plaes T

i0

and T

i1

where the original veri�er would evaluate the ith polynomial

in the �rst prover's answer. Let us all T

0

the onatenation of all these plaes (as strings) for

i = 1; : : : ;m.

� It also omputes the iruit C the the original veri�er would use.

10

� Using new random bits the veri�er produes T

2

, a sequene of z random elements from f1; : : : ; y

2

g.

� The veri�er then simulates the MQS for F

0

on input x̂

1

with the hekpoint T

1

being the on-

atenation of T

0

, T

2

, and C. It omputes the queries Q

1A

and Q

1B

� It also simulates the MQS for F

00

on input x̂

2

with the hekpoint T

2

and omputes the queries

Q

2A

and Q

2B

� The veri�er sends Q

1

, Q

2

, Q

1A

, and Q

2A

to prover A. It sends Q

1

and Q

1B

to prover 1B. Finally

it sends Q

2

and Q

2B

to prover 2B.

[Provers A and 1B both reeive Q

1

so they \know" the honest �rst prover's answer Y

1

in the original

protool. Their answers A

1A

and A

1B

are the answers of the honest MQS-provers for F

0

enoding the

funtion indexed by Y

1

.

The same way provers A and 2B an simulate the honest MQS-provers enoding the funtion from

F

00

x̂

2

indexed by the honest seond prover's answer Y

2

to Q

2

. Their answers are A

2A

and A

2B

.

As prover A partiipated in both simulation, its �nal answer is a onatenation of A

1A

and A

2A

.℄

The veri�er uses A

1A

and A

1B

to simulate the MQS for F

0

and produes an output Z

1

. It uses A

2A

and A

2B

to simulate the MQS for F

00

and produes as output Z

2

. It rejets if any of these onditions

hold:

� Z

1

or Z

2

is rejet,

� the �rst z digits of Z

1

does not equal to Z

2

,

� the last digit of Z

1

is 0.

Otherwise the veri�er aepts. This �nishes the desription of our protool.

The ompleteness is easy to see. It is also easy to see that the parameters laimed are orret. For

example the random string used by the veri�er has four parts: R

0

used to simulate the original protool,

R

t

used to generate T

2

, the random bit-positions for the onsisteny hek, R

1

used to simulate the

MQS for F

0

, and R

2

to simulate the MQS for F

00

. Here jR

0

j = O(k logn), jR

t

j = O(k log k), and by

Theorem 9 both r

1

= jR

1

j and r

2

= jR

2

j are O(k

3

p

logn).

The rest of this proof is the proof of soundness. Suppose the input x is not in L, therefore it should

be rejeted. Let us �x the three provers. We want to prove that the probability of aeptane is small.

Prover 1B is a funtion taking Q

1

and Q

1B

and returning A

1B

. For any �xed Q

1

this is a strategy for

the last prover in the MQS for F

0

. By the soundness of the MQS there is a funtion g

1Q

1

: �

r

1

! F

0

x̂

1

suh that

Prob(Z

1

62 fg

1Q

1

(R

1

)(T

1

); rejetg) < 2

�k�2

:

Similarly the soundness of the other MQS implies the existene of a funtion g

2Q

2

: �

r

2

! F

00

x̂

2

for any

Q

2

suh that

Prob(Z

2

62 fg

2Q

2

(R

2

)(T

2

); rejetg) < 2

�k�2

:

Let us �x the random strings R

1

and R

2

. The funtion mapping Q

1

to the index of g

1Q

1

(R

1

) is a

strategy for the �rst prover in the original protool. Similarly the funtion mapping Q

2

to the index of

g

2Q

2

(R

2

) is a strategy for the seond prover. By the soundness of the original protool these provers

make the veri�er aept x with probability less than 2

�k�2

.

The aeptane in our protool may ome for four types of errors. We have just proved that three

types of error (error in the original protool or in one of the MQS's) has probability less than 2

�k�2

eah. The last type of error is when our simulation of the original protool fails, but not beause of

an error in one of the MQS's. This an only happen if the polynomials in the (assumed) �rst prover's

answer evaluated at T

1i

as a string di�ers from the (assumed) seond prover's answer, but the random

z bit-positions in their enodings by E agree. As any one bit-position reveals the di�erene with a

positive absolute onstant probability by the hoie of E, we an hoose z = O(k) in suh a way that

this last kind of error has probability less than 2

�k�2

.

11

This makes the total error probability < 2

�k

and the proof omplete. �

It is interesting to see that in the protool desribed above (the relevant part of) the answer of the

Lemma 7 MIP's both provers is ontained in a single prover's answer (prover A). So onsisteny heks

in the simulated MIP are performed between two parts of that answer. What makes the protool still

work is that the two parts of that answer is then heked against di�erent provers (1B and 2B).

7 Further results and open problems

Cubi programming is the problem of maximizing a real polynomial f(x

1

; : : : ; x

n

) of total degree 3

over a ompat region de�ned by linear onstraints: fx 2 R

n

jAx � bg. Let f

�

be the maximum and f

�

be the minimum of f on the feasible region. Here we de�ne

�

f to approximate the maximum within a

fator of if j

�

f�f

�

j � jf

�

�f

�

j. This de�nition is invariant under shifting f with an additive onstant

unlike the de�nition in whih we would ompare

�

f �f

�

to f

�

, f. [V℄. Using the tehniques of [BR, FL℄

our Theorem 8 implies

Theorem 11. For any onstant 0 < < 1 approximating the maximum of a ubi program within

is NP -hard.

The same holds even for quadrati programs by [FK℄.

We believe that the onepts MES and MQS are of independent interest. Although we introdued

them in this paper mainly as tools to help us build eÆient interative proofs, these enoding shemes

(partiularly MES) are oneptually lear and simple objets, thus �nding eÆient enoding shemes

may turn out to be useful beyond the one appliation here. These enoding shemes generalize intera-

tive proofs roughly the way the enoded theorems version of [BFLS℄ generalize transparent proofs.

In the rest of this setion we summarize what we know about enoding shemes and what related

questions are still open. The �rst two theorems provide good MQS's for any polynomial funtion family.

Theorem 12. Let F be a polynomial funtion family, k = O(log n) a parameter, and > 0 a onstant.

Suppose t = O(log n) and z = O(k). Let h = max(k; log logn). Then there is a two-prover MQS for F

using O(k logn) random bits and query-size and O(k logn2

h

) answer size with error probability < 2

�k

.

The proof is a simple appliation of Lemma 4. The way to satisfy the ondition (*) is similar to the

tehnique in the proof of Lemma 7.

Using this theorem instead of Lemma 7 we an extend Theorem 10 to polynomial funtion families.

This is the only time we refer to MQS's with more than two provers.

Theorem 13. Let F be a polynomial funtion family and k = O(log logn) a parameter. Suppose

t = O(log n) and z = poly(k). Then there is a three-prover MQS for F with O(k logn) random bits

and question-size and poly(k) answer size with error probability 2

�k

.

The proof is a straightforward modi�ations of the proof of Theorem 10.

It is an interesting open problem to �nd the equivalent of these theorems (or even Theorem 6) with

MES's in plae of MQS's. We introdued the tehnial de�nition of MQS to irumvent the problem

of �nding eÆient MES's, but the MES is the oneptually lear and natural version of the enoding

sheme. It is frustrating that we are unable to �nd an eÆient solution to the simple problem outlined

in the �rst paragraph of the abstrat without relaxing the natural soundness ondition.

One an also hope for a protool that generalizes both MES's and MQS's.

De�nition: We all a multi-prover enoding sheme strong if the deoding of g in (ii) of the de�nition

of the MES that a-priory may depend on the p provers and the input x in fat depends only on x and

the last prover P

p

.

The following onjeture laims the existene of the strongest possible MES for any polynomial

funtion family that is possible without a ollapse in the omplexity lasses. It is the MES analogue of

the onjeture in the introdution. In fat this onjeture implies the one in the introdution.

12

Conjeture. For every polynomial funtion family g with output size z and for every on�dene

parameter � there is an � error two-prover strong MES that uses r = O(j log �j+ logn) random bits and

has a = O(j log �j+ z) answer size.

Aknowledgments

The author is grateful to L�aszl�o Babai for helpful disussions and enouragement.

Referenes

[ABSS℄ S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in latties,

odes, and systems of linear equations. In: Proeedings of the 34th Annual IEEE Symposium on

Foundations of Computer Siene, 1993, 724{733.

[ALMSS℄ S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�ation and hardness

of approximation problems. In: Proeedings of the 33rd Annual IEEE Symposium on Foundations

of Computer Siene, 1992, 14{23.

[AS℄ S. Arora and S. Safra. Probabilisti heking of proofs. In: Proeedings of the 33rd Annual IEEE

Symposium on Foundations of Computer Siene, 1992, 2{13.

[B℄ L. Babai. Transparent proofs and limits to approximation. In: Proeedings of the First European

Congress of Mathematis, Birkh�auser, to appear.

[BFLS℄ L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Cheking omputations in polylogarithmi

time. In: Proeedings of the 23rd Annual ACM Symposium on Theory of Computing, 1991, 21{31.

[BFL℄ L. Babai, L. Fortnow, and C. Lund. Non-deterministi exponential time has two-prover intera-

tive protools Computational Complexity 1 (1991), 3{40.

[BGKW℄ M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interative proofs: how

to remove intratability assumptions. In: Proeedings of the 20th Annual ACM Symposium on

Theory of Computing, 1988, 113{131.

[BGLR℄ M. Bellare, S. Goldwasser, C. Lund, and A. Russell. EÆient probabilistially hekable proofs

and appliations to approximation. In: Proeedings of the 25th Annual ACM Symposium on Theory

of Computing, 1993, 294{304.

[BR℄ M. Bellare and P. Rogaway. The omplexity of approximating a nonlinear program. n: Complexity

in Numerial Optimization, P. Pardalos, ed., World Sienti�, Singapore 1993.

[FK℄ U. Feige and J. Kilian, Two prover protools | low error at a�ordable rates, Proeedings of the

26th Annual ACM Symposium on Theory of Computing, 1994.

[FK2℄ U. Feige and J. Kilian. Impossibility results for reyling Random bits in two-prover proof sys-

tems. In: Proeedings of the 27th Annual ACM Symposium on Theory of Computing, 1995, 457{468

[FL℄ U. Feige and L. Lov�asz. Two-prover one-round proof systems: their power and their problems. In:

Proeedings of the 24th Annual ACM Symposium on Theory of Computing, 1992, 733-744.

[FRS℄ L. Fortnow, J. Rompel, and M. Sipser. On the power of multiprover interative protools. In:

Proeedings of the 3rd Struture in Complexity Theory Conferene, IEEE, 1988, 156{161.

[J℄ D. S. Johnson. The NP-ompleteness olumn: an ongoing guide. Journal of Algorithms 13 (1992),

502{524.

13

[LS℄ D. Lapidot and A. Shamir. Fully parallelized multi prover protool for NEXPTIME. In: Proeed-

ings of the 32nd Annual IEEE Symposium on Foundations of Computer Siene, 1991, 13{18.

[LY℄ C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. In: Pro-

eedings of the 25th Annual ACM Symposium on Theory of Computing, 1993, 286{293.

[MS℄ F. J. MaWilliams and N. J. A. Sloane. The theory of error-orreting odes, North-Holland,

Amsterdam, 1977.

[PS℄ A. Polishhuk and D. Spielman. Nearly-linear size holographi proofs. In: Proeedings of the 26

Annual ACM Symposium on Theory of Computing, 1994, 194{203.

[R℄ R. Raz. The parallel repetition theorem. In: Proeedings of the 27th Annual ACM Symposium on

Theory of Computing, 1995, 447{456.

[T℄ G. Tardos. Multi-prover enoding shemes and three-prover proof systems. In: Proeedings of the

9th Annual Struture in Complexity Theory Conferene, 1994, 308{317.

[V℄ S. Vavasis. On approximation algorithms for onave programming. Reent Advanes in Global

Optimization, C. A. Floudas and P. M. Pardalos, 3{18, Prineton University Press, 1992.

14

