Multi-Prover Encoding Schemes and Three-Prover Proof
Systems

Géabor Tardos*
Mathematical Research Institute of the
Hungarian Academy of Sciences
Pf: 127, Budapest, H-1364 Hungary
e-mail: tardos@cs.elte.hu

Abstract

Suppose two provers agree in a polynomial p and want to reveal a single value y = p(x) to a verifier
where x is chosen arbitrarily by the verifier. Whereas honest provers should be able to agree on any
polynomial p the verifier wants to be sure that with any (cheating) pair of provers the value y he receives
is a polynomial function of x. We formalize this question and introduce multi-prover (quasi-)encoding
schemes to solve it.

Using multi-prover quasi-encoding schemes we are able to develop new results about interactive proofs.
The best previous result appears in [BGLR] and states the existence of one-round four-prover interactive
proof systems for the languages in NP achieving any constant error probability with O(logn) random
bits and poly(loglogn) answer size. We improve this result in two respects. First we decrease the
number of provers to three, and then we decrease the answer-size to a constant. Using unrelated (parallel
repetition) techniques the same was independently and simultaneously achieved by [FK] with only two
provers. When the error-probability is required to approach zero, our technique is more efficient in
the number of random bits and in the answer size. Showing the fast progress in this central topic of
theoretical computer science in the short time since these results were achieved Raz’s proof of the parallel
repetition conjecture [R] lead to further improvements in the parameters of interactive proofs for NP
problems.

1 Introduction

It was established in the past few years that there is a wide ranging and deep connection between
multi-prover interactive proofs and transparent proofs on the one hand, and the hardness of approxi-
mation on the other. It seems that any progress in the first area clears the way for new applications in
the other (cf. the surveys [J], [B]).

Two major results in the first area assert that (i) every NP-language has transparent proofs verifiable
with confidence 1 — € using r = O(logn + |log(e)|) random bits via O(|log(e)|) bit-queries (Arora,
Lund, Motwani, Sudan, Szegedy [ALMSS], Arora, Safra [AS]); (ii) every NP-language has one-round
interactive proofs with confidence 1 — € with a bounded number p of provers, where the verifier uses
r = O(logn - |loge|) random bits and the answer of each prover has length < a. The values of the
parameters p and a are critical for the applications. Lapidot, Shamir [LS] obtained this result with
p = 4 provers and a = poly(logn,loge) answer size; Feige, Lovasz [FL] reduced the number of provers

*The author was visiting the Automation and Computation Institute of the Hungarian Academy of Sciences, DIMACS
Center and the University of Toronto while part of this research was done. The author is partially supported by NSF
grants CCR-92-00788, CCR-95-03254 and the (Hungarian) National Scientific Research Fund (OTKA) grant F 014919

to p = 2 while retaining the polylogarithmic answer size. Bellare, Goldwasser, Lund, Russell [BGLR]
reduced the answer size to a = poly(loglogn,loge) while requiring p = 4 provers.

The following folklore conjecture on the ultimate interactive proof combines the strongest aspects of
the results (i) and (ii).
Conjecture. FEvery NP-language has one-round interactive proofs with confidence 1 — € with p = 2
provers, where the verifier uses r = O(logn + |loge|) random bits and the answer of each prover has
length a = O(|loge|).

We achieve the same with p = 3 provers for fixed confidence (Theorem 10). Independently Feige and
Kilian [FK] achieved this with two provers using a form of parallel repetition. In case the confidence
parameter € goes to zero our technique uses both fewer random bits (O(log n|loge|)) and smaller answer
size (O(log” €)) than theirs (logn poly(1/€) and poly(1/e)). The best previous result was in [BGLR] that
used four provers and had answer size (for fixed confidence) poly(loglogn).

Subsequent to our result Raz [R] proved the parallel repetition conjecture and that lead to one-round
interactive proofs for NP languages with p = 2 provers, a = O(|loge|) answer size where the verifier
uses r = O(logn|loge|) random bits to achieve confidence 1 — .

Although Raz’s result improves upon the parameters of the MIP’s in this paper the totally unrelated
proof techniques here may call for interest. We also consider multi-prover encoding schemes (MES)
introduced in this paper being of independent interest. Parallel repetition techniques seem to be harder
to apply for them. Very roughly MES can be thought of as the encoded theorems version of two-prover
interactive proofs.

In a MIP for a language L the honest provers encode a “proof” for the statement “z € L”. A MIP
is required to encode a single bit of information about the proof, namely its validity.

In contrast MES provers encode a function from a given family and the verifier must be able to
evaluate the function at the value (checkpoint) of his choice. The main point here is that even with
cheating provers the answer as a function of the checkpoint must be in the family. In other words the
provers must evaluate the same function no matter what value the verifier is asking for.

A preliminary version of this paper appeared in the Proceedings of the 9th Annual Structure in
Complexity Theory Conference [T].

2 Notation

The input (known both to the provers and the verifier of an interactive proof or encoding scheme)
is usually denoted by x. We reserve n to denote the length of x. Below we list the other parameters
occurring in this paper.

e The parameters of multi-prover interactive proofs (MIP’s) and multi-prover (quasi-)encoding
schemes (MES’s, MQS’s) (Section 3) are:
r number of random bits used by the verifier
p number of provers
q length of the queries to the provers (question-size)
a length of the provers’ answers (answer-size)

k confidence parameter, the error probability must be < e = 2%
e The parameters of the function families (defined in Section 3) are:

t length of the checkpoint T
z length of the output Z

y length of the index of a function

e In Section 4 we shall use polynomials over a finite field F' to construct interactive proofs and
encoding schemes. These polynomials have the following parameters:

d number of variables (dimension of domain)

¢ bound on the total degree (note that for convenience we deal with polynomials of total degree
strictly less than ¢, thus £ = 2 corresponds to the linear case)

m number of polynomials the verifier needs to evaluate simultaneously (Section 5)

All these parameters and even the size of the field F' are functions of the input z. We suppose that
all of them are

— positive integers
— polynomially bounded in n

— polynomial time computable

The error probability € = 27% may depend on the input. However keeping it a constant ensures that
the number of random bits used is O(logn) which is crucial for all NP-hardness applications.

We use ¥ to denote the binary alphabet {0,1} throughout this paper.

A function E : ¥* — ¥* is a good encoding function if it is

— polynomial time computable
— E(X™) C X for some absolute constant ¢

— for any 1 # 2 € X" we have A(E(z1), E(z2)) > 0 where A is the normalized Hamming distance
and 0 > 0 is an absolute constant.

Good encoding functions are known to exist (cf. [MS, Chapter 10.11]).

3 Definition of encoding schemes

We recall the definition of the single round multi-prover interactive proof systems of Ben-Or, Gold-
wasser, Kilian, and Wigderson [BGKW]. We use the notation of [BGLR]. A MIP consists of p provers
and a verifier. Each prover is a function from questions to answers: P; : ¢ — X% where ¢ is the
question-size and a the answer-size. The verifier is a polynomial time machine receiving the input x
and a random string from X". It produces “questions” Q1,...,Q, from ¥? then it receives the “an-
swers” P;(Q;). Finally it accepts or rejects. We say that this proof system accepts a language L C ©*
with error probability e if

(1) (completeness) If 2 € L then there exists a set a provers making the verifier surely accept.

(2) (soundness)If © ¢ L then no set set of provers makes the verifier accept with probability above e.

Let MIP(r,p,a,q,¢) stand for the set of languages accepted by such a proof system.

Multi-prover encoding schemes (MES) generalize interactive proofs. Thinking of the following ex-
ample (similar to the one we use in the proof of Theorem 8) may help to understand the definition of
the MES. Suppose the provers encode a univariate polynomial g. Here the input 2 can determine the
field F" and the degree £. The verifier must be able to evaluate the function g at any point T of the field
with the help of a single question to each honest prover. He wants to be sure that even with cheating
provers the answer he is getting (when not catching the provers) is a degree £ polynomial of T'.

Definition: By function family F we mean a collection F, of functions g : X! — %% for all strings
x € ¥*. Here the parameters ¢ = t(z) and z = z(z) depend on z. We call a function family polynomial

if the functions in F, can be indexed by the strings ¥¥ such that from z, the index of the function
g € Fr and T € 3 the value g(T) is polynomial time computable, and furthermore all the parameters
t =t(x), z = z(z), y = y(x) are polynomially bounded and polynomial time computable.

A multi-prover encoding scheme (MES) consists of p provers and a verifier. The provers are functions
P,...,P, : ¥4 = X% just as in a MIP. The provers “see” z and the function g € F, they want to
encode (the functions P; depend on them) but not T'. The verifier is polynomial time machine reading
a checkpoint T € X! in addition to the input x and the random string B € X". It produces the
p queries from X9 and then receives the answers from the provers. Finally it produces an output
Z=Zx,RT,P ..., P,) € X*U/{reject}.

We say that the protocol described is an e-error MES for the function-family F if

(i) (completeness) for all and g € F, there exist provers P, ... P, such that for all checkpoints
T € ¥ and random strings R € ¥" we have

Z(z,R,T,Py,...,P,) = g(T)

(ii) (MES soundness) for all z and provers P, ..., P, there exists a function g € F, such that for all
checkpoints T' € ¢

Probres-(Z(z,R,T,Py,...,P,) & {g(T),reject}) < €

Note that soundness means that we can interpret any set of provers as a (perhaps imperfect) attempt
to encode a specific function in the family. We call the process of finding that function the decoding.
Decoding is more obvious in the following definition.

A multi-prover quasi-encoding scheme (MQS) for the function family F with parameters ¢, a, r, €
has the same structure as a MES and it satisfies the same completeness criterion (i) but the following
different soundness criterion (ii’):

(ii") (MQS soundness) For all z and all last provers P, there is a (decoding) function g : X" — F,
such that for all sets of provers Pi,..., P,y and all checkpoints T' € X*

Probres- (Z(x, R, T,P,...,P,) & {g9(R)(T), reject}) <e

The above definition of the MQS is neither stronger nor weaker than that of the MES. At an MQS
the decoding depends on the random string R (this is similar to the definition of a quasi-oracle in [LS]).
But the decoding does not depend on the first p — 1 provers.

Below all MQS have p = 2 provers unless otherwise stated.

4 Existence of the encoding schemes

The main result of this section is a scaled down version of [FL] to achieve a MQS for any polynomial
function family F. We start with a transparent-proof-like version of MES (Lemma 1). Take any
polynomial function family F. Let the parameters of F be y, t, and z. Take a good encoding function
E. We define a “transparent encoding” of the functions in F,. For a function g € F, with index Y
we define E*(g) to consist of Y/ = E(Y) and a transparent proof for each T € X! for the fact that
“Y" encodes the index of a function mapping T to Z7”, where Zr is the correct value of g(T"). We do
not encode T and Z = Zr as the verifier receives them as part of its input. The length of E*(g) is
y* = 2'poly(n).

Lemma 1. There exists the following type of a polynomial time verifier V. On input (z,T,Z) V uses
O(logn) random bits, decides which O(1) bits to read from a string Y* € ¥ . This choice does not
depend on Z. After reading the selected bits it accepts or rejects. Furthermore V satisfies

(a) if Y* = E*(g) for some g € F, with Z = g(T) then V accepts with probability 1;

(b) for any x and Y* € ©¥" there is a g € F, such that for all T and all Z with g(T) # Z the
probability of acceptance is < 1/2

The proof is a straightforward application of [ALMSS] using the encoded theorems model of [BFLS].
This version is implicit [ALMSS] and can be explicitly found in the survey [B] (Theorem 5.6) or in
Polishchuk and Spielman’s paper [PS] (section 10).

Lemma 2. Let F be a polynomial function family with parameters y, t and z and let k be any
parameter. Then there exists a MES for F with z + O(k) provers, using O(klogn) random bits. The
question-size is t + O(logn), the answer-size is 1, and the error probability is at most 27%.

Proof: We start with the transparent encoding E*(g) of g in Lemma 1. We use the first z provers to
tell the verifier Z = g(T'). Following the standard techniques of [FRS] (for valid proof, see [BFL]) we
can replace the constant number of queries to E*(g) with a constant number of provers. The number
of random bits used is still O(logn) and the error-probability increases to a constant below one. O(k)
parallel repetition (with different set of provers) gives the lemma. (Naturally, we do not repeat the first
z provers.) 'Y

In Lemma 4 we deviate slightly from the techniques of [FL, LS]. We shall need the following technical
definition and lemma:
Definition: Let F' be a finite field, f : F — F an arbitrary function, 2 € F and ¢ > 0 an integer.
We define f,, the best < ¢ degree approzimation for f at x to be the polynomial that coincides with f
for the most values ' € F among all < £ degree polynomials e satisfying e(z) = f(z). We break ties
arbitrarily.

Lemma 3. For any function f : F — F and any polynomial e of degree < { we have

Probycr(e(z) = f(z) but e # for) < /20/|F|

Proof: The proof is a simple counting argument using that two different polynomials of degree < /¢
cannot agree on more than £ values. Let a = |{z € F|f(z) = e(z)}|- Let S be the set of all < £ degree
polynomials agreeing with f on at least a different values. We denote the number of polynomials in
S agreeing with f at a value z € F by g(z). We have) g(x) > |S|a. Let us take two different
polynomials from S and a value z € F. We count the number of times the polynomials agree on .
This is at most (‘g‘)ﬂ as two polynomials from S agree on at most ¢ values. On the other hand if we

choose z first we can choose the two polynomials in (g (2’”)) different ways to ensure both agree with f

at z, therefore
S| 9(z)
(5)e=2 (5

If a < \/2|F|¢ then the statement of the lemma is trivial. Elementary calculation gives that if on the

other hand a > /2|F|¢ then |S| < /2|F|/{. As any polynomial in S other than e agrees with e on at
most £ values, therefore the number of different values of z satisfying the condition in the lemma is at
most £(]S]| — 1) < /2|F|¢ so the statement of the lemma is true again. A

For any question-size ¢ let us take a field F', a dimension d, a polynomial time computable (injective)
function h : £¢ — F? and a degree ¢ such that the following condition holds:

(*) For any function P : ¢ — F there is a polynomial f : Y — F of degree < ¢ such that for any
Q € X7 we have P(Q) = f(h(Q)).

Lemma 4. Let F be a function family. Suppose there is a MES for F with p provers, r random
bits, q question-size, and € error. Suppose that a choice of F, d, h and { satisfy (*). Suppose that

the answer-size in the MES for F is a < log|F|. Then there is a MQS for F with 2 provers, using
r+pdlog |F| random bits, asking questions of size 2pdlog|F|, receiving an answer of size pllog|F| from
the first prover and an answer of size plog|F| from the second prover and achieving error probability

< e+ p/20[F.

Our protocol follows the structure of the protocols in [LS] and [FL]. In these protocols (and in ours)
the verifier chooses a random p-tuple Ry of points in F'¢ to be the query it sends to the second prover
and uses additional randomness to simulate the MES verifier and produce the query to the first prover.
The major difference is in the proof of soundness. For the proof we have to decode the provers’ strategy
through finding MES-provers that our MQS-provers are close to. These MES-provers may depend on
the choice of Ry. [FL] defined the “decoded” prover P; at a question (); € X9 using both prover’s
response when the verifier behaves randomly conditioned on the given choice of Ry and @;. We are
not able to do this here as the distribution of the queries depends on T" and our definition of P; must
not depend on the checkpoint. Therefore we use the second prover’s response to queries very close to
Ry to define the decoded P;. This has the added advantage of making the decoding depend only on
the second prover’s strategy. We have built this advantage into the definition of the MQS.

Proof: We describe the verifier. In brackets we tell what the honest provers should do to encode
g € Fu.

[The provers consider the strategies of the honest provers of the MES encoding of g. These are
functions P; : X7 — X® for ¢ = 1,...,p. We suppose X* C F. They consider < ¢ degree polynomials
fi : F* — F satisfying P;(Q) = f;(h(Q)) for all Q € %]

The verifier produces the p queries @1, ..., Q, asked by the MES-verifier. He also produces the same
number of random points Ry = (V4,...,V},) in FZ. He sends a canonical representation of the lines
L;: F — F through h(Q;) and V; to the first prover and the points V; to the second prover.

[The first prover’s response is the set of the univariate polynomials f = f;(L;). The second prover’s
response is the set of values v; = f;(V;).]

The verifier finds values z;; such that L;(z;;) = V; and checks if v; = f}(z;1), outputs reject and
halts if one of these consistency checks fails. Otherwise it finds values x;o with L;(z;0) = h(Q;) and
uses the values f*(x;0) as answers from the p MES-provers and outputs what the MES-verifier outputs.

Completeness of this protocol is now clear. It is also easy to check that the parameters claimed in
the lemma are correct.

In the rest of the proof we prove soundness (condition (ii’)). Let us fix the second prover. We
define functions P; : (F?)P x 4 — %@ for i = 1,...,p. Let us take Ry = (V4,...,V,) € (F)? and
Qi € Y9, Let Li be the line through h(Ql) and V; with Zi0 and Ti1 in F' such that Lz(ilﬁlo) = h(QZ)
and L;(z;1) = V;. For u € F let us get Ry (u) from Ry by replacing the ith coordinate V; by L;(u).
Let the function f : F — F be defined by f(u) being the ith value in the second prover’s answer for
the question Ry (u). Now take P/(Ry,Q;) to be the best < ¢ degree approximation of f at z1; and let
Pi(Ry, Qi) = P{(Rv,Qi)(zi)-

Consider the provers P;(Ry, Q;) for any fixed set of points Ry. Using the soundness for the MES
we started with there is a function g = g(Ry) € F, such that for every T € X! the verifier in the
MES confronted with these provers and T will output something different from ¢(7") and reject with
probability less than e. The decoded function g we obtained here depends on Ry which is part of the
random string used, and on the second prover as required.

In our protocol error can come from two sources. Either the simulated MES makes the error, or the

simulation fails, that is the first prover’s response deviates from Pj(Ry,Q1),..., Py (Rv,Qp) what or
“decoding” gave. We have just bounded the probability of the first and Lemma 5 (below) bounds the
probability of the second type of error. This proves the soundness. o

Lemma 5. For any z, T and any two provers in the protocol in Lemma 4 the probability of the
first prover’s answer being different from P{(Rv,Q1), ..., P)(Ryv,Qp) without the verifier catching the

provers in the consistency checks is less than p\/2¢/|F|.

Proof: We prove that the probability for a given index ¢ that the ith part of the first prover’s response
is different from P}(Ry,Q;) without being caught in the consistency check is less than /2¢/|F|. The
lemma follows from summing for all 7.

We break down the probability space according to all the questions @; (j = 1,...,p) the points V;
for j # i and even according to the line L; going through h(Q;) and V;. We prove that conditioned
on any combination of values for these objects the conditional probability of the ith part of the first
prover’s response deviating from P/(Ry, Q;) without being caught is less than /2¢/|F|. This of course
implies the same bound for the total probability.

After all the conditions the only thing random is V; which is a random point on the line L;. The first
prover’s answer is now fixed. Let as call the ith part of it e. Let us call f(u) the ith part of the second
prover’s answer when V; = L;(u). The consistency test is passed if f(u) = e(u) with the random value
u = L;'(V;). We have the deviation in the ith coordinate if e is not the best < ¢ degree approximation

K3

of f at u. Lemma 3 bounds the probability of these two things happening together. o

Here we state what Lemma 4 gives when F, d, h, and ¢ are chosen the simplest way, i. e. when A is
the identity.

Theorem 6. Let F be a polynomial function family with the parameters y < poly(n), t < poly(logn),
z < poly(logn) and let k < poly(logn). Then there exists a 2-prover MQS for F using poly(logn)
random bits, with question- and answer-sizes poly(logn) achieving error probability 27%.

Proof: We start with Lemma 2 and get a MES using p = poly(logn) provers, poly(logn) randomness,
the question-size is ¢ = poly(logn), answer-size is 1 and error probability < 27*~!. Let d = ¢, { = d+1,
and |F| > 22%*3¢p? (but, say smaller than twice that). We can chose h to be the identity as any function
¥4 — F has a multilinear extension F? — F, so (*) is satisfied. The error probability of the MQS
given by Lemma 4 is < 27F~1 4 p\/2¢/|F| < 27*. Tt is easy to check that all other parameters of the
two-prover MQS are poly(logn). A

5 Three-prover proof systems

In this section we give efficient three-prover proof systems for NP with poly(loglogn) answer size
(Theorem 8). The nice and simple idea of this proof will help to understand the constant answer size
proof systems (Theorem 10) in the next section.

We start with an overview of the proof. The straightforward modification of [FL] (scaling down
from NEXPTIME to NP and changing multilinear encoding to multi-lowdegree encoding as in [BFLS])
gives Lemma 7, a two-prover proof system for NP using O(logn) random bits and log® n answer-size to
achieve any constant error probability. This appears in [BGLR] in detail. In fact taking a closer look
one may realize that one of the provers gives a very short O(loglogn) long answer. The length of the
other prover’s answer is log”n. (Or for that matter this length can be made log®n for any ¢ > 1 by
making h = maz(k, (c—1) loglogn) in the lemma, but that is still too long.) In fact this answer contains
a constant number of polynomials of degree log® n/loglogn over a field F' of size |F| = poly(logn).
The verifier uses two values of each of these polynomials in deciding whether to accept or to reject.
(It is important here that the verifier knows which values it will use before it receives the answers.)
This makes it possible to replace this prover by two provers providing a quasi-encoding scheme for this
answer. This is an [AS]-type recursion, increasing the number of provers to 3.

Lemma 7. [BGLR] Let k = O(logn) and h = max(k,loglogn). Then there are parameters r =
O(klogn), a = O(klogn2") and ¢ = O(klogn) such that NP C MIP,(r,2,a,q,27%).

We shall need further details from the protocol proving this. There is a field F' of size 20 | the first
prover gives O(k) polynomials over F of degree O(2"/hlogn) the second prover gives O(k) values. The
verifier first extracts one value of each polynomial and compares them to the values the second prover
gave. If they differ he rejects. Otherwise he extracts another value of each polynomial checks if they

are 0 and uses these O(k) bits as input of an O(k) size Boolean circuit, accepts if the circuit computes
1.

Theorem 8. For any k < poly(loglogn) there are parameters r = O(klogn), ¢ = O(klogn), and
a = poly(loglogn) such that NP C MIP,(r,3,a,q,27%).

Proof: Take any language L € NP. We are going to refer to the MIP protocol of Lemma 7 (with
k + 1 in place of k) for L as the original protocol and design a new MIP protocol with three provers.
The only problem with the original protocol is the first prover’s long answer. This answer consists of
m = O(k) polynomials. The verifier uses two values per polynomial only, so it is a natural idea to
encode the answer using MQS for the following function family F.

e The input % of size 7 contains the size of a field F, |F| < poly(n), a number m = O(logn) and
¢ = poly(n) (and lots of padding).

e A function g € F; is indexed by an m-tuple of polynomials (Y7,...,Y,,) of degree < £ over F.
o A checkpoint T consists of the values T;; € F fori=1,...,m, j =0,1.
e The output Z = g(T') contains Z;; = Y;(T;;) fori =1,...,m, j =0,1.

This function family F is clearly polynomial, so by Theorem 6 there exists an MQS for it with all
its parameters being poly(log i) achieving confidence 1 — 2=F with any k = poly(log 7).

Now we transform the original protocol. The second prover remains intact. We replace the first
prover by two provers say provers A and B. Here is how the verifier works. In brackets we give the
honest provers’ strategy.

The verifier computes the questions (), for the first prover and ()» for the second provers in the
original protocol. He sends () to the second prover but as the first prover does not take part in the
protocol the verifier has to work some more. He also computes the points where the original verifier
would evaluate the m = O(k) polynomials of degree < £ in the first prover’s answer. These 2 points per
polynomial constitutes T'. Now he takes the MQS protocol for F, finds (a canonical) & of size 1 = logn
describing the correct F', m and £ and computes the two queries Q4 and @p according to the MQS
with confidence parameter k =k + 1. He sends @1 and Q4 to prover A and Q1 and Qg to prover B.

[The second prover responds as in the original protocol. Provers A and B compute & and behave as
the honest provers behave in the MQS for F on input Z when encoding the function indexed by the
first prover’s answer to (.

The verifier uses the answers of prover A and B to simulate the MQS-verifier. If it outputs reject
then he also rejects. Otherwise he uses the result Z as if it was what the polynomials in the first prover’s
response evaluate to. He follows the simulation of the original protocol and accepts or rejects as it does.

The completeness is easy to see again. The parameters claimed are also easy to verify. For example
the number of random bits used in producing @1 and Q2 is 71 = O(klogn) and to produce Q4 and Qg
the verifier uses r» = poly(loglogn) more random bits. The same way the answer-sizes and the size of
the additional questions Q4 and @ p are also poly(loglogn)

The soundness is left to be proven. Suppose z € L. By the definition of the MQS for any @)1 there is
a function gg, : ¥™ — F; such that for any T the probability for random coinflipps R» in the second
part Probr,(Z & {go,(R2)(T),reject}) < 27F=1. As go, (R»2) € F; is indexed by a possible answer of
the first prover, for any fixed Ry we can consider g to be a function from the questions (Q1) to the
answers of the first prover. This is a strategy for the first prover, thus taking it together with the second
prover’s strategy they yield acceptance with probability < 27*~! by the soundness of the original pro-
tocol. Acceptance can come from two errors, either Z = g, (R2)(T") (and the original protocol makes
an error), or Z & {go, (R2)(T), reject} (the MQS protocol errs) and the probability of either is less than
2~k=1_So the total probability of an input = ¢ L being accepted is < 27%. '

6 Constant answer-size

In this section we reduce poly(loglogn) answer-size of Theorem 8 to a constant (Theorem 10). Our
starting point is the MIP in Lemma 7 again. We reduce the answer-size by replacing both provers by a
two-prover quasi-encoding scheme each encoding what their answer would be, the same way we replaced
one of them in the preceding section. The number of the resulting four provers can be decreased to
three by “merging” the first provers of each scheme. This does not cause a problem since the second
prover alone is enough for the decoding. This is the only point in this paper where we make use of this
feature of an MQS.

There are several problems to overcome to implement the strategy outlined above. First we cannot
use an encoding scheme for the same function family F as in the preceding section as the output of that
is several elements of the field F' used in the two-prover MIP, each of length loglogn so we could not
hope for shorter answer-size. To overcome this difficulty we use a good encoding function E to encode
the output and only ask for a randomly chosen constant number of bits from the result.

Even after reducing the size of the output of the function family we cannot use Theorem 6 to get
a constant answer-size MQS. We have to go back to Lemma 4 and find better values of F, d, and /¢
satisfying (*). In order to get constant answer-size |F| and ¢ must be constants. As the total number of
random bits must be kept O(logn) the dimension d has to be O(logn). (Here n is the size of the input
for the MIP, not the size of the input of this function family.) The technique of [ALMSS] (last step of
the recursion, robust encoding) is applicable here, yields linear functions (¢ = 2) but only allows for an
encoding of a witness of length O(logn). As the first prover’s answer in the Lemma 7 MIP is longer,
we must use a different technique. A simple observation allows us to encode longer, poly(logn) length
witnesses with constant ¢, |F| and answer-size (Theorem 9). We remark here that the same trick can
be used in the [ALMSS] proof to save one of the three steps of the recursion there.

Theorem 9. Let F be a polynomial function family. Let k be a parameter and suppose the parameters
of F satisfy y < poly(n), t = O(klogn) and z = O(k). Then there exists a MQS for F using O(k3\/n)
random bits, with question-size O(k*\/n) and with answer size O(k®) achieving error probability < 2%,

Proof: We start with Lemma 2 and get a MES for F with p = O(k) provers, r = O(klogn) random
bits, the question-size is ¢ = O(klogn), the answer-size is 1, and the error probability is < 27%~!. The
choice of F', d, ¢ and h in Theorem 6 does not, suffice here, we have to choose them differently. First and
foremost we want to keep £ down, but we also want to keep the number of random bits under control.

Let s = q/logn. We take d = 2s\/n, { = 2s + 1, |F| > 22¢¥3(p? (but at most twice as much).
Let us choose h : ¢ — F? to be polynomial time computable injective function such that its image
contains only points with 2s coordinates 1 and the rest 0. Such function exists as we were careful
enough to ensure (st) > 27. There exists a degree 2s monomial for any point in hA(X?) making it 1
and making all other point in h(X9) 0, so any function on h(X?) can be extended to F¢ to a polyno-
mial of degree 2s. This makes our choice of h and /¢ satisfy the condition they have to for Lemma 4 to
apply. Tt is easy to check that the parameters Lemma 4 gives are the ones we claimed in the theorem. &

Theorem 10. Let k = O(loglogn) be a parameter. Then there are parameters r = O(klogn),
q = O(klogn) and a = O(k®) such that NP C MIP(r,3,a,q,27%).

We remark here that the proof of the parallel repetition theorem [R] improves this result in two
respects. It decreases the number of provers to two and the answer-size to O(k). The conjecture in
the introduction calls for further improvement in the number of random bits to O(k + logn). Such
improvement is not likely to be possible via parallel repetition techniques (cf. [FK2]).

Before the formal proof we give an outline and define the function families used in the protocol.

As in the proof of Theorem 8 we are going to use our provers in pairs to encode the two provers’
response in the Lemma 7 MIP for the same NP language. The first prover response consists of m
polynomials, and the verifier uses two values per polynomial, one for consistency check against the
second prover’s response, the other as input to evaluate a small Boolean circuit. We must make our
function family’s output short, therefore it’s natural to build the circuit in the checkpoint so the output

of the function family contains only the output of the circuit rather than its input. For the consistency
check we use a good encoding function for the strings that should be equal in the two provers’ answers
and build in the checkpoint a few positions of the encoded string and let the output of the polynomial
function families contain the so defined substring only.

Let us fix a good encoding function E. Let the absolute constant ¢ be the expansion of E, i. e.
|[E(Y)| = c|Y|. We start with describing the function families we are going to use in this construction.
We use F' to encode the first prover’s response, and F" to encode the second prover’s response. Here
we define F':

e The input & of length i for F' contains the size of a field F, |F| < poly(n); and parameters
m = O(logn), £ < poly(n), and z = O(logn) (and padding).

e A function g € F} is indexed by an m-tuple of univariate polynomials (Y7, ...,Y:,) of degree < ¢

T

over F.
e A checkpoint T consists of elements T;; € F for i = 1,...,m, j = 0,1; z bit-positions from
{1,...,emlog|F|}; and an O(m) size Boolean circuit C' on m input variables.

e To compute the output Z = ¢g(T') first compute the concatenation of the values Y;(T;1) € F. Let
us call Zy this string of length m log |F'|. The first z bits of the output contain the bits from E(Zy)
specified in T'. The last bit of the output is the output of the circuit C' on the input bits that are
the truth values of Y;(T;0) = 0. So, confusingly, the length of the output is z + 1.

Let us describe F" now.

e The input Z of length n for F” contains two numbers y» < poly(logn) and z = O(log#) (and
padding).

e The functions g € F} are indexed with strings ¥ of length ys.
e A checkpoint T contains z bit-positions from {1,...,cy»}.

e The output Z = ¢g(T') is the z bits appearing in E(Y") in the positions given by T'.

Both F' and F" are clearly polynomial.

Proof of Theorem 10: Let L € NP be an arbitrary language. We are going to show that the following
MIP protocol works for L and and has the parameters claimed in the theorem.

We will refer to the MIP protocol for L in Lemma 7 (with error probability 27%~2) as the original
protocol with the first and second provers. OQur protocol also uses the efficient MQS for F' and F"”
(with error probability 27%=2) claimed in Theorem 9.

We call the three provers of our MIP protocol for L prover A, prover 1B, and prover 2B. We describe
what our verifier does. In brackets we give the honest provers’ strategy.

The protocol uses the structure of the original protocol described after Lemma 7. The verifier
computes the field F', the degree ¢ and the number m there. It finds an #; of length n = logn
describing the correct F, m, ¢, and a number z = O(k). It finds another Z, of the same length
describing y» = mlog|F| and z.

[As all this computation was based on z alone we may suppose the provers “know” Z; and &s.]

e The verifier simulates the original verifier and computes the queries (J; for the first prover and
Q)> for the second.

e It computes the two places T;y and T;; where the original verifier would evaluate the ith polynomial
in the first prover’s answer. Let us call T the concatenation of all these places (as strings) for
1=1,...,m.

e It also computes the circuit C' the the original verifier would use.

10

e Using new random bits the verifier produces Ts, a sequence of z random elements from {1, ..., cy>}.

e The verifier then simulates the MQS for F' on input #; with the checkpoint T} being the con-
catenation of Tg, Ts, and C. It computes the queries Q14 and Q15

e It also simulates the MQS for F” on input &3 with the checkpoint T5 and computes the queries
Q24 and Q2p

e The verifier sends Q1, @2, @14, and Q24 to prover A. It sends ; and @15 to prover 1B. Finally
it sends Q2 and Q2p to prover 2B.

[Provers A and 1B both receive @)1 so they “know” the honest first prover’s answer Y7 in the original
protocol. Their answers A;4 and A;p are the answers of the honest MQS-provers for 7' encoding the
function indexed by Y;.

The same way provers A and 2B can simulate the honest MQS-provers encoding the function from
.7-'956’2 indexed by the honest second prover’s answer Y5 to Q5. Their answers are As4 and Asp.

As prover A participated in both simulation, its final answer is a concatenation of A4 and Asy4.]

The verifier uses A4 and A; g to simulate the MQS for 7' and produces an output Z;. It uses As4
and Asp to simulate the MQS for 7" and produces as output Z5. It rejects if any of these conditions
hold:

e 7y or Zs is reject,
e the first z digits of Z; does not equal to Zs,
e the last digit of Z; is 0.

Otherwise the verifier accepts. This finishes the description of our protocol.

The completeness is easy to see. It is also easy to see that the parameters claimed are correct. For
example the random string used by the verifier has four parts: Ry used to simulate the original protocol,
R; used to generate Ts, the random bit-positions for the consistency check, R; used to simulate the
MQS for F', and R, to simulate the MQS for F". Here |Ro| = O(klogn), |R:| = O(klogk), and by
Theorem 9 both r1 = |R;| and ry = |Ra| are O(k3y/logn).

The rest of this proof is the proof of soundness. Suppose the input z is not in L, therefore it should
be rejected. Let us fix the three provers. We want to prove that the probability of acceptance is small.

Prover 1B is a function taking Q1 and 1 and returning A;g. For any fixed @)1 this is a strategy for
the last prover in the MQS for F'. By the soundness of the M QS there is a function gig, : ¥ — }'}61
such that

Prob(Z, € {g10,(R1)(T1),reject}) < 27%72,

Similarly the soundness of the other MQS implies the existence of a function g2q, : ¥ — F7. for any
()2 such that
P’I"Ob(ZQ ¢ {92Q2 (Rg)(TQ),reject}) < 2_k_2.

Let us fix the random strings R; and Ry. The function mapping @; to the index of g1, (R:1) is a
strategy for the first prover in the original protocol. Similarly the function mapping Q5 to the index of
920, (R2) is a strategy for the second prover. By the soundness of the original protocol these provers
make the verifier accept 2 with probability less than 27%—2.

The acceptance in our protocol may come for four types of errors. We have just proved that three
types of error (error in the original protocol or in one of the MQS’s) has probability less than 27%~2
each. The last type of error is when our simulation of the original protocol fails, but not because of
an error in one of the MQS’s. This can only happen if the polynomials in the (assumed) first prover’s
answer evaluated at T; as a string differs from the (assumed) second prover’s answer, but the random
z bit-positions in their encodings by E agree. As any one bit-position reveals the difference with a
positive absolute constant probability by the choice of E, we can choose z = O(k) in such a way that
this last kind of error has probability less than 2752,

11

This makes the total error probability < 27 and the proof complete. A

It is interesting to see that in the protocol described above (the relevant part of) the answer of the
Lemma 7 MIP’s both provers is contained in a single prover’s answer (prover A). So consistency checks
in the simulated MIP are performed between two parts of that answer. What makes the protocol still
work is that the two parts of that answer is then checked against different provers (1B and 2B).

7 Further results and open problems

Cubic programming is the problem of maximizing a real polynomial f(z1,...,z,) of total degree 3
over a compact region defined by linear constraints: {z € R"|Az < b}. Let f* be the maximum and f,
be the minimum of f on the feasible region. Here we define f to approximate the maximum within a
factor of cif |f — f*| < ¢|f* — f.|. This definition is invariant under shifting f with an additive constant
unlike the definition in which we would compare f — f* to f*, cf. [V]. Using the techniques of [BR, FL]
our Theorem 8 implies

Theorem 11. For any constant 0 < ¢ < 1 approximating the maximum of a cubic program within ¢
is N P-hard.

The same holds even for quadratic programs by [FK].

We believe that the concepts MES and MQS are of independent interest. Although we introduced
them in this paper mainly as tools to help us build efficient interactive proofs, these encoding schemes
(particularly MES) are conceptually clear and simple objects, thus finding efficient encoding schemes
may turn out to be useful beyond the one application here. These encoding schemes generalize interac-
tive proofs roughly the way the encoded theorems version of [BFLS] generalize transparent proofs.

In the rest of this section we summarize what we know about encoding schemes and what related
questions are still open. The first two theorems provide good MQS’s for any polynomial function family.

Theorem 12. Let F be a polynomial function family, k = O(logn) a parameter, and ¢ > 0 a constant.
Supposet = O(logn) and z = O(k). Let h = maxz(k,cloglogn). Then there is a two-prover MQS for F
using O(klogn) random bits and query-size and O(klogn2") answer size with error probability < 27%.

The proof is a simple application of Lemma 4. The way to satisfy the condition (*) is similar to the
technique in the proof of Lemma 7.

Using this theorem instead of Lemma 7 we can extend Theorem 10 to polynomial function families.
This is the only time we refer to MQS’s with more than two provers.

Theorem 13. Let F be a polynomial function family and k = O(loglogn) a parameter. Suppose
t = O(logn) and z = poly(k). Then there is a three-prover MQS for F with O(klogn) random bits
and question-size and poly(k) answer size with error probability 2%,

The proof is a straightforward modifications of the proof of Theorem 10.

It is an interesting open problem to find the equivalent of these theorems (or even Theorem 6) with
MES’s in place of MQS’s. We introduced the technical definition of MQS to circumvent the problem
of finding efficient MES’s, but the MES is the conceptually clear and natural version of the encoding
scheme. It is frustrating that we are unable to find an efficient solution to the simple problem outlined
in the first paragraph of the abstract without relaxing the natural soundness condition.

One can also hope for a protocol that generalizes both MES’s and MQS’s.

Definition: We call a multi-prover encoding scheme strong if the decoding of ¢ in (ii) of the definition
of the MES that a-priory may depend on the p provers and the input z in fact depends only on z and
the last prover P,.

The following conjecture claims the existence of the strongest possible MES for any polynomial
function family that is possible without a collapse in the complexity classes. It is the MES analogue of
the conjecture in the introduction. In fact this conjecture implies the one in the introduction.

12

Conjecture. For every polynomial function family g with oulput size z and for every confidence
parameter € there is an € error two-prover strong MES that uses r = O(|log €| + logn) random bits and
has a = O(|log €| + z) answer size.

Acknowledgments

The author is grateful to Lasz16 Babai for helpful discussions and encouragement.

References

[ABSS] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in lattices,
codes, and systems of linear equations. In: Proceedings of the 34th Annual IEEE Symposium on
Foundations of Computer Science, 1993, 724-733.

[ALMSS] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and hardness
of approximation problems. In: Proceedings of the 33rd Annual IEEE Symposium on Foundations
of Computer Science, 1992, 14-23.

[AS] S. Arora and S. Safra. Probabilistic checking of proofs. In: Proceedings of the 33rd Annual IEEE
Symposium on Foundations of Computer Science, 1992, 2—-13.

[B] L. Babai. Transparent proofs and limits to approximation. In: Proceedings of the First European
Congress of Mathematics, Birkhauser, to appear.

[BFLS] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarithmic
time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, 1991, 21-31.

[BFL] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover interac-
tive protocols Computational Complexity 1 (1991), 3-40.

[BGKW] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs: how
to remove intractability assumptions. In: Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, 1988, 113-131.

[BGLR] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs
and applications to approximation. In: Proceedings of the 25th Annual ACM Symposium on Theory
of Computing, 1993, 294-304.

[BR] M. Bellare and P. Rogaway. The complexity of approximating a nonlinear program. n: Complexity
in Numerical Optimization, P. Pardalos, ed., World Scientific, Singapore 1993.

[FK] U. Feige and J. Kilian, Two prover protocols — low error at affordable rates, Proceedings of the
26th Annual ACM Symposium on Theory of Computing, 1994.

[FK2] U. Feige and J. Kilian. Impossibility results for recycling Random bits in two-prover proof sys-
tems. In: Proceedings of the 27th Annual ACM Symposium on Theory of Computing, 1995, 457-468

[FL] U. Feige and L. Lovéasz. Two-prover one-round proof systems: their power and their problems. In:
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, 1992, 733-744.

[FRS] L. Fortnow, J. Rompel, and M. Sipser. On the power of multiprover interactive protocols. In:
Proceedings of the 3rd Structure in Complexity Theory Conference, IEEE, 1988, 156-161.

[J] D. S. Johnson. The NP-completeness column: an ongoing guide. Journal of Algorithms 13 (1992),
502-524.

13

[LS] D. Lapidot and A. Shamir. Fully parallelized multi prover protocol for NEXPTIME. In: Proceed-
ings of the 32nd Annual IEEE Symposium on Foundations of Computer Science, 1991, 13-18.

[LY] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. In: Pro-
ceedings of the 25th Annual ACM Symposium on Theory of Computing, 1993, 286-293.

[MS] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes, North-Holland,
Amsterdam, 1977.

[PS] A. Polishchuk and D. Spielman. Nearly-linear size holographic proofs. In: Proceedings of the 26
Annual ACM Symposium on Theory of Computing, 1994, 194-203.

[R] R. Raz. The parallel repetition theorem. In: Proceedings of the 27th Annual ACM Symposium on
Theory of Computing, 1995, 447-456.

[T] G. Tardos. Multi-prover encoding schemes and three-prover proof systems. In: Proceedings of the
9th Annual Structure in Complexity Theory Conference, 1994, 308-317.

[V] S. Vavasis. On approximation algorithms for concave programming. Recent Advances in Global
Optimization, C. A. Floudas and P. M. Pardalos, 3-18, Princeton University Press, 1992.

14

