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Abstra
t

Suppose two provers agree in a polynomial p and want to reveal a single value y = p(x) to a veri�er

where x is 
hosen arbitrarily by the veri�er. Whereas honest provers should be able to agree on any

polynomial p the veri�er wants to be sure that with any (
heating) pair of provers the value y he re
eives

is a polynomial fun
tion of x. We formalize this question and introdu
e multi-prover (quasi-)en
oding

s
hemes to solve it.

Using multi-prover quasi-en
oding s
hemes we are able to develop new results about intera
tive proofs.

The best previous result appears in [BGLR℄ and states the existen
e of one-round four-prover intera
tive

proof systems for the languages in NP a
hieving any 
onstant error probability with O(logn) random

bits and poly(log logn) answer size. We improve this result in two respe
ts. First we de
rease the

number of provers to three, and then we de
rease the answer-size to a 
onstant. Using unrelated (parallel

repetition) te
hniques the same was independently and simultaneously a
hieved by [FK℄ with only two

provers. When the error-probability is required to approa
h zero, our te
hnique is more eÆ
ient in

the number of random bits and in the answer size. Showing the fast progress in this 
entral topi
 of

theoreti
al 
omputer s
ien
e in the short time sin
e these results were a
hieved Raz's proof of the parallel

repetition 
onje
ture [R℄ lead to further improvements in the parameters of intera
tive proofs for NP

problems.

1 Introdu
tion

It was established in the past few years that there is a wide ranging and deep 
onne
tion between

multi-prover intera
tive proofs and transparent proofs on the one hand, and the hardness of approxi-

mation on the other. It seems that any progress in the �rst area 
lears the way for new appli
ations in

the other (
f. the surveys [J℄, [B℄).

Two major results in the �rst area assert that (i) every NP-language has transparent proofs veri�able

with 
on�den
e 1 � � using r = O(log n + j log(�)j) random bits via O(j log(�)j) bit-queries (Arora,

Lund, Motwani, Sudan, Szegedy [ALMSS℄, Arora, Safra [AS℄); (ii) every NP-language has one-round

intera
tive proofs with 
on�den
e 1 � � with a bounded number p of provers, where the veri�er uses

r = O(log n � j log �j) random bits and the answer of ea
h prover has length � a. The values of the

parameters p and a are 
riti
al for the appli
ations. Lapidot, Shamir [LS℄ obtained this result with

p = 4 provers and a = poly(logn; log �) answer size; Feige, Lov�asz [FL℄ redu
ed the number of provers

�
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to p = 2 while retaining the polylogarithmi
 answer size. Bellare, Goldwasser, Lund, Russell [BGLR℄

redu
ed the answer size to a = poly(log logn; log �) while requiring p = 4 provers.

The following folklore 
onje
ture on the ultimate intera
tive proof 
ombines the strongest aspe
ts of

the results (i) and (ii).

Conje
ture. Every NP-language has one-round intera
tive proofs with 
on�den
e 1 � � with p = 2

provers, where the veri�er uses r = O(log n + j log �j) random bits and the answer of ea
h prover has

length a = O(j log �j).

We a
hieve the same with p = 3 provers for �xed 
on�den
e (Theorem 10). Independently Feige and

Kilian [FK℄ a
hieved this with two provers using a form of parallel repetition. In 
ase the 
on�den
e

parameter � goes to zero our te
hnique uses both fewer random bits (O(log nj log �j)) and smaller answer

size (O(log

3

�)) than theirs (log n poly(1=�) and poly(1=�)). The best previous result was in [BGLR℄ that

used four provers and had answer size (for �xed 
on�den
e) poly(log logn).

Subsequent to our result Raz [R℄ proved the parallel repetition 
onje
ture and that lead to one-round

intera
tive proofs for NP languages with p = 2 provers, a = O(j log �j) answer size where the veri�er

uses r = O(log nj log �j) random bits to a
hieve 
on�den
e 1� �.

Although Raz's result improves upon the parameters of the MIP's in this paper the totally unrelated

proof te
hniques here may 
all for interest. We also 
onsider multi-prover en
oding s
hemes (MES)

introdu
ed in this paper being of independent interest. Parallel repetition te
hniques seem to be harder

to apply for them. Very roughly MES 
an be thought of as the en
oded theorems version of two-prover

intera
tive proofs.

In a MIP for a language L the honest provers en
ode a \proof" for the statement \x 2 L". A MIP

is required to en
ode a single bit of information about the proof, namely its validity.

In 
ontrast MES provers en
ode a fun
tion from a given family and the veri�er must be able to

evaluate the fun
tion at the value (
he
kpoint) of his 
hoi
e. The main point here is that even with


heating provers the answer as a fun
tion of the 
he
kpoint must be in the family. In other words the

provers must evaluate the same fun
tion no matter what value the veri�er is asking for.

A preliminary version of this paper appeared in the Pro
eedings of the 9th Annual Stru
ture in

Complexity Theory Conferen
e [T℄.

2 Notation

The input (known both to the provers and the veri�er of an intera
tive proof or en
oding s
heme)

is usually denoted by x. We reserve n to denote the length of x. Below we list the other parameters

o

urring in this paper.

� The parameters of multi-prover intera
tive proofs (MIP's) and multi-prover (quasi-)en
oding

s
hemes (MES's, MQS's) (Se
tion 3) are:

r number of random bits used by the veri�er

p number of provers

q length of the queries to the provers (question-size)

a length of the provers' answers (answer-size)

k 
on�den
e parameter, the error probability must be < � = 2

�k

� The parameters of the fun
tion families (de�ned in Se
tion 3) are:

t length of the 
he
kpoint T

z length of the output Z

y length of the index of a fun
tion
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� In Se
tion 4 we shall use polynomials over a �nite �eld F to 
onstru
t intera
tive proofs and

en
oding s
hemes. These polynomials have the following parameters:

d number of variables (dimension of domain)

` bound on the total degree (note that for 
onvenien
e we deal with polynomials of total degree

stri
tly less than `, thus ` = 2 
orresponds to the linear 
ase)

m number of polynomials the veri�er needs to evaluate simultaneously (Se
tion 5)

All these parameters and even the size of the �eld F are fun
tions of the input x. We suppose that

all of them are

| positive integers

| polynomially bounded in n

| polynomial time 
omputable

The error probability � = 2

�k

may depend on the input. However keeping it a 
onstant ensures that

the number of random bits used is O(log n) whi
h is 
ru
ial for all NP-hardness appli
ations.

We use � to denote the binary alphabet f0; 1g throughout this paper.

A fun
tion E : �

�

! �

�

is a good en
oding fun
tion if it is

| polynomial time 
omputable

| E(�

n

) � �


n

for some absolute 
onstant 


| for any x

1

6= x

2

2 �

n

we have �(E(x

1

); E(x

2

)) > Æ where � is the normalized Hamming distan
e

and Æ > 0 is an absolute 
onstant.

Good en
oding fun
tions are known to exist (
f. [MS, Chapter 10.11℄).

3 De�nition of en
oding s
hemes

We re
all the de�nition of the single round multi-prover intera
tive proof systems of Ben-Or, Gold-

wasser, Kilian, and Wigderson [BGKW℄. We use the notation of [BGLR℄. A MIP 
onsists of p provers

and a veri�er. Ea
h prover is a fun
tion from questions to answers: P

i

: �

q

! �

a

where q is the

question-size and a the answer-size. The veri�er is a polynomial time ma
hine re
eiving the input x

and a random string from �

r

. It produ
es \questions" Q

1

; : : : ; Q

p

from �

q

then it re
eives the \an-

swers" P

i

(Q

i

). Finally it a

epts or reje
ts. We say that this proof system a

epts a language L � �

�

with error probability � if

(1) (
ompleteness) If x 2 L then there exists a set a provers making the veri�er surely a

ept.

(2) (soundness) If x 62 L then no set set of provers makes the veri�er a

ept with probability above �.

Let MIP

1

(r; p; a; q; �) stand for the set of languages a

epted by su
h a proof system.

Multi-prover en
oding s
hemes (MES) generalize intera
tive proofs. Thinking of the following ex-

ample (similar to the one we use in the proof of Theorem 8) may help to understand the de�nition of

the MES. Suppose the provers en
ode a univariate polynomial g. Here the input x 
an determine the

�eld F and the degree `. The veri�er must be able to evaluate the fun
tion g at any point T of the �eld

with the help of a single question to ea
h honest prover. He wants to be sure that even with 
heating

provers the answer he is getting (when not 
at
hing the provers) is a degree ` polynomial of T .

De�nition: By fun
tion family F we mean a 
olle
tion F

x

of fun
tions g : �

t

! �

z

for all strings

x 2 �

�

. Here the parameters t = t(x) and z = z(x) depend on x. We 
all a fun
tion family polynomial
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if the fun
tions in F

x


an be indexed by the strings �

y

su
h that from x, the index of the fun
tion

g 2 F

x

and T 2 �

t

the value g(T ) is polynomial time 
omputable, and furthermore all the parameters

t = t(x), z = z(x), y = y(x) are polynomially bounded and polynomial time 
omputable.

A multi-prover en
oding s
heme (MES) 
onsists of p provers and a veri�er. The provers are fun
tions

P

1

; : : : ; P

p

: �

q

! �

a

just as in a MIP. The provers \see" x and the fun
tion g 2 F

x

they want to

en
ode (the fun
tions P

i

depend on them) but not T . The veri�er is polynomial time ma
hine reading

a 
he
kpoint T 2 �

t

in addition to the input x and the random string R 2 �

r

. It produ
es the

p queries from �

q

and then re
eives the answers from the provers. Finally it produ
es an output

Z = Z(x;R; T; P

1

: : : ; P

p

) 2 �

z

[ freje
tg.

We say that the proto
ol des
ribed is an �-error MES for the fun
tion-family F if

(i) (
ompleteness) for all x and g 2 F

x

there exist provers P

1

; : : : P

p

su
h that for all 
he
kpoints

T 2 �

t

and random strings R 2 �

r

we have

Z(x;R; T; P

1

; : : : ; P

p

) = g(T )

(ii) (MES soundness) for all x and provers P

1

; : : : ; P

p

there exists a fun
tion g 2 F

x

su
h that for all


he
kpoints T 2 �

t

Prob

R2�

r

�

Z(x;R; T; P

1

; : : : ; P

p

) 62 fg(T ); reje
tg

�

< �

Note that soundness means that we 
an interpret any set of provers as a (perhaps imperfe
t) attempt

to en
ode a spe
i�
 fun
tion in the family. We 
all the pro
ess of �nding that fun
tion the de
oding.

De
oding is more obvious in the following de�nition.

A multi-prover quasi-en
oding s
heme (MQS) for the fun
tion family F with parameters q, a, r, �

has the same stru
ture as a MES and it satis�es the same 
ompleteness 
riterion (i) but the following

di�erent soundness 
riterion (ii

0

):

(ii

0

) (MQS soundness) For all x and all last provers P

p

there is a (de
oding) fun
tion g : �

r

! F

x

su
h that for all sets of provers P

1

; : : : ; P

p�1

and all 
he
kpoints T 2 �

t

Prob

R2�

r

�

Z(x;R; T; P

1

; : : : ; P

p

) 62 fg(R)(T ); reje
tg

�

< �

The above de�nition of the MQS is neither stronger nor weaker than that of the MES. At an MQS

the de
oding depends on the random string R (this is similar to the de�nition of a quasi-ora
le in [LS℄).

But the de
oding does not depend on the �rst p� 1 provers.

Below all MQS have p = 2 provers unless otherwise stated.

4 Existen
e of the en
oding s
hemes

The main result of this se
tion is a s
aled down version of [FL℄ to a
hieve a MQS for any polynomial

fun
tion family F . We start with a transparent-proof-like version of MES (Lemma 1). Take any

polynomial fun
tion family F . Let the parameters of F be y, t, and z. Take a good en
oding fun
tion

E. We de�ne a \transparent en
oding" of the fun
tions in F

x

. For a fun
tion g 2 F

x

with index Y

we de�ne E

�

(g) to 
onsist of Y

0

= E(Y ) and a transparent proof for ea
h T 2 �

t

for the fa
t that

\Y

0

en
odes the index of a fun
tion mapping T to Z

T

", where Z

T

is the 
orre
t value of g(T ). We do

not en
ode T and Z = Z

T

as the veri�er re
eives them as part of its input. The length of E

�

(g) is

y

�

= 2

t

poly(n).

Lemma 1. There exists the following type of a polynomial time veri�er V . On input (x; T; Z) V uses

O(log n) random bits, de
ides whi
h O(1) bits to read from a string Y

�

2 �

y

�

. This 
hoi
e does not

depend on Z. After reading the sele
ted bits it a

epts or reje
ts. Furthermore V satis�es
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(a) if Y

�

= E

�

(g) for some g 2 F

x

with Z = g(T ) then V a

epts with probability 1;

(b) for any x and Y

�

2 �

y

�

there is a g 2 F

x

su
h that for all T and all Z with g(T ) 6= Z the

probability of a

eptan
e is < 1=2

The proof is a straightforward appli
ation of [ALMSS℄ using the en
oded theorems model of [BFLS℄.

This version is impli
it [ALMSS℄ and 
an be expli
itly found in the survey [B℄ (Theorem 5.6) or in

Polish
huk and Spielman's paper [PS℄ (se
tion 10).

Lemma 2. Let F be a polynomial fun
tion family with parameters y, t and z and let k be any

parameter. Then there exists a MES for F with z + O(k) provers, using O(k logn) random bits. The

question-size is t+O(log n), the answer-size is 1, and the error probability is at most 2

�k

.

Proof: We start with the transparent en
oding E

�

(g) of g in Lemma 1. We use the �rst z provers to

tell the veri�er Z = g(T ). Following the standard te
hniques of [FRS℄ (for valid proof, see [BFL℄) we


an repla
e the 
onstant number of queries to E

�

(g) with a 
onstant number of provers. The number

of random bits used is still O(log n) and the error-probability in
reases to a 
onstant below one. O(k)

parallel repetition (with di�erent set of provers) gives the lemma. (Naturally, we do not repeat the �rst

z provers.) �

In Lemma 4 we deviate slightly from the te
hniques of [FL, LS℄. We shall need the following te
hni
al

de�nition and lemma:

De�nition: Let F be a �nite �eld, f : F ! F an arbitrary fun
tion, x 2 F and ` � 0 an integer.

We de�ne f

x`

the best � ` degree approximation for f at x to be the polynomial that 
oin
ides with f

for the most values x

0

2 F among all � ` degree polynomials e satisfying e(x) = f(x). We break ties

arbitrarily.

Lemma 3. For any fun
tion f : F ! F and any polynomial e of degree � ` we have

Prob

x2F

�

e(x) = f(x) but e 6= f

x`

�

<

p

2`=jF j

Proof: The proof is a simple 
ounting argument using that two di�erent polynomials of degree � `


annot agree on more than ` values. Let a = jfx 2 F jf(x) = e(x)gj. Let S be the set of all � ` degree

polynomials agreeing with f on at least a di�erent values. We denote the number of polynomials in

S agreeing with f at a value x 2 F by g(x). We have

P

x

g(x) � jSja. Let us take two di�erent

polynomials from S and a value x 2 F . We 
ount the number of times the polynomials agree on x.

This is at most

�

jSj

2

�

` as two polynomials from S agree on at most ` values. On the other hand if we


hoose x �rst we 
an 
hoose the two polynomials in

�

g(x)

2

�

di�erent ways to ensure both agree with f

at x, therefore

�

jSj

2

�

` �

X

x

�

g(x)

2

�

If a <

p

2jF j` then the statement of the lemma is trivial. Elementary 
al
ulation gives that if on the

other hand a �

p

2jF j` then jSj <

p

2jF j=`. As any polynomial in S other than e agrees with e on at

most ` values, therefore the number of di�erent values of x satisfying the 
ondition in the lemma is at

most `(jSj � 1) <

p

2jF j` so the statement of the lemma is true again. �

For any question-size q let us take a �eld F , a dimension d, a polynomial time 
omputable (inje
tive)

fun
tion h : �

q

! F

d

and a degree ` su
h that the following 
ondition holds:

(*) For any fun
tion P : �

q

! F there is a polynomial f : F

d

! F of degree < ` su
h that for any

Q 2 �

q

we have P (Q) = f(h(Q)).

Lemma 4. Let F be a fun
tion family. Suppose there is a MES for F with p provers, r random

bits, q question-size, and � error. Suppose that a 
hoi
e of F , d, h and ` satisfy (*). Suppose that
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the answer-size in the MES for F is a < log jF j. Then there is a MQS for F with 2 provers, using

r+pd log jF j random bits, asking questions of size 2pd log jF j, re
eiving an answer of size p` log jF j from

the �rst prover and an answer of size p log jF j from the se
ond prover and a
hieving error probability

< �+ p

p

2`=jF j.

Our proto
ol follows the stru
ture of the proto
ols in [LS℄ and [FL℄. In these proto
ols (and in ours)

the veri�er 
hooses a random p-tuple R

V

of points in F

d

to be the query it sends to the se
ond prover

and uses additional randomness to simulate the MES veri�er and produ
e the query to the �rst prover.

The major di�eren
e is in the proof of soundness. For the proof we have to de
ode the provers' strategy

through �nding MES-provers that our MQS-provers are 
lose to. These MES-provers may depend on

the 
hoi
e of R

V

. [FL℄ de�ned the \de
oded" prover P

i

at a question Q

i

2 �

q

using both prover's

response when the veri�er behaves randomly 
onditioned on the given 
hoi
e of R

V

and Q

i

. We are

not able to do this here as the distribution of the queries depends on T and our de�nition of P

i

must

not depend on the 
he
kpoint. Therefore we use the se
ond prover's response to queries very 
lose to

R

V

to de�ne the de
oded P

i

. This has the added advantage of making the de
oding depend only on

the se
ond prover's strategy. We have built this advantage into the de�nition of the MQS.

Proof: We des
ribe the veri�er. In bra
kets we tell what the honest provers should do to en
ode

g 2 F

x

.

[The provers 
onsider the strategies of the honest provers of the MES en
oding of g. These are

fun
tions P

i

: �

q

! �

a

for i = 1; : : : ; p. We suppose �

a

� F . They 
onsider < ` degree polynomials

f

i

: F

d

! F satisfying P

i

(Q) = f

i

(h(Q)) for all Q 2 �

q

.℄

The veri�er produ
es the p queries Q

1

; : : : ; Q

p

asked by the MES-veri�er. He also produ
es the same

number of random points R

V

= (V

1

; : : : ; V

p

) in F

d

. He sends a 
anoni
al representation of the lines

L

i

: F ! F

d

through h(Q

i

) and V

i

to the �rst prover and the points V

i

to the se
ond prover.

[The �rst prover's response is the set of the univariate polynomials f

�

i

= f

i

(L

i

). The se
ond prover's

response is the set of values v

i

= f

i

(V

i

).℄

The veri�er �nds values x

i1

su
h that L

i

(x

i1

) = V

i

and 
he
ks if v

i

= f

�

i

(x

i1

), outputs reje
t and

halts if one of these 
onsisten
y 
he
ks fails. Otherwise it �nds values x

i0

with L

i

(x

i0

) = h(Q

i

) and

uses the values f

�

i

(x

i0

) as answers from the p MES-provers and outputs what the MES-veri�er outputs.

Completeness of this proto
ol is now 
lear. It is also easy to 
he
k that the parameters 
laimed in

the lemma are 
orre
t.

In the rest of the proof we prove soundness (
ondition (ii

0

)). Let us �x the se
ond prover. We

de�ne fun
tions P

i

: (F

d

)

p

� �

q

! �

a

for i = 1; : : : ; p. Let us take R

V

= (V

1

; : : : ; V

p

) 2 (F

d

)

p

and

Q

i

2 �

q

. Let L

i

be the line through h(Q

i

) and V

i

with x

i0

and x

i1

in F su
h that L

i

(x

i0

) = h(Q

i

)

and L

i

(x

i1

) = V

i

. For u 2 F let us get R

V

(u) from R

V

by repla
ing the ith 
oordinate V

i

by L

i

(u).

Let the fun
tion f : F ! F be de�ned by f(u) being the ith value in the se
ond prover's answer for

the question R

V

(u). Now take P

0

i

(R

V

; Q

i

) to be the best < ` degree approximation of f at x

1i

and let

P

i

(R

V

; Q

i

) = P

0

i

(R

V

; Q

i

)(x

i0

).

Consider the provers P

i

(R

V

; Q

i

) for any �xed set of points R

V

. Using the soundness for the MES

we started with there is a fun
tion g = g(R

V

) 2 F

x

su
h that for every T 2 �

t

the veri�er in the

MES 
onfronted with these provers and T will output something di�erent from g(T ) and reje
t with

probability less than �. The de
oded fun
tion g we obtained here depends on R

V

whi
h is part of the

random string used, and on the se
ond prover as required.

In our proto
ol error 
an 
ome from two sour
es. Either the simulated MES makes the error, or the

simulation fails, that is the �rst prover's response deviates from P

0

1

(R

V

; Q

1

); : : : ; P

0

p

(R

V

; Q

p

) what or

\de
oding" gave. We have just bounded the probability of the �rst and Lemma 5 (below) bounds the

probability of the se
ond type of error. This proves the soundness. �

Lemma 5. For any x, T and any two provers in the proto
ol in Lemma 4 the probability of the

�rst prover's answer being di�erent from P

0

1

(R

V

; Q

1

); : : : ; P

0

p

(R

V

; Q

p

) without the veri�er 
at
hing the

provers in the 
onsisten
y 
he
ks is less than p

p

2`=jF j.

6



Proof: We prove that the probability for a given index i that the ith part of the �rst prover's response

is di�erent from P

0

i

(R

V

; Q

i

) without being 
aught in the 
onsisten
y 
he
k is less than

p

2`=jF j. The

lemma follows from summing for all i.

We break down the probability spa
e a

ording to all the questions Q

j

(j = 1; : : : ; p) the points V

j

for j 6= i and even a

ording to the line L

i

going through h(Q

i

) and V

i

. We prove that 
onditioned

on any 
ombination of values for these obje
ts the 
onditional probability of the ith part of the �rst

prover's response deviating from P

0

i

(R

V

; Q

i

) without being 
aught is less than

p

2`=jF j. This of 
ourse

implies the same bound for the total probability.

After all the 
onditions the only thing random is V

i

whi
h is a random point on the line L

i

. The �rst

prover's answer is now �xed. Let as 
all the ith part of it e. Let us 
all f(u) the ith part of the se
ond

prover's answer when V

i

= L

i

(u). The 
onsisten
y test is passed if f(u) = e(u) with the random value

u = L

�1

i

(V

i

). We have the deviation in the ith 
oordinate if e is not the best < ` degree approximation

of f at u. Lemma 3 bounds the probability of these two things happening together. �

Here we state what Lemma 4 gives when F , d, h, and ` are 
hosen the simplest way, i. e. when h is

the identity.

Theorem 6. Let F be a polynomial fun
tion family with the parameters y � poly(n), t � poly(logn),

z � poly(logn) and let k � poly(logn). Then there exists a 2-prover MQS for F using poly(logn)

random bits, with question- and answer-sizes poly(logn) a
hieving error probability 2

�k

.

Proof: We start with Lemma 2 and get a MES using p = poly(logn) provers, poly(logn) randomness,

the question-size is q = poly(logn), answer-size is 1 and error probability < 2

�k�1

. Let d = q, ` = d+1,

and jF j > 2

2k+3

`p

2

(but, say smaller than twi
e that). We 
an 
hose h to be the identity as any fun
tion

�

d

! F has a multilinear extension F

d

! F , so (*) is satis�ed. The error probability of the MQS

given by Lemma 4 is < 2

�k�1

+ p

p

2`=jF j < 2

�k

. It is easy to 
he
k that all other parameters of the

two-prover MQS are poly(logn). �

5 Three-prover proof systems

In this se
tion we give eÆ
ient three-prover proof systems for NP with poly(log logn) answer size

(Theorem 8). The ni
e and simple idea of this proof will help to understand the 
onstant answer size

proof systems (Theorem 10) in the next se
tion.

We start with an overview of the proof. The straightforward modi�
ation of [FL℄ (s
aling down

from NEXPTIME to NP and 
hanging multilinear en
oding to multi-lowdegree en
oding as in [BFLS℄)

gives Lemma 7, a two-prover proof system for NP using O(log n) random bits and log

2

n answer-size to

a
hieve any 
onstant error probability. This appears in [BGLR℄ in detail. In fa
t taking a 
loser look

one may realize that one of the provers gives a very short O(log logn) long answer. The length of the

other prover's answer is log

2

n. (Or for that matter this length 
an be made log




n for any 
 > 1 by

making h = max(k; (
�1) log logn) in the lemma, but that is still too long.) In fa
t this answer 
ontains

a 
onstant number of polynomials of degree log

2

n= log logn over a �eld F of size jF j = poly(logn).

The veri�er uses two values of ea
h of these polynomials in de
iding whether to a

ept or to reje
t.

(It is important here that the veri�er knows whi
h values it will use before it re
eives the answers.)

This makes it possible to repla
e this prover by two provers providing a quasi-en
oding s
heme for this

answer. This is an [AS℄-type re
ursion, in
reasing the number of provers to 3.

Lemma 7. [BGLR℄ Let k = O(log n) and h = max(k; log logn). Then there are parameters r =

O(k logn), a = O(k logn2

h

) and q = O(k logn) su
h that NP �MIP

1

(r; 2; a; q; 2

�k

).

We shall need further details from the proto
ol proving this. There is a �eld F of size 2

O(h)

, the �rst

prover gives O(k) polynomials over F of degree O(2

h

=h logn) the se
ond prover gives O(k) values. The

veri�er �rst extra
ts one value of ea
h polynomial and 
ompares them to the values the se
ond prover

gave. If they di�er he reje
ts. Otherwise he extra
ts another value of ea
h polynomial 
he
ks if they

7



are 0 and uses these O(k) bits as input of an O(k) size Boolean 
ir
uit, a

epts if the 
ir
uit 
omputes

1.

Theorem 8. For any k � poly(log logn) there are parameters r = O(k logn), q = O(k logn), and

a = poly(log logn) su
h that NP �MIP

1

(r; 3; a; q; 2

�k

).

Proof: Take any language L 2 NP . We are going to refer to the MIP proto
ol of Lemma 7 (with

k + 1 in pla
e of k) for L as the original proto
ol and design a new MIP proto
ol with three provers.

The only problem with the original proto
ol is the �rst prover's long answer. This answer 
onsists of

m = O(k) polynomials. The veri�er uses two values per polynomial only, so it is a natural idea to

en
ode the answer using MQS for the following fun
tion family F .

� The input x̂ of size n̂ 
ontains the size of a �eld F , jF j � poly(n̂), a number m = O(log n̂) and

` = poly(n̂) (and lots of padding).

� A fun
tion g 2 F

x̂

is indexed by an m-tuple of polynomials (Y

1

; : : : ; Y

m

) of degree < ` over F .

� A 
he
kpoint T 
onsists of the values T

ij

2 F for i = 1; : : : ;m, j = 0; 1.

� The output Z = g(T ) 
ontains Z

ij

= Y

i

(T

ij

) for i = 1; : : : ;m, j = 0; 1.

This fun
tion family F is 
learly polynomial, so by Theorem 6 there exists an MQS for it with all

its parameters being poly(log n̂) a
hieving 
on�den
e 1� 2

�

^

k

with any

^

k = poly(log n̂).

Now we transform the original proto
ol. The se
ond prover remains inta
t. We repla
e the �rst

prover by two provers say provers A and B. Here is how the veri�er works. In bra
kets we give the

honest provers' strategy.

The veri�er 
omputes the questions Q

1

for the �rst prover and Q

2

for the se
ond provers in the

original proto
ol. He sends Q

2

to the se
ond prover but as the �rst prover does not take part in the

proto
ol the veri�er has to work some more. He also 
omputes the points where the original veri�er

would evaluate the m = O(k) polynomials of degree < ` in the �rst prover's answer. These 2 points per

polynomial 
onstitutes T . Now he takes the MQS proto
ol for F , �nds (a 
anoni
al) x̂ of size n̂ = logn

des
ribing the 
orre
t F , m and ` and 
omputes the two queries Q

A

and Q

B

a

ording to the MQS

with 
on�den
e parameter

^

k = k + 1. He sends Q

1

and Q

A

to prover A and Q

1

and Q

B

to prover B.

[The se
ond prover responds as in the original proto
ol. Provers A and B 
ompute x̂ and behave as

the honest provers behave in the MQS for F on input x̂ when en
oding the fun
tion indexed by the

�rst prover's answer to Q

1

.℄

The veri�er uses the answers of prover A and B to simulate the MQS-veri�er. If it outputs reje
t

then he also reje
ts. Otherwise he uses the result Z as if it was what the polynomials in the �rst prover's

response evaluate to. He follows the simulation of the original proto
ol and a

epts or reje
ts as it does.

The 
ompleteness is easy to see again. The parameters 
laimed are also easy to verify. For example

the number of random bits used in produ
ing Q

1

and Q

2

is r

1

= O(k logn) and to produ
e Q

A

and Q

B

the veri�er uses r

2

= poly(log logn) more random bits. The same way the answer-sizes and the size of

the additional questions Q

A

and Q

B

are also poly(log logn)

The soundness is left to be proven. Suppose x 62 L. By the de�nition of the MQS for any Q

1

there is

a fun
tion g

Q

1

: �

r

2

! F

x̂

su
h that for any T the probability for random 
oin
ipps R

2

in the se
ond

part Prob

R

2

(Z 62 fg

Q

1

(R

2

)(T ); reje
tg) < 2

�k�1

. As g

Q

1

(R

2

) 2 F

x̂

is indexed by a possible answer of

the �rst prover, for any �xed R

2

we 
an 
onsider g to be a fun
tion from the questions (Q

1

) to the

answers of the �rst prover. This is a strategy for the �rst prover, thus taking it together with the se
ond

prover's strategy they yield a

eptan
e with probability < 2

�k�1

by the soundness of the original pro-

to
ol. A

eptan
e 
an 
ome from two errors, either Z = g

Q

1

(R

2

)(T ) (and the original proto
ol makes

an error), or Z 62 fg

Q

1

(R

2

)(T ); reje
tg (the MQS proto
ol errs) and the probability of either is less than

2

�k�1

. So the total probability of an input x 62 L being a

epted is < 2

�k

. �

8



6 Constant answer-size

In this se
tion we redu
e poly(log logn) answer-size of Theorem 8 to a 
onstant (Theorem 10). Our

starting point is the MIP in Lemma 7 again. We redu
e the answer-size by repla
ing both provers by a

two-prover quasi-en
oding s
heme ea
h en
oding what their answer would be, the same way we repla
ed

one of them in the pre
eding se
tion. The number of the resulting four provers 
an be de
reased to

three by \merging" the �rst provers of ea
h s
heme. This does not 
ause a problem sin
e the se
ond

prover alone is enough for the de
oding. This is the only point in this paper where we make use of this

feature of an MQS.

There are several problems to over
ome to implement the strategy outlined above. First we 
annot

use an en
oding s
heme for the same fun
tion family F as in the pre
eding se
tion as the output of that

is several elements of the �eld F used in the two-prover MIP, ea
h of length log logn so we 
ould not

hope for shorter answer-size. To over
ome this diÆ
ulty we use a good en
oding fun
tion E to en
ode

the output and only ask for a randomly 
hosen 
onstant number of bits from the result.

Even after redu
ing the size of the output of the fun
tion family we 
annot use Theorem 6 to get

a 
onstant answer-size MQS. We have to go ba
k to Lemma 4 and �nd better values of F , d, and `

satisfying (*). In order to get 
onstant answer-size jF j and ` must be 
onstants. As the total number of

random bits must be kept O(log n) the dimension d has to be O(log n). (Here n is the size of the input

for the MIP, not the size of the input of this fun
tion family.) The te
hnique of [ALMSS℄ (last step of

the re
ursion, robust en
oding) is appli
able here, yields linear fun
tions (` = 2) but only allows for an

en
oding of a witness of length O(log n). As the �rst prover's answer in the Lemma 7 MIP is longer,

we must use a di�erent te
hnique. A simple observation allows us to en
ode longer, poly(logn) length

witnesses with 
onstant `, jF j and answer-size (Theorem 9). We remark here that the same tri
k 
an

be used in the [ALMSS℄ proof to save one of the three steps of the re
ursion there.

Theorem 9. Let F be a polynomial fun
tion family. Let k be a parameter and suppose the parameters

of F satisfy y � poly(n), t = O(k logn) and z = O(k). Then there exists a MQS for F using O(k

3

p

n)

random bits, with question-size O(k

3

p

n) and with answer size O(k

3

) a
hieving error probability < 2

�k

.

Proof: We start with Lemma 2 and get a MES for F with p = O(k) provers, r = O(k logn) random

bits, the question-size is q = O(k logn), the answer-size is 1, and the error probability is < 2

�k�1

. The


hoi
e of F , d, ` and h in Theorem 6 does not suÆ
e here, we have to 
hoose them di�erently. First and

foremost we want to keep ` down, but we also want to keep the number of random bits under 
ontrol.

Let s = q= logn. We take d = 2s

p

n, ` = 2s + 1, jF j > 2

2k+3

`p

2

(but at most twi
e as mu
h).

Let us 
hoose h : �

q

! F

d

to be polynomial time 
omputable inje
tive fun
tion su
h that its image


ontains only points with 2s 
oordinates 1 and the rest 0. Su
h fun
tion exists as we were 
areful

enough to ensure

�

d

2s

�

> 2

q

. There exists a degree 2s monomial for any point in h(�

q

) making it 1

and making all other point in h(�

q

) 0, so any fun
tion on h(�

q

) 
an be extended to F

d

to a polyno-

mial of degree 2s. This makes our 
hoi
e of h and ` satisfy the 
ondition they have to for Lemma 4 to

apply. It is easy to 
he
k that the parameters Lemma 4 gives are the ones we 
laimed in the theorem. �

Theorem 10. Let k = O(log logn) be a parameter. Then there are parameters r = O(k logn),

q = O(k logn) and a = O(k

3

) su
h that NP �MIP

1

(r; 3; a; q; 2

�k

).

We remark here that the proof of the parallel repetition theorem [R℄ improves this result in two

respe
ts. It de
reases the number of provers to two and the answer-size to O(k). The 
onje
ture in

the introdu
tion 
alls for further improvement in the number of random bits to O(k + logn). Su
h

improvement is not likely to be possible via parallel repetition te
hniques (
f. [FK2℄).

Before the formal proof we give an outline and de�ne the fun
tion families used in the proto
ol.

As in the proof of Theorem 8 we are going to use our provers in pairs to en
ode the two provers'

response in the Lemma 7 MIP for the same NP language. The �rst prover response 
onsists of m

polynomials, and the veri�er uses two values per polynomial, one for 
onsisten
y 
he
k against the

se
ond prover's response, the other as input to evaluate a small Boolean 
ir
uit. We must make our

fun
tion family's output short, therefore it's natural to build the 
ir
uit in the 
he
kpoint so the output

9



of the fun
tion family 
ontains only the output of the 
ir
uit rather than its input. For the 
onsisten
y


he
k we use a good en
oding fun
tion for the strings that should be equal in the two provers' answers

and build in the 
he
kpoint a few positions of the en
oded string and let the output of the polynomial

fun
tion families 
ontain the so de�ned substring only.

Let us �x a good en
oding fun
tion E. Let the absolute 
onstant 
 be the expansion of E, i. e.

jE(Y )j = 
jY j. We start with des
ribing the fun
tion families we are going to use in this 
onstru
tion.

We use F

0

to en
ode the �rst prover's response, and F

00

to en
ode the se
ond prover's response. Here

we de�ne F

0

:

� The input x̂ of length n̂ for F

0


ontains the size of a �eld F , jF j � poly(n̂); and parameters

m = O(log n̂), ` � poly(n̂), and z = O(log n̂) (and padding).

� A fun
tion g 2 F

0

x̂

is indexed by an m-tuple of univariate polynomials (Y

1

; : : : ; Y

m

) of degree < `

over F .

� A 
he
kpoint T 
onsists of elements T

ij

2 F for i = 1; : : : ;m, j = 0; 1; z bit-positions from

f1; : : : ; 
m log jF jg; and an O(m) size Boolean 
ir
uit C on m input variables.

� To 
ompute the output Z = g(T ) �rst 
ompute the 
on
atenation of the values Y

i

(T

i1

) 2 F . Let

us 
all Z

0

this string of length m log jF j. The �rst z bits of the output 
ontain the bits from E(Z

0

)

spe
i�ed in T . The last bit of the output is the output of the 
ir
uit C on the input bits that are

the truth values of Y

i

(T

i0

) = 0. So, 
onfusingly, the length of the output is z + 1.

Let us des
ribe F

00

now.

� The input x̂ of length n̂ for F

00


ontains two numbers y

2

� poly(log n̂) and z = O(log n̂) (and

padding).

� The fun
tions g 2 F

00

x̂

are indexed with strings Y of length y

2

.

� A 
he
kpoint T 
ontains z bit-positions from f1; : : : ; 
y

2

g.

� The output Z = g(T ) is the z bits appearing in E(Y ) in the positions given by T .

Both F

0

and F

00

are 
learly polynomial.

Proof of Theorem 10: Let L 2 NP be an arbitrary language. We are going to show that the following

MIP proto
ol works for L and and has the parameters 
laimed in the theorem.

We will refer to the MIP proto
ol for L in Lemma 7 (with error probability 2

�k�2

) as the original

proto
ol with the �rst and se
ond provers. Our proto
ol also uses the eÆ
ient MQS for F

0

and F

00

(with error probability 2

�k�2

) 
laimed in Theorem 9.

We 
all the three provers of our MIP proto
ol for L prover A, prover 1B, and prover 2B. We des
ribe

what our veri�er does. In bra
kets we give the honest provers' strategy.

The proto
ol uses the stru
ture of the original proto
ol des
ribed after Lemma 7. The veri�er


omputes the �eld F , the degree ` and the number m there. It �nds an x̂

1

of length n̂ = logn

des
ribing the 
orre
t F , m, `, and a number z = O(k). It �nds another x̂

2

of the same length

des
ribing y

2

= m log jF j and z.

[As all this 
omputation was based on x alone we may suppose the provers \know" x̂

1

and x̂

2

.℄

� The veri�er simulates the original veri�er and 
omputes the queries Q

1

for the �rst prover and

Q

2

for the se
ond.

� It 
omputes the two pla
es T

i0

and T

i1

where the original veri�er would evaluate the ith polynomial

in the �rst prover's answer. Let us 
all T

0

the 
on
atenation of all these pla
es (as strings) for

i = 1; : : : ;m.

� It also 
omputes the 
ir
uit C the the original veri�er would use.

10



� Using new random bits the veri�er produ
es T

2

, a sequen
e of z random elements from f1; : : : ; 
y

2

g.

� The veri�er then simulates the MQS for F

0

on input x̂

1

with the 
he
kpoint T

1

being the 
on-


atenation of T

0

, T

2

, and C. It 
omputes the queries Q

1A

and Q

1B

� It also simulates the MQS for F

00

on input x̂

2

with the 
he
kpoint T

2

and 
omputes the queries

Q

2A

and Q

2B

� The veri�er sends Q

1

, Q

2

, Q

1A

, and Q

2A

to prover A. It sends Q

1

and Q

1B

to prover 1B. Finally

it sends Q

2

and Q

2B

to prover 2B.

[Provers A and 1B both re
eive Q

1

so they \know" the honest �rst prover's answer Y

1

in the original

proto
ol. Their answers A

1A

and A

1B

are the answers of the honest MQS-provers for F

0

en
oding the

fun
tion indexed by Y

1

.

The same way provers A and 2B 
an simulate the honest MQS-provers en
oding the fun
tion from

F

00

x̂

2

indexed by the honest se
ond prover's answer Y

2

to Q

2

. Their answers are A

2A

and A

2B

.

As prover A parti
ipated in both simulation, its �nal answer is a 
on
atenation of A

1A

and A

2A

.℄

The veri�er uses A

1A

and A

1B

to simulate the MQS for F

0

and produ
es an output Z

1

. It uses A

2A

and A

2B

to simulate the MQS for F

00

and produ
es as output Z

2

. It reje
ts if any of these 
onditions

hold:

� Z

1

or Z

2

is reje
t,

� the �rst z digits of Z

1

does not equal to Z

2

,

� the last digit of Z

1

is 0.

Otherwise the veri�er a

epts. This �nishes the des
ription of our proto
ol.

The 
ompleteness is easy to see. It is also easy to see that the parameters 
laimed are 
orre
t. For

example the random string used by the veri�er has four parts: R

0

used to simulate the original proto
ol,

R

t

used to generate T

2

, the random bit-positions for the 
onsisten
y 
he
k, R

1

used to simulate the

MQS for F

0

, and R

2

to simulate the MQS for F

00

. Here jR

0

j = O(k logn), jR

t

j = O(k log k), and by

Theorem 9 both r

1

= jR

1

j and r

2

= jR

2

j are O(k

3

p

logn).

The rest of this proof is the proof of soundness. Suppose the input x is not in L, therefore it should

be reje
ted. Let us �x the three provers. We want to prove that the probability of a

eptan
e is small.

Prover 1B is a fun
tion taking Q

1

and Q

1B

and returning A

1B

. For any �xed Q

1

this is a strategy for

the last prover in the MQS for F

0

. By the soundness of the MQS there is a fun
tion g

1Q

1

: �

r

1

! F

0

x̂

1

su
h that

Prob(Z

1

62 fg

1Q

1

(R

1

)(T

1

); reje
tg) < 2

�k�2

:

Similarly the soundness of the other MQS implies the existen
e of a fun
tion g

2Q

2

: �

r

2

! F

00

x̂

2

for any

Q

2

su
h that

Prob(Z

2

62 fg

2Q

2

(R

2

)(T

2

); reje
tg) < 2

�k�2

:

Let us �x the random strings R

1

and R

2

. The fun
tion mapping Q

1

to the index of g

1Q

1

(R

1

) is a

strategy for the �rst prover in the original proto
ol. Similarly the fun
tion mapping Q

2

to the index of

g

2Q

2

(R

2

) is a strategy for the se
ond prover. By the soundness of the original proto
ol these provers

make the veri�er a

ept x with probability less than 2

�k�2

.

The a

eptan
e in our proto
ol may 
ome for four types of errors. We have just proved that three

types of error (error in the original proto
ol or in one of the MQS's) has probability less than 2

�k�2

ea
h. The last type of error is when our simulation of the original proto
ol fails, but not be
ause of

an error in one of the MQS's. This 
an only happen if the polynomials in the (assumed) �rst prover's

answer evaluated at T

1i

as a string di�ers from the (assumed) se
ond prover's answer, but the random

z bit-positions in their en
odings by E agree. As any one bit-position reveals the di�eren
e with a

positive absolute 
onstant probability by the 
hoi
e of E, we 
an 
hoose z = O(k) in su
h a way that

this last kind of error has probability less than 2

�k�2

.

11



This makes the total error probability < 2

�k

and the proof 
omplete. �

It is interesting to see that in the proto
ol des
ribed above (the relevant part of) the answer of the

Lemma 7 MIP's both provers is 
ontained in a single prover's answer (prover A). So 
onsisten
y 
he
ks

in the simulated MIP are performed between two parts of that answer. What makes the proto
ol still

work is that the two parts of that answer is then 
he
ked against di�erent provers (1B and 2B).

7 Further results and open problems

Cubi
 programming is the problem of maximizing a real polynomial f(x

1

; : : : ; x

n

) of total degree 3

over a 
ompa
t region de�ned by linear 
onstraints: fx 2 R

n

jAx � bg. Let f

�

be the maximum and f

�

be the minimum of f on the feasible region. Here we de�ne

�

f to approximate the maximum within a

fa
tor of 
 if j

�

f�f

�

j � 
jf

�

�f

�

j. This de�nition is invariant under shifting f with an additive 
onstant

unlike the de�nition in whi
h we would 
ompare

�

f �f

�

to f

�

, 
f. [V℄. Using the te
hniques of [BR, FL℄

our Theorem 8 implies

Theorem 11. For any 
onstant 0 < 
 < 1 approximating the maximum of a 
ubi
 program within 


is NP -hard.

The same holds even for quadrati
 programs by [FK℄.

We believe that the 
on
epts MES and MQS are of independent interest. Although we introdu
ed

them in this paper mainly as tools to help us build eÆ
ient intera
tive proofs, these en
oding s
hemes

(parti
ularly MES) are 
on
eptually 
lear and simple obje
ts, thus �nding eÆ
ient en
oding s
hemes

may turn out to be useful beyond the one appli
ation here. These en
oding s
hemes generalize intera
-

tive proofs roughly the way the en
oded theorems version of [BFLS℄ generalize transparent proofs.

In the rest of this se
tion we summarize what we know about en
oding s
hemes and what related

questions are still open. The �rst two theorems provide good MQS's for any polynomial fun
tion family.

Theorem 12. Let F be a polynomial fun
tion family, k = O(log n) a parameter, and 
 > 0 a 
onstant.

Suppose t = O(log n) and z = O(k). Let h = max(k; 
 log logn). Then there is a two-prover MQS for F

using O(k logn) random bits and query-size and O(k logn2

h

) answer size with error probability < 2

�k

.

The proof is a simple appli
ation of Lemma 4. The way to satisfy the 
ondition (*) is similar to the

te
hnique in the proof of Lemma 7.

Using this theorem instead of Lemma 7 we 
an extend Theorem 10 to polynomial fun
tion families.

This is the only time we refer to MQS's with more than two provers.

Theorem 13. Let F be a polynomial fun
tion family and k = O(log logn) a parameter. Suppose

t = O(log n) and z = poly(k). Then there is a three-prover MQS for F with O(k logn) random bits

and question-size and poly(k) answer size with error probability 2

�k

.

The proof is a straightforward modi�
ations of the proof of Theorem 10.

It is an interesting open problem to �nd the equivalent of these theorems (or even Theorem 6) with

MES's in pla
e of MQS's. We introdu
ed the te
hni
al de�nition of MQS to 
ir
umvent the problem

of �nding eÆ
ient MES's, but the MES is the 
on
eptually 
lear and natural version of the en
oding

s
heme. It is frustrating that we are unable to �nd an eÆ
ient solution to the simple problem outlined

in the �rst paragraph of the abstra
t without relaxing the natural soundness 
ondition.

One 
an also hope for a proto
ol that generalizes both MES's and MQS's.

De�nition: We 
all a multi-prover en
oding s
heme strong if the de
oding of g in (ii) of the de�nition

of the MES that a-priory may depend on the p provers and the input x in fa
t depends only on x and

the last prover P

p

.

The following 
onje
ture 
laims the existen
e of the strongest possible MES for any polynomial

fun
tion family that is possible without a 
ollapse in the 
omplexity 
lasses. It is the MES analogue of

the 
onje
ture in the introdu
tion. In fa
t this 
onje
ture implies the one in the introdu
tion.

12



Conje
ture. For every polynomial fun
tion family g with output size z and for every 
on�den
e

parameter � there is an � error two-prover strong MES that uses r = O(j log �j+ logn) random bits and

has a = O(j log �j+ z) answer size.
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