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Abstra
t

The lo
al 
hromati
 number of a graph was introdu
ed in [14℄. It is in between the 
hro-

mati
 and fra
tional 
hromati
 numbers. This motivates the study of the lo
al 
hromati


number of graphs for whi
h these quantities are far apart. Su
h graphs in
lude Kneser

graphs, their vertex 
olor-
riti
al subgraphs, the S
hrijver (or stable Kneser) graphs; My-


ielski graphs, and their generalizations; and Borsuk graphs. We give more or less tight

bounds for the lo
al 
hromati
 number of many of these graphs.

We use an old topologi
al result of Ky Fan [17℄ whi
h generalizes the Borsuk-Ulam

theorem. It implies the existen
e of a multi
olored 
opy of the 
omplete bipartite graph

K

dt=2e;bt=2


in every proper 
oloring of many graphs whose 
hromati
 number t is deter-

mined via a topologi
al argument. (This was in parti
ular noted for Kneser graphs by

Ky Fan [18℄.) This yields a lower bound of dt=2e + 1 for the lo
al 
hromati
 number of

these graphs. We show this bound to be tight or almost tight in many 
ases.

As another 
onsequen
e of the above we prove that the graphs 
onsidered here have

equal 
ir
ular and ordinary 
hromati
 numbers if the latter is even. This partially proves a


onje
ture of Johnson, Holroyd, and Stahl and was independently attained by F. Meunier

[42℄. We also show that odd 
hromati
 S
hrijver graphs behave di�erently, their 
ir
ular


hromati
 number 
an be arbitrarily 
lose to the other extreme.



1 Introdu
tion

The lo
al 
hromati
 number of a graph is de�ned in [14℄ as the minimum number of 
olors

that must appear within distan
e 1 of a vertex. For the formal de�nition letN(v) = N

G

(v)

denote the neighborhood of a vertex v in a graph G, that is, N(v) is the set of verti
es v

is 
onne
ted to.

De�nition 1 ([14℄) The lo
al 
hromati
 number  (G) of a graph G is

 (G) := min




max

v2V (G)

jf
(u) : u 2 N(v)gj+ 1;

where the minimum is taken over all proper 
olorings 
 of G.

The +1 term 
omes traditionally from 
onsidering \
losed neighborhoods" N(v)[fvg

and results in a simpler form of the relations with other 
oloring parameters.

It is obvious that the lo
al 
hromati
 number of a graph G 
annot be more than

the 
hromati
 number �(G). If G is properly 
olored with �(G) 
olors then ea
h 
olor


lass must 
ontain a vertex, whose neighborhood 
ontains all other 
olors. Thus a value

 (G) < �(G) 
an only be attained with a 
oloring in whi
h more than �(G) 
olors

are used. Therefore it is somewhat surprising, that the lo
al 
hromati
 number 
an be

arbitrarily less than the 
hromati
 number, 
f. [14℄, [19℄.

On the other hand, it was shown in [31℄ that

 (G) � �

f

(G)

holds for any graph G, where �

f

(G) denotes the fra
tional 
hromati
 number of G. For

the de�nition and basi
 properties of the fra
tional 
hromati
 number we refer to the

books [45, 21℄.

This suggests to investigate the lo
al 
hromati
 number of graphs for whi
h the 
hro-

mati
 number and the fra
tional 
hromati
 number are far apart. This is our main goal

in this paper.

Prime examples of graphs with a large gap between the 
hromati
 and the fra
tional


hromati
 numbers are Kneser graphs and My
ielski graphs, 
f. [45℄. Other, 
losely re-

lated examples are provided by S
hrijver graphs, that are vertex 
olor-
riti
al indu
ed

subgraphs of Kneser graphs, and many of the so-
alled generalized My
ielski graphs.

In this introdu
tory se
tion we fo
us on Kneser graphs and S
hrijver graphs, My
ielski

graphs and generalized My
ielski graphs will be treated in detail in Subse
tion 4.3.

We re
all that the Kneser graph KG(n; k) is de�ned for parameters n � 2k as the

graph with all k-subsets of an n-set as verti
es where two su
h verti
es are 
onne
ted

if they represent disjoint k-sets. It is a 
elebrated result of Lov�asz [36℄ (see also [5,

22℄) proving the earlier 
onje
ture of Kneser, that �(KG(n; k)) = n � 2k + 2. For the

fra
tional 
hromati
 number one has �

f

(KG(n; k)) = n=k as easily follows from the

vertex-transitivity of KG(n; k) via the Erd}os-Ko-Rado theorem, see [45, 21℄.
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B�ar�any's proof [5℄ of the Lov�asz-Kneser theorem was generalized by S
hrijver [46℄ who

found a fas
inating family of subgraphs of Kneser graphs that are vertex-
riti
al with

respe
t to the 
hromati
 number.

Let [n℄ denote the set f1; 2; : : : ; ng.

De�nition 2 ([46℄) The stable Kneser graph or S
hrijver graph SG(n; k) is de�ned as

follows.

V (SG(n; k)) = fA � [n℄ : jAj = k; 8i : fi; i+ 1g * A and f1; ng * Ag;

E(SG(n; k)) = ffA;Bg : A \B = ;g:

Thus SG(n; k) is the subgraph indu
ed by those verti
es of KG(n; k) that 
ontain

no neighboring elements in the 
y
li
ally arranged basi
 set f1; 2; : : : ; ng. These are

sometimes 
alled stable k-subsets. The result of S
hrijver in [46℄ is that �(SG(n; k)) =

n � 2k + 2(= �(KG(n; k)), but deleting any vertex of SG(n; k) the 
hromati
 number

drops, i.e., SG(n; k) is vertex-
riti
al with respe
t to the 
hromati
 number. Re
ently

Talbot [49℄ proved an Erd}os-Ko-Rado type result, 
onje
tured by Holroyd and Johnson

[27℄, whi
h implies that the ratio of the number of verti
es and the independen
e number

in SG(n; k) is n=k. This gives n=k � �

f

(SG(n; k)) and equality follows by �

f

(SG(n; k)) �

�

f

(KG(n; k)) = n=k. Noti
e that SG(n; k) is not vertex-transitive in general. See more

on S
hrijver graphs in [8, 35, 39, 54℄.

Con
erning the lo
al 
hromati
 number it was observed by several people [20, 30℄,

that  (KG(n; k)) � n� 3k + 3 holds, sin
e the neighborhood of any vertex in KG(n; k)

indu
es a KG(n� k; k) with 
hromati
 number n� 3k+2. Thus for n=k �xed but larger

than 3,  (G) goes to in�nity with n and k. In fa
t, the results of [14℄ have a similar

impli
ation also for 2 < n=k � 3: Namely, it follows from those results, that if a series of

graphs G

1

; : : : ; G

i

; : : : is su
h that  (G

i

) is bounded, while �(G

i

) goes to in�nity, then the

number of 
olors to be used in 
olorings attaining the lo
al 
hromati
 number grows at

least doubly exponentially in the 
hromati
 number. However, Kneser graphs with n=k

�xed and n (therefore also the 
hromati
 number n � 2k + 2) going to in�nity 
annot

satisfy this, sin
e the total number of verti
es grows simply exponentially in the 
hromati


number.

The estimates mentioned in the previous paragraph are elementary. On the other

hand, all known proofs for �(KG(n; k)) � n � 2k + 2 use topology or at least have a

topologi
al 
avor (see [36, 5, 22, 40℄ to mention just a few su
h proofs). They use (or at

least, are inspired by) the Borsuk-Ulam theorem.

In this paper we use a stronger topologi
al result due to Ky Fan [17℄ to establish

that all proper 
olorings of a t-
hromati
 Kneser, S
hrijver or generalized My
ielski graph


ontain a multi
olored 
opy of a balan
ed 
omplete bipartite graph. This was noti
ed by

Ky Fan for Kneser graphs [18℄. We also show that the implied lower bound of dt=2e + 1

on the lo
al 
hromati
 number is tight or almost tight for many S
hrijver graphs and

generalized My
ielski graphs.

In the following se
tion we summarize our main results in more detail.
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2 Results

In this se
tion we summarize our results without introdu
ing the topologi
al notions

needed to state the results in their full generality. We will introdu
e the phrase that a

graphG is topologi
ally t-
hromati
meaning that �(G) � t and this fa
t 
an be shown by a

spe
i�
 topologi
al method, see Subse
tion 3.2. Here we use this phrase only to emphasize

the generality of the 
orresponding statements, but the reader 
an always substitute the

phrase \a topologi
ally t-
hromati
 graph" by \a t-
hromati
 Kneser graph" or \a t-


hromati
 S
hrijver graph" or by \a generalized My
ielski graph of 
hromati
 number t".

Our general lower bound for the lo
al 
hromati
 number proven in Se
tion 3 is the

following.

Theorem 1 If G is topologi
ally t-
hromati
 for some t � 2, then

 (G) �

�

t

2

�

+ 1:

This result on the lo
al 
hromati
 number is the immediate 
onsequen
e of the Zig-zag

theorem in Subse
tion 3.3 that we state here in a somewhat weaker form:

Theorem 2 Let G be a topologi
ally t-
hromati
 graph and let 
 be a proper 
oloring of

G with an arbitrary number of 
olors. Then there exists a 
omplete bipartite subgraph

K

d

t

2

e;b

t

2




of G all verti
es of whi
h re
eive a di�erent 
olor in 
.

We use Ky Fan's generalization of the Borsuk-Ulam theorem [17℄ for the proof. The

Zig-zag theorem was previously established for Kneser graphs by Ky Fan [18℄.

We remark that J�anos K�orner [30℄ suggested to introdu
e a graph invariant b(G) whi
h

is the size (number of points) of the largest 
ompletely multi
olored 
omplete bipartite

graph that should appear in any proper 
oloring of graph G. It is obvious from the

de�nition that this parameter is bounded from above by �(G) and bounded from below

by the lo
al 
hromati
 number  (G). An obvious 
onsequen
e of Theorem 2 is that if G

is topologi
ally t-
hromati
, then b(G) � t.

In Se
tion 4 we show that Theorem 1 is essentially tight for several S
hrijver and

generalized My
ielski graphs. In parti
ular, this is always the 
ase for a topologi
ally

t-
hromati
 graph that has a wide t-
oloring as de�ned in De�nition 4 in Subse
tion 4.1.

As the �rst appli
ation of our result on wide 
olorings we show, that if the 
hro-

mati
 number is �xed and odd, and the size of the S
hrijver graph is large enough, then

Theorem 1 is exa
tly tight:

Theorem 3 If t = n� 2k + 2 > 2 is odd and n � 4t

2

� 7t then

 (SG(n; k)) =

�

t

2

�

+ 1:
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See Remark 4 in Subse
tion 4.2 for a relaxed bound on n. The proof of Theorem 3

is 
ombinatorial. It will also show that the 
laimed value of  (SG(n; k)) 
an be attained

with a 
oloring using t + 1 
olors and avoiding the appearan
e of a totally multi
olored

K

d

t

2

e;d

t

2

e

: To appre
iate the latter property, 
f. Theorem 2.

Sin
e SG(n; k) is an indu
ed subgraph of SG(n+1; k) Theorem 3 immediately implies

that for every �xed even t = n� 2k + 2 and n; k large enough

 (SG(n; k)) 2

�

t

2

+ 1;

t

2

+ 2

�

:

The lower bound for the lo
al 
hromati
 number in Theorem 1 is smaller than t

whenever t � 4 but Theorem 3 
laims the existen
e of S
hrijver graphs with smaller

lo
al than ordinary 
hromati
 number only with 
hromati
 number 5 and up. In [47℄ we

prove that the lo
al 
hromati
 number of all 4-
hromati
 Kneser, S
hrijver, or generalized

My
ielski graphs is 4. The reason is that all these graphs satisfy a somewhat stronger

property, they are strongly topologi
ally 4-
hromati
 (see De�nition 3). On the other

hand, we also show in [47℄ that topologi
ally 4-
hromati
 graphs of lo
al 
hromati
 number

3 do exist.

To demonstrate that requiring large n and k in Theorem 3 is 
ru
ial we prove the

following statement.

Proposition 4  (SG(n; 2)) = n� 2 = �(SG(n; 2)) for every n � 4.

As a se
ond appli
ation of wide 
olorings we prove in Subse
tion 4.3 that Theorem 1

is also tight for several generalized My
ielski graphs. These graphs will be denoted by

M

(d)

r

(K

2

) where r = (r

1

; : : : ; r

d

) is a ve
tor of positive integers. See Subse
tion 4.3 for

the de�nition. Informally, d is the number of iterations and r

i

is the number of \levels"

in iteration i of the generalized My
ielski 
onstru
tion. M

(d)

r

(K

2

) is proven to be (d+2)-


hromati
 \be
ause of a topologi
al reason" by Stiebitz [48℄. This topologi
al reason

implies that these graphs are strongly topologi
ally (d + 2)-
hromati
. Thus Theorem 1

applies and gives the lower bound part of the following result.

Theorem 5 If r = (r

1

; : : : ; r

d

), d is odd, and r

i

� 7 for all i, then

 (M

(d)

r

(K

2

)) =

�

d

2

�

+ 2:

It will be shown in Theorem 13 that relaxing the r

i

� 7 
ondition to r

i

� 4 an

only slightly weaker upper bound is still valid. As a 
ounterpart we also show (see

Proposition 10 in Subse
tion 4.3) that for the ordinary My
ielski 
onstru
tion, whi
h

is the spe
ial 
ase of r = (2; : : : ; 2), the lo
al 
hromati
 number behaves just like the


hromati
 number.

The Borsuk-Ulam Theorem in topology is known to be equivalent (see Lov�asz [37℄)

to the validity of a tight lower bound on the 
hromati
 number of graphs de�ned on

4



the n-dimensional sphere, 
alled Borsuk graphs. In Subse
tion 4.4 we prove that the

lo
al 
hromati
 number of Borsuk graphs behaves similarly as that of the graphs already

mentioned above. In this subse
tion we also formulate a topologi
al 
onsequen
e of our

results on the tightness of Ky Fan's theorem [17℄. We also give a dire
t proof for the same

tightness result.

The 
ir
ular 
hromati
 number �




(G) of a graph G was introdu
ed by Vin
e [52℄, see

De�nition 7 in Se
tion 5. It satis�es �(G) � 1 < �




(G) � �(G). In Se
tion 5 we prove

the following result using the Zig-zag theorem.

Theorem 6 If G is topologi
ally t-
hromati
 and t is even, then �




(G) � t.

This theorem implies that �




(G) = �(G) if the 
hromati
 number is even for Kneser

graphs, S
hrijver graphs, generalized My
ielski graphs, and 
ertain Borsuk graphs. The

result on Kneser and S
hrijver graphs gives a partial solution of a 
onje
ture by Johnson,

Holroyd, and Stahl [28℄ and a partial answer to a question of Hajiabolhassan and Zhu

[24℄. These results were independently obtained by Meunier [42℄. The result on generalized

My
ielski graphs answers a question of Chang, Huang, and Zhu [10℄.

We will also dis
uss the 
ir
ular 
hromati
 number of odd 
hromati
 Borsuk and

S
hrijver graphs showing that they 
an be 
lose to one less than the 
hromati
 number.

We will use a a similar result for generalized My
ielski graphs proven by Lam, Lin, Gu,

and Song [33℄.

3 Lower bound

3.1 Topologi
al preliminaries

The following is a brief overview of some of the topologi
al 
on
epts we need. We refer to

[7, 26℄ and [39℄ for basi
 
on
epts and also for a more detailed dis
ussion of the notions

and fa
ts given below.

A Z

2

-spa
e (or involution spa
e) is a pair (T; �) of a topologi
al spa
e T and the involution

� : T ! T , whi
h is 
ontinuous and satis�es that �

2

is the identity map. The points x 2 T

and �(x) are 
alled antipodal. The involution � and the Z

2

-spa
e (T; �) are free if �(x) 6= x

for all points x of T . If the involution is understood from the 
ontext we speak about T

rather than the pair (T; �). This is the 
ase, in parti
ular, for the unit sphere S

d

in R

d+1

with the involution given by the 
entral re
e
tion x 7! �x. A 
ontinuous map f : S ! T

between Z

2

-spa
es (S; �) and (T; �) is a Z

2

-map (or an equivariant map) if it respe
ts the

respe
tive involutions, that is f Æ � = � Æ f . If su
h a map exists we write (S; �)! (T; �).

If (S; �) ! (T; �) does not hold we write (S; �) 6! (T; �). If both S ! T and T ! S we


all the Z

2

-spa
es S and T Z

2

-equivalent and write S $ T .

We try to avoid using homotopy equivalen
e and Z

2

-homotopy equivalen
e (i.e., ho-

motopy equivalen
e given by Z

2

-maps), but we will have to use two simple observations.

5



First, if the Z

2

-spa
es S and T are Z

2

-homotopy equivalent, then S $ T . Se
ond, if

the spa
e S is homotopy equivalent to a sphere S

h

(this relation is between topologi
al

spa
es, not Z

2

-spa
es), then for any involution � we have S

h

! (S; �).

The Z

2

-index of a Z

2

-spa
e (T; �) is de�ned (see e.g. [41, 39℄) as

ind(T; �) := minfd � 0 : (T; �)! S

d

g;

where ind(T; �) is set to be 1 if (T; �) 6! S

d

for all d.

The Z

2

-
oindex of a Z

2

-spa
e (T; �) is de�ned as


oind(T; �) := maxfd � 0 : S

d

! (T; �)g:

If su
h a map exists for all d, then we set 
oind(T; �) = 1. Noti
e that if (T; �) is not

free, we have ind(T; �) = 
oind(T; �) =1.

Note that S ! T implies ind(S) � ind(T ) and 
oind(S) � 
oind(T ). In parti
ular,

Z

2

-equivalent spa
es have equal index and also equal 
oindex.

The 
elebrated Borsuk-Ulam Theorem 
an be stated in many equivalent forms. Here

we state three of them. For more equivalent versions and several proofs we refer to [39℄.

Here (i) and (ii) are standard forms of the Borsuk-Ulam Theorem, while (iii) is 
learly

equivalent to (ii).

Borsuk-Ulam Theorem.

(i) (Lyusternik-S
hnirel'man version) Let d � 0 and let H be a 
olle
tion of open (or


losed) sets 
overing S

d

with no H 2 H 
ontaining a pair of antipodal points. Then

jHj � d+ 2.

(ii) S

d+1

6! S

d

for any d � 0.

(iii) For a Z

2

-spa
e T we have ind(T ) � 
oind(T ).

The suspension susp(S) of a topologi
al spa
e S is de�ned as the fa
tor of the spa
e

S � [�1; 1℄ that identi�es all the points in S � f�1g and identi�es also the points in

S � f1g. If S is a Z

2

-spa
e with the involution �, then the suspension susp(S) is also

a Z

2

-spa
e with the involution (x; t) 7! (�(x);�t). Any Z

2

-map f : S ! T naturally

extends to a Z

2

-map susp(f) : susp(S) ! susp(T ) given by (x; t) 7! (f(x); t). We have

susp(S

n

)

�

=

S

n+1

with a Z

2

-homeomorphism. These observations show the well known

inequalities below.

Lemma 3.1 For any Z

2

-spa
e S ind(susp(S)) � ind(S) + 1 and 
oind(susp(S)) �


oind(S) + 1.

A(n abstra
t) simpli
ial 
omplex K is a non-empty, hereditary set system. That is,

F 2 K, F

0

� F implies F

0

2 K and we have ; 2 K. In this paper we 
onsider only

6



�nite simpli
ial 
omplexes. The non-empty sets in K are 
alled simpli
es. We 
all the set

V (K) = fx : fxg 2 Kg the set of verti
es of K. In a geometri
 realization of K a vertex x


orresponds to a point jjxjj in a Eu
lidean spa
e, a simplex � 
orresponds to its body, the


onvex hull of its verti
es: jj�jj = 
onv(fjjxjj : x 2 �g). We assume that the points jjxjj

for x 2 � are aÆne independent, and so jj�jj is a geometri
 simplex. We also assume that

disjoint simpli
es have disjoint bodies. The body of the 
omplex K is jjKjj = [

�2K

jj�jj,

it is determined up to homeomorphism by K. Any point in p 2 jjKjj has a unique

representation as a 
onvex 
ombination p =

P

x2V (K)

�

x

jjxjj su
h that fx : �

x

> 0g 2 K.

A map f : V (K) ! V (L) is 
alled simpli
ial if it maps simpli
es to simpli
es, that

is � 2 K implies f(�) 2 L. In this 
ase we de�ne jjf jj : jjKjj ! jjLjj by setting

jjf jj(jjxjj) = jjf(x)jj for verti
es x 2 V (K) and taking an aÆne extension of this fun
tion

to the bodies of ea
h of the simpli
es in K. If jjKjj and jjLjj are Z

2

-spa
es (usually with

an involution also given by simpli
ial maps), then we say that f is a Z

2

-map if jjf jj is a

Z

2

-map. If jjKjj is a Z

2

-spa
e we use ind(K) and 
oind(K) for ind(jjKjj) and 
oind(jjKjj),

respe
tively.

Following the papers [1, 32, 41℄ we introdu
e the box 
omplex B

0

(G) for any �nite graph

G. See [41℄ for several similar 
omplexes. We de�ne B

0

(G) to be a simpli
ial 
omplex on

the verti
es V (G)�f1; 2g. For subsets S; T � V (G) we denote the set S �f1g[ T �f2g

by S ℄ T , following the 
onvention of [39, 41℄. For v 2 V (G) we denote by +v the vertex

(v; 1) 2 fvg ℄ ; and �v denotes the vertex (v; 2) 2 ; ℄ fvg. We set S ℄ T 2 B

0

(G) if

S \ T = ; and the 
omplete bipartite graph with sides S and T is a subgraph of G. Note

that V (G) ℄ ; and ; ℄ V (G) are simpli
es of B

0

(G).

The Z

2

-map S ℄ T 7! T ℄ S a
ts simpli
ially on B

0

(G). It makes the body of the


omplex a free Z

2

-spa
e.

We de�ne the hom spa
e H(G) of G to be the subspa
e 
onsisting of those points

p 2 jjB

0

(G)jj that, when written as a 
onvex 
ombination p =

P

x2V (B

0

(G))

�

x

jjxjj with

fx : �

x

> 0g 2 B

0

(G) give

P

x2V (G)℄;

�

x

= 1=2.

Noti
e that H(G) 
an also be obtained as the body of a 
ell 
omplex Hom(K

2

; G), see

[3℄, or of a simpli
ial 
omplex B


hain

(G), see [41℄.

A useful 
onne
tion between B

0

(G) and H(G) follows from a 
ombination of results

of Csorba [11℄ and Matou�sek and Ziegler [41℄.

Proposition 7 jjB

0

(G)jj $ susp(H(G))

Proof. Csorba [11℄ proves the Z

2

-homotopy equivalen
e of jjB

0

(G)jj and the suspension

of the body of yet another box 
omplex B(G) of G. As we mentioned, Z

2

-homotopy

equivalen
e implies Z

2

-equivalen
e. Matou�sek and Ziegler [41℄ prove the Z

2

-equivalen
e

of jjB(G)jj and H(G). Finally for Z

2

-spa
es S and T if S ! T , then susp(S)! susp(T ),

therefore jjB(G)jj $ H(G) implies susp(jjB(G)jj)$ susp(H(G)). �

Note that Csorba [11℄ proves, 
f. also

�

Zivaljevi�
 [55℄, the Z

2

-homotopy equivalen
e

of jjB(G)jj and H(G), and therefore we 
ould also 
laim Z

2

-homotopy equivalen
e in

Proposition 7.
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3.2 Some earlier topologi
al bounds

A graph homomorphism is an edge preserving map from the vertex set of a graph F to

the vertex set of another graph G. If there is a homomorphism f from F to G, then it

generates a simpli
ial map from B

0

(F ) to B

0

(G) in the natural way. This map is a Z

2

-map

and thus it shows jjB

0

(F )jj ! jjB

0

(G)jj. One 
an often prove jjB

0

(F )jj 6! jjB

0

(G)jj using

the indexes or 
oindexes of these 
omplexes and this relation implies the non-existen
e of

a homomorphism from F to G. A similar argument applies with the spa
es H(�) in pla
e

of jjB

0

(�)jj.

Coloring a graph G with m 
olors 
an be 
onsidered as a graph homomorphism

from G to the 
omplete graph K

m

. The box 
omplex B

0

(K

m

) is the boundary 
om-

plex of the m-dimensional 
ross-polytope (i.e., the 
onvex hull of the basis ve
tors

and their negatives in R

m

), thus jjB

0

(K

m

)jj

�

=

S

m�1

with a Z

2

-homeomorphism and


oind(B

0

(G)) � ind(B

0

(G)) � m � 1 is ne
essary for G being m-
olorable. Similarly,


oind(H(G)) � ind(H(G)) � m� 2 is also ne
essary for �(G) � m sin
e H(K

m

) 
an be

obtained from interse
ting the boundary of the m-dimensional 
ross-polytope with the

hyperplane

P

x

i

= 0, and therefore H(K

m

)

�

=

S

m�2

with a Z

2

-homeomorphism. These

four lower bounds on �(G) 
an be arranged in a single line of inequalities using Lemma 3.1

and Proposition 7:

�(G) � ind(H(G)) + 2 � ind(B

0

(G)) + 1 � 
oind(B

0

(G)) + 1 � 
oind(H(G)) + 2 (1)

In fa
t, many of the known proofs of Kneser's 
onje
ture 
an be interpreted as a

proof of an appropriate lower bound on the (
o)index of one of the above 
omplexes. In

parti
ular, B�ar�any's simple proof [5℄ exhibits a map showing S

n�2k

! H(KG(n; k)) to


on
lude that 
oind(H(KG(n; k))) � n � 2k and thus �(KG(n; k)) � n � 2k + 2. The

even simpler proof of Greene [22℄ exhibits a map showing S

n�2k+1

! B

0

(KG(n; k)) to


on
lude that 
oind(B

0

(KG(n; k))) � n � 2k + 1 and thus �(KG(n; k)) � n � 2k + 2.

S
hrijver's proof [46℄ of �(SG(n; k)) � n � 2k + 2 is a generalization of B�ar�any's and it

also 
an be interpreted as a proof of S

n�2k

! H(SG(n; k)). We remark that the same

kind of te
hnique is used with other 
omplexes related to graphs, too. In parti
ular,

Lov�asz's original proof [36℄ 
an also be 
onsidered as exhibiting a Z

2

-map from S

n�2k

to

su
h a 
omplex, di�erent from the ones we 
onsider here. For a detailed dis
ussion of

several su
h 
omplexes and their usefulness in bounding the 
hromati
 number we refer

the reader to [41℄.

The above dis
ussion gives several possible \topologi
al reasons" that 
an for
e a graph

to be at least t-
hromati
. Here we single out two su
h reasons. We would like to stress

that these two reasons are just two out of many and refer to the paper [2℄ for some that

are not even mentioned above. In this sense, our terminology is somewhat arbitrary. The

statement of our results in Se
tion 2 be
omes pre
ise by applying the 
onventions given

by the following de�nition.

8



De�nition 3 We say that a graph G is topologi
ally t-
hromati
 if


oind(B

0

(G)) � t� 1:

We say that a graph G is strongly topologi
ally t-
hromati
 if


oind(H(G)) � t� 2:

By inequality (1) if a graph is strongly topologi
ally t-
hromati
, then it is topologi-


ally t-
hromati
, and if G is topologi
ally t-
hromati
, then �(G) � t. In [47℄ we show

the existen
e of a graph for any t � 4 that is topologi
ally t-
hromati
 but not strongly

topologi
ally t-
hromati
. We also show there that the two notions have di�erent 
onse-

quen
es in terms of the lo
al 
hromati
 number for t = 4.

The notion that a graph is (strongly) topologi
ally t-
hromati
 is useful, as it ap-

plies to many widely studied 
lasses of graphs. As we mentioned above, B�ar�any [5℄ and

S
hrijver [46℄ establish this for t-
hromati
 Kneser and S
hrijver graphs. For the reader's


onvenien
e we re
all the proof here. See the analogous statement for generalized My
iel-

ski graphs and (
ertain �nite subgraphs of the) Borsuk graphs after we introdu
e those

graphs.

Proposition 8 (B�ar�any; S
hrijver) The t-
hromati
 Kneser and S
hrijver graphs are

strongly topologi
ally t-
hromati
.

Proof. We need to prove that SG(n; k) is strongly topologi
ally (n� 2k+ 2)-
hromati
,

i.e., that 
oind(H(SG(n; k))) � n�2k. The statement for Kneser graphs follows. For x 2

S

n�2k

let H

x

denote the open hemisphere in S

n�2k

around x. Consider an arrangement

of the elements of [n℄ on S

n�2k

so that ea
h open hemisphere 
ontains a stable k-subset,

i.e., a vertex of SG(n; k). It is not hard to 
he
k that identifying i 2 [n℄ with v

i

=jv

i

j for

v

i

= (�1)

i

(1; i; i

2

; : : : ; i

n�2k

) 2 R

n�2k+1

provides su
h an arrangement. (See [46℄ or [39℄ for

details of this.) For ea
h vertex v of SG(n; k) and x 2 S

n�2k

letD

v

(x) denote the smallest

distan
e of a point in v from the set S

n�2k

n H

x

and let D(x) =

P

v2V (SG(n;k))

D

v

(x).

Note that D

v

(x) > 0 if v is 
ontained in H

x

and therefore D(x) > 0 for all x. Let

f(x) :=

1

2D(x)

P

v2V (SG(n;k))

D

v

(x)jj+vjj+

1

2D(�x)

P

v2V (SG(n;k))

D

v

(�x)jj�vjj. This f is a

Z

2

-map S

n�2k

! H(SG(n; k)) proving the proposition. �

3.3 Ky Fan's result on 
overs of spheres and the Zig-Zag theo-

rem

The following result of Ky Fan [17℄ implies the Lyusternik-S
hnirel'man version of the

Borsuk-Ulam theorem. Here we state two equivalent versions of the result, both in terms

of sets 
overing the sphere. See the original paper for another version generalizing another

standard form of the Borsuk-Ulam theorem.

Ky Fan's Theorem.
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(i) Let A be a system of open (or a �nite system of 
losed) subsets of S

k


overing the

entire sphere. Assume a linear order < is given on A and all sets A 2 A satisfy

A \ �A = ;. Then there are sets A

1

< A

2

< : : : < A

k+2

of A and a point x 2 S

k

su
h that (�1)

i

x 2 A

i

for all i = 1; : : : ; k + 2.

(ii) Let A be a system of open (or a �nite system of 
losed) subsets of S

k

su
h that

[

A2A

(A [ �A) = S

k

. Assume a linear order < is given on A and all sets A 2 A

satisfy A \ �A = ;. Then there are sets A

1

< A

2

< : : : < A

k+1

of A and a point

x 2 S

k

su
h that (�1)

i

x 2 A

i

for all i = 1; : : : ; k + 1.

The Borsuk-Ulam theorem is easily seen to be implied by version (i), that shows in

parti
ular, that jAj � k + 2. We remark that [17℄ 
ontains the above statements only

about 
losed sets. The statements on open sets 
an be dedu
ed by a standard argument

using the 
ompa
tness of the sphere. We also remark that version (ii) is formulated a

little di�erently in [17℄. A pla
e where one �nds exa
tly the above formulation (for 
losed

sets, but for any Z

2

-spa
e) is Ba
on's paper [4℄.

Zig-zag Theorem Let G be a topologi
ally t-
hromati
 �nite graph and let 
 be an ar-

bitrary proper 
oloring of G by an arbitrary number of 
olors. We assume the 
olors are

linearly ordered. Then G 
ontains a 
omplete bipartite subgraph K

d

t

2

e;b

t

2




su
h that 
 as-

signs distin
t 
olors to all t verti
es of this subgraph and these 
olors appear alternating

on the two sides of the bipartite subgraph with respe
t to their order.

Proof. We have 
oind(B

0

(G)) � t� 1, so there exists a Z

2

-map f : S

t�1

! B

0

(G). For

any 
olor i we de�ne a set A

i

� S

t�1

letting x 2 A

i

if and only if for the minimal simplex

U

x

℄ V

x


ontaining f(x) there exists a vertex z 2 U

x

with 
(z) = i. These sets are open,

but they do not ne
essarily 
over the entire sphere S

t�1

. Noti
e that �A

i


onsists of the

points x 2 S

t�1

with �x 2 A

i

, whi
h happens if and only if there exists a vertex z 2 U

�x

with 
(z) = i. Here U

�x

= V

x

. For every x 2 S

t�1

either U

x

or V

x

is not empty, therefore

we have [

i

(A

i

[ �A

i

) = S

t�1

. Assume for a 
ontradi
tion that for a 
olor i we have

A

i

\ �A

i

6= ; and let x be a point in the interse
tion. We have a vertex z 2 U

x

and a

vertex z

0

2 V

x

with 
(z) = 
(z

0

) = i. By the de�nition of B

0

(G) the verti
es z and z

0

are


onne
ted in G. This 
ontradi
ts the 
hoi
e of 
 as a proper 
oloring. The 
ontradi
tion

shows that A

i

\ �A

i

= ; for all 
olors i.

Applying version (ii) of Ky Fan's theorem we get that for some 
olors i

1

< i

2

< : : : < i

t

and a point x 2 S

t�1

we have (�1)

j

x 2 A

i

j

for j = 1; 2; : : : t. This implies the existen
e

of verti
es z

j

2 U

(�1)

j

x

with 
(z

j

) = i

j

. Now U

(�1)

j

x

= U

x

for even j and U

(�1)

j

x

= V

x

for

odd j. Therefore the 
omplete bipartite graph with sides fz

j

jj is eveng and fz

j

jj is oddg

is a subgraph of G with the required properties. �

This result was previously established for Kneser graphs in [18℄.

Remark 1. Sin
e for any �xed 
oloring we are allowed to order the 
olors in an arbitrary

manner, the Zig-zag Theorem implies the existen
e of several totally multi
olored 
opies

of K

d

t

2

e;b

t

2




. For a uniform random order any �xed totally multi
olored K

d

t

2

e;b

t

2




satis�es

10



the zig-zag rule with probability 1=

�

t

bt=2


�

if t is odd and with probability 2=

�

t

t=2

�

if t is

even. Thus the Zig-zag Theorem implies the existen
e of many di�erently 
olored totally

multi
olored subgraphs K

d

t

2

e;b

t

2




in G:

�

t

bt=2


�


opies for odd t and

�

t

t=2

�

=2 
opies for even

t.

If the 
oloring uses only t 
olors we get a totally multi
olored K

d

t

2

e;b

t

2




subgraph with

all possible 
olorings, and the number of these di�erent subgraphs is exa
tly the lower

bound stated. �

Proof of Theorems 1 and 2.

Theorems 1 and 2 are dire
t 
onsequen
es of the Zig-zag theorem. For Theorem 2 this

is obvious. To prove Theorem 1 
onsider any vertex of the bt=2
 side of a multi
olored


omplete bipartite graph. It has dt=2e di�erently 
olored neighbors on the other side,

thus at least dt=2e di�erent 
olors in its neighborhood. �

Remark 2. Theorem 1 gives tight lower bounds for the lo
al 
hromati
 number of topo-

logi
ally t-
hromati
 graphs for odd t as several examples of the next se
tion will show.

In [47℄ we present examples that show that the situation is similar for even values of

t. However, the graphs establishing this fa
t are not strongly topologi
ally t-
hromati
,

whereas the graphs showing tightness of Theorem 1 for odd t are. This leaves open the

question whether  (G) � t=2 + 2 holds for all strongly topologi
ally t-
hromati
 graphs

G and even t � 4. While we prove this statement in [47℄ for t = 4 we do not know the

answer for higher values of t. �

4 Upper bound

In this se
tion we present the 
ombinatorial 
onstru
tions that prove Theorems 3 and 5.

In both 
ases general observations on wide 
olorings (to be de�ned below) prove useful.

The upper bound in either of Theorems 3 or 5 implies the existen
e of 
ertain open 
overs

of spheres. These topologi
al 
onsequen
es and the lo
al 
hromati
 number of Borsuk

graphs are dis
ussed in the last subse
tion of this se
tion.

4.1 Wide 
olorings

We start here with a general method to alter a t-
oloring and get a (t+1)-
oloring showing

that  � t=2 + 2. It works if the original 
oloring was wide as de�ned below.

De�nition 4 A vertex 
oloring of a graph is 
alled wide if the end verti
es of all walks

of length 5 re
eive di�erent 
olors.

Note that any wide 
oloring is proper, furthermore any pair of verti
es of distan
e 3

or 5 re
eive distin
t 
olors. Moreover, if a graph has a wide 
oloring it does not 
ontain

a 
y
le of length 3 or 5. For graphs that do not have 
y
les of length 3, 5, 7, or 9

any 
oloring is wide that assigns di�erent 
olors to verti
es of distan
e 1, 3 or 5 apart.
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Another equivalent de�nition (
onsidered in [23℄) is that a proper 
oloring is wide if the

neighborhood of any 
olor 
lass is an independent set and so is the se
ond neighborhood.

Lemma 4.1 If a graph G has a wide 
oloring using t 
olors, then  (G) � bt=2
 + 2.

Proof. Let 


0

be the wide t-
oloring of G. We alter this 
oloring by swit
hing the 
olor

of the neighbors of the troublesome verti
es to a new 
olor. We de�ne a vertex x to be

troublesome if j


0

(N(x))j > t=2. Assume the 
olor � is not used in the 
oloring 


0

. For

x 2 V (G) we let


(x) =

�

� if x has a troublesome neighbor




0

(x) otherwise.

The 
olor 
lass � in 
 is the union of the neighborhoods of troublesome verti
es. To

see that this is an independent set 
onsider any two verti
es z and z

0

of 
olor �. Let y be

a troublesome neighbor of z and let y

0

be a troublesome neighbor of z

0

. Both 


0

(N(y))

and 


0

(N(y

0

)) 
ontain more than half of the t 
olors in 


0

, therefore these sets are not

disjoint. We have a neighbor x of y and a neighbor x

0

of y

0

satisfying 


0

(x) = 


0

(x

0

). This

shows that z and z

0

are not 
onne
ted, as otherwise the walk xyzz

0

y

0

x

0

of length 5 would

have two end verti
es in the same 
olor 
lass.

All other 
olor 
lasses of 
 are subsets of the 
orresponding 
olor 
lasses in 


0

, and are

therefore independent. Thus 
 is a proper 
oloring.

Any troublesome vertex x has now all its neighbors re
olored, therefore 
(N(x)) = f�g.

For the verti
es of G that are not troublesome one has j


0

(N(x))j � t=2 and 
(N(x)) �




0

(N(x)) [ f�g, therefore j
(N(x))j � t=2+ 1. Thus the 
oloring 
 shows  (G) � t=2 + 2

as 
laimed. �

We note that the 
oloring 
 found in the proof uses t + 1 
olors and any vertex that

sees the maximal number bt=2
+1 of the 
olors in its neighborhood must have a neighbor

of 
olor �. In parti
ular, for odd t one will always �nd two verti
es of the same 
olor in

any K

(t+1)=2;(t+1)=2

subgraph.

4.2 S
hrijver graphs

In this subse
tion we prove Theorem 3 whi
h shows that the lo
al 
hromati
 number of

S
hrijver graphs with 
ertain parameters are as low as allowed by Theorem 1. We also

prove Proposition 4 to show that for some other S
hrijver graphs the lo
al 
hromati


number agrees with the 
hromati
 number.

For the proof of Theorem 3 we will use the following simple lemma.

Lemma 4.2 Let u; v � [n℄ be two verti
es of SG(n; k). If there is a walk of length 2s

between u and v in SG(n; k) then jv n uj � s(t� 2), where t = n� 2k+ 2 = �(SG(n; k)).
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Proof. Let xyz be a length two walk in SG(n; k). Sin
e y is disjoint from x, it 
ontains

all but n � 2k = t� 2 elements of [n℄ n x. As z is disjoint from y it 
an 
ontain at most

t� 2 elements not 
ontained in x. This proves the statement for s = 1.

Now let x

0

x

1

: : : x

2s

be a 2s-length walk between u = x

0

and v = x

2s

and assume the

statement is true for s� 1. Sin
e jv nuj � jv nx

2s�2

j+ jx

2s�2

nuj � (t� 2)+ (s� 1)(t� 2)

we 
an 
omplete the proof by indu
tion. �

We remark that Lemma 4.2 remains true for KG(n; k) with literally the same proof,

but we will need it for SG(n; k), this is why it is stated that way.

Theorem 3 (restated) If t = n� 2k + 2 > 2 is odd and n � 4t

2

� 7t, then

 (SG(n; k)) =

�

t

2

�

+ 1:

Proof. We need to show that  (SG(n; k)) = (t+3)=2. Note that the t = 3 
ase is trivial

as all 3-
hromati
 graphs have lo
al 
hromati
 number 3. The lower bound for the lo
al


hromati
 number follows from Theorem 1 and Proposition 8.

We de�ne a wide 
oloring 


0

of SG(n; k) using t 
olors. From this Lemma 4.1 gives

the upper bound on  (SG(n; k)).

Let [n℄ = f1; : : : ; ng be partitioned into t sets, ea
h 
ontaining an odd number of


onse
utive elements of [n℄. More formally, [n℄ is partitioned into disjoint sets A

1

; : : : ; A

t

,

where ea
h A

i


ontains 
onse
utive elements and jA

i

j = 2p

i

� 1. We need p

i

� 2t� 3 for

the proof, this is possible as long as n � t(4t� 7) as assumed.

Noti
e, that

P

t

i=1

(p

i

� 1) = k � 1, and therefore any k-element subset x of [n℄ must


ontain more than half (i.e., at least p

i

) of the elements in some A

i

. We de�ne our 
oloring




0

by arbitrarily 
hoosing su
h an index i as the 
olor 


0

(x). This is a proper 
oloring

even for the graph KG(n; k) sin
e if two sets x and y both 
ontain more than half of the

elements of A

i

, then they are not disjoint.

As a 
oloring of KG(n; k) the 
oloring 


0

is not wide. We need to show that the


oloring 


0

be
omes wide if we restri
t it to the subgraph SG(n; k).

The main observation is the following: A

i


ontains a single subset of 
ardinality p

i

that does not 
ontain two 
onse
utive elements. Let C

i

be this set 
onsisting of the �rst,

third, et
. elements of A

i

. A vertex of SG(n; k) has no two 
onse
utive elements, thus a

vertex x of SG(n; k) of 
olor i must 
ontain C

i

.

Consider a walk x

0

x

1

: : : x

5

of length 5 in SG(n; k) and let i = 


0

(x

0

). Thus the set

x

0


ontains C

i

. By Lemma 4.2 jx

4

n x

0

j � 2(t� 2). In parti
ular, x

4


ontains all but at

most 2t� 4 elements of C

i

. As p

i

= jC

i

j � 2t� 3, this means x

4

\ C

i

6= ;: Thus the set

x

5

, whi
h is disjoint from x

4

, 
annot 
ontain all elements of C

i

, showing 


0

(x

5

) 6= i. This

proves that the 
oloring 


0

is wide, thus Lemma 4.1 
ompletes the proof of the theorem.

�

Note that the smallest S
hrijver graph for whi
h the above proof gives  (SG(n; k)) <

�(SG(n; k)) is G = SG(65; 31) with �(G) = 5 and  (G) = 4. In Remark 4 below we
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show how the lower bound on n 
an be lowered somewhat. After that we show that some

lower bound is needed as  (SG(n; 2)) = �(SG(n; 2)) for every n.

Remark 3. In [14℄ universal graphs U(m; r) are de�ned for whi
h it is shown that a graph

G 
an be 
olored with m 
olors su
h that the neighborhood of every vertex 
ontains

fewer than r 
olors if and only if a homomorphism from G to U(m; r) exists. The proof

of Theorem 3 gives, for odd t, a (t + 1)-
oloring of SG(n; k) (for appropriately large

n and k that give 
hromati
 number t) for whi
h no neighborhood 
ontains more than

(t + 1)=2 
olors, thus establishing the existen
e of a homomorphism from SG(n; k) to

U(t + 1; (t+ 3)=2). This, in parti
ular, proves that �(U(t + 1; (t+ 3)=2)) � t, whi
h is a

spe
ial 
ase of Theorem 2.6 in [14℄. It is not hard to see that this inequality is a
tually

an equality. Further, by the 
omposition of the appropriate maps, the existen
e of this

homomorphism also proves that U(t + 1; (t+ 3)=2) is strongly topologi
ally t-
hromati
.

�

Remark 4. For the pri
e of letting the proof be a bit more 
ompli
ated one 
an improve

upon the bound given on n in Theorem 3. In parti
ular, one 
an show that the same


on
lusion holds for odd t and n � 2t

2

�4t+3. More generally, we 
an show  (SG(n; k)) �

�(SG(n; k)) � m = n � 2k + 2 � m provided that �(SG(n; k)) � 2m + 3 and n �

8m

2

+ 16m+ 9 or �(SG(n; k)) � 4m+ 3 and n � 20m+ 9. The smallest S
hrijver graph

for whi
h we 
an prove that the lo
al 
hromati
 number is smaller than the ordinary


hromati
 number is SG(33; 15) with 1496 verti
es and � = 5 but  = 4. (In general,

one has jV (SG(n; k))j =

n

k

�

n�k�1

k�1

�

, 
f. Lemma 1 in [49℄.) The smallest n and k for whi
h

we 
an prove  (SG(n; k)) < �(SG(n; k)) is for the graph SG(29; 12) for whi
h � = 7 but

 � 6.

We only sket
h the proof. For a similar and more detailed proof see Theorem 13.

The idea is again to take a basi
 
oloring 


0

of SG(n; k) and obtain a new 
oloring 


by re
oloring to a new 
olor some neighbors of those verti
es v for whi
h j


0

(N(v))j is

too large. The novelty is that now we do not re
olor all su
h neighbors, just enough of

them, and also the de�nition of the basi
 
oloring 


0

is a bit di�erent. Partition [n℄ into

t = n� 2k + 2 intervals A

1

; : : : ; A

t

, ea
h of odd length as in the proof of Theorem 3 and

also de�ne C

i

similarly to be the unique largest subset of A

i

not 
ontaining 
onse
utive

elements. For a vertex x we de�ne 


0

(x) to be the smallest i for whi
h C

i

� x. Note that

su
h an i must exist. Now we de�ne when to re
olor a vertex to the new 
olor � if our goal

is to prove  (SG(n; k)) � b := t�m, where m > 0. We let 
(y) = � i� y is the neighbor

of a vertex x having at least b� 2 di�erent 
olors smaller than 


0

(y) in its neighborhood.

Otherwise, 
(y) = 


0

(y). It is 
lear that j
(N(x))j � b � 1 is satis�ed, the only problem

we fa
e is that 
 may not be a proper 
oloring. To avoid this problem we only need that

the re
olored verti
es form an independent set. For ea
h vertex v de�ne the index set

I(v) := fj : v \ C

j

= ;g. If y and y

0

are re
olored verti
es then they are neighbors of

some x and x

0

, respe
tively, where I(x) 
ontains 


0

(y) and at least b � 2 indi
es smaller

than 


0

(y) and I(x

0

) 
ontains 


0

(y

0

) and at least b � 2 indi
es smaller than 


0

(y

0

). Sin
e

j[n℄ n (x [ y)j = t � 2, there are at most t � 2 elements in [

j2I(x)

C

j

not 
ontained in y.

14



The de�nition of 


0

also implies that at least one element of C

j

is missing from y for every

j < 


0

(y). Similarly, there are at most t�2 elements in [

j2I(x

0

)

C

j

not 
ontained in y

0

and

at least one element of C

j

is missing from y

0

for every j < 


0

(y

0

): These 
onditions lead to

y\y

0

6= ; if the sizes jA

i

j = 2jC

i

j�1 are appropriately 
hosen. In parti
ular, if t � 2m+3

and jA

t

j � 1; jA

t�1

j � 2m + 3; jA

t�2

j � : : : � jA

t�(2m+2)

j � 4m + 5, or t � 4m + 3 and

jA

t

j � 1; jA

t�1

j � 3; jA

t�2

j � : : : � jA

t�(4m+2)

j � 5, then the above argument leads to a

proof of  (SG(n; k)) � t �m. (It takes some further but simple argument why the last

two intervals A

i


an be 
hosen smaller than the previous ones.) These two possible 
hoi
es

of the interval sizes give the two general bounds on n we 
laimed suÆ
ient for attaining

 (SG(n; k)) � t�m. The strengthening of Theorem 3 is obtained by the m = (t� 3)=2

spe
ial 
ase of the �rst bound. �

Proposition 4 (restated)  (SG(n; 2)) = n� 2 = �(SG(n; 2)) for every n � 4.

Proof. In the n = 4 
ase SG(n; 2) 
onsists of a single edge and the statement of the

proposition is trivial. Assume for a 
ontradi
tion that  (SG(n; 2)) � n � 3 for some

n � 5 and let 
 be a proper 
oloring of SG(n; 2) showing this with the minimal number

of 
olors. As �(SG(n; 2)) = n� 2 and a 
oloring of a graph G with exa
tly �(G) 
olors


annot show  (G) < �(G) the 
oloring 
 uses at least n� 1 
olors.

It is worth visualizing the verti
es of SG(n; 2) as diagonals of an n-gon (
f. [8℄).

In other words, SG(n; 2) is the 
omplement of the line graph of D

n

, where D

n

is the


omplement of the 
y
le C

n

. The 
olor 
lasses are independent sets in SG(n; 2), so they

are either stars or triangles in D

n

.

We say that a vertex x sees the 
olor 
lasses of its neighbors. By our assumption every

vertex sees at most n� 4 
olor 
lasses.

Assume a 
olor 
lass 
onsists of a single vertex x. As x sees at most n � 4 of the

at least n � 1 
olor 
lasses we 
an 
hoose a di�erent 
olor for x. The resulting 
oloring

attains the same lo
al 
hromati
 number with fewer 
olors. This 
ontradi
ts the 
hoi
e

of 
 and shows that no 
olor 
lass is a singleton.

A triangle 
olor 
lass is seen by all other edges of D

n

. A star 
olor 
lass with 
enter

i and at least three elements is seen by all verti
es that, as edges of D

n

, are not in
ident

to i. For star 
olor 
lasses of two edges there 
an be one additional vertex not seeing the


lass. So every 
olor 
lass is seen by all but at most n� 2 verti
es. We double 
ount the

pairs of a vertex x and a 
olor 
lass C seen by x. On one hand every vertex sees at most

n�4 
lasses. On the other hand all the 
olor 
lasses are seen by at least

��

n

2

�

� n

�

�(n�2)

verti
es. We have

(n� 1)

��

n

2

�

� 2n + 2

�

�

��

n

2

�

� n

�

(n� 4);

and this 
ontradi
ts our n � 5 assumption. The 
ontradi
tion proves the statement.

�
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4.3 Generalized My
ielski graphs

Another 
lass of graphs for whi
h the 
hromati
 number is known only via the topologi
al

method is formed by generalized My
ielski graphs, see [23, 39, 48℄. They are interesting

for us also for another reason: there is a big gap between their fra
tional and ordinary


hromati
 numbers (see [34, 50℄), therefore the lo
al 
hromati
 number 
an take its value

from a large interval.

Re
all that the My
ielskianM(G) of a graphG is the graph de�ned on (f0; 1g�V (G))[

fzg with edge set E(M(G)) = ff(0; v); (i; w)g : fv; wg 2 E(G); i 2 f0; 1gg [ ff(1; v); zg :

v 2 V (G)g. My
ielski [43℄ used this 
onstru
tion to in
rease the 
hromati
 number of a

graph while keeping the 
lique number �xed: �(M(G)) = �(G)+1 and !(M(G)) = !(G).

Following Tardif [50℄, the same 
onstru
tion 
an also be des
ribed as the dire
t (also


alled 
ategori
al) produ
t of G with a path on three verti
es having a loop at one end and

then identifying all verti
es that have the other end of the path as their �rst 
oordinate.

Re
all that the dire
t produ
t of F and G is a graph on V (F )�V (G) with an edge between

(u; v) and (u

0

; v

0

) if and only if fu; u

0

g 2 E(F ) and fv; v

0

g 2 E(G). The generalized

My
ielskian of G (
alled a 
one over G by Tardif [50℄) M

r

(G) is then de�ned by taking

the dire
t produ
t of P and G, where P is a path on r + 1 verti
es having a loop at

one end, and then identifying all the verti
es in the produ
t with the loopless end of the

path as their �rst 
oordinate. With this notation M(G) = M

2

(G). These graphs were


onsidered by Stiebitz [48℄, who proved that if G is k-
hromati
 \for a topologi
al reason"

then M

r

(G) is (k + 1)-
hromati
 for a similar reason. (Gy�arf�as, Jensen, and Stiebitz [23℄

also 
onsider these graphs and quote Stiebitz's argument a spe
ial 
ase of whi
h is also

presented in [39℄.) The topologi
al reason of Stiebitz is in di�erent terms than those we

use in this paper but using results of [3℄ they imply strong topologi
al (t+d)-
hromati
ity

for graphs obtained by d iterations of the generalized My
hielski 
onstru
tion starting, e.g,

from K

t

or from a t-
hromati
 S
hrijver graph. More pre
isely, Stiebitz proved that the

body of the so-
alled neighborhood 
omplex N (M

r

(G)) of M

r

(G), introdu
ed in [36℄ by

Lov�asz, is homotopy equivalent to the suspension of jjN (G)jj. Sin
e susp(S

n

)

�

=

S

n+1

this

implies that whenever jjN (G)jj is homotopy equivalent to an n-dimensional sphere, then

jjN (M

r

(G))jj is homotopy equivalent to the (n + 1)-dimensional sphere. This happens,

for example, if G is a 
omplete graph, or an odd 
y
le. By a re
ent result of Bj�orner

and de Longueville [8℄ we also have a similar situation if G is isomorphi
 to any S
hrijver

graph SG(n; k). Noti
e that the latter in
lude 
omplete graphs and odd 
y
les.

It is known, that jjN (F )jj is homotopy equivalent to H(F ) for every graph F , see

Proposition 4.2 in [3℄. All this implies that 
oind(H(M

r

(G))) = 
oind(H(G))+1 whenever

H(G) is homotopy equivalent to a sphere, in parti
ular, whenever G is a 
omplete graph

or an odd 
y
le, or, more generally, a S
hrijver graph. In the �rst version of this paper

we wrote that it is very likely that Stiebitz's proof 
an be generalized to show that

H(M

r

(G)) $ susp(H(G)) and therefore 
oind(H(M

r

(G))) � 
oind(H(G)) + 1 holds

always. Sin
e then Csorba [12℄ su

eeded to prove this generalization. In fa
t, he proved

Z

2

-homotopy equivalen
e of H(M

r

(G)) and susp(H(G)). Nevertheless, here we restri
t
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attention to graphs G with H(G) homotopy equivalent to a sphere.

For an integer ve
tor r = (r

1

; : : : ; r

d

) with r

i

� 1 for all i we let M

(d)

r

(G) =

M

r

d

(M

r

d�1

(: : :M

r

1

(G) : : :)) denote the graph obtained by a d-fold appli
ation of the gen-

eralized My
ielski 
onstru
tion with respe
tive parameters r

1

; : : : ; r

d

.

Proposition 9 (Stiebitz) If G is a graph for whi
h H(G) is homotopy equivalent to a

sphere S

h

with h = �(G) � 2 (in parti
ular, G is a 
omplete graph or an odd 
y
le,

or, more generally, a S
hrijver graph) and r = (r

1

; : : : ; r

d

) is arbitrary, then M

(d)

r

(G) is

strongly topologi
ally t-
hromati
 for t = �(M

(d)

r

(G)) = �(G) + d. �

It is interesting to remark that �(M

r

(G)) > �(G) does not hold in general if r � 3, e.g.,

for C

7

, the 
omplement of the 7-
y
le, one has �(M

3

(C

7

)) = �(C

7

) = 4 (
f. [50℄). Still,

the result of Stiebitz implies that the sequen
e f�(M

(d)

r

(G))g

1

d=1

may avoid to in
rease

only a �nite number of times.

The fra
tional 
hromati
 number of My
ielski graphs were determined by Larsen,

Propp, and Ullman [34℄, who proved that �

f

(M(G)) = �

f

(G) +

1

�

f

(G)

holds for every G.

This already shows that there is a large gap between the 
hromati
 and the fra
tional


hromati
 numbers of M

(d)

r

(G) if d is large enough and r

i

� 2 for all i, sin
e obviously,

�

f

(M

r

(F )) � �

f

(M(F )) holds if r � 2. The previous result was generalized by Tardif

[50℄ who showed that �

f

(M

r

(G)) 
an also be expressed by �

f

(G) as �

f

(G)+

1

P

r�1

i=0

(�

f

(G)�1)

i

whenever G has at least one edge.

First we show that for the original My
ielski 
onstru
tion the lo
al 
hromati
 number

behaves similarly to the 
hromati
 number.

Proposition 10 For any graph G we have

 (M(G)) =  (G) + 1:

Proof. We pro
eed similarly as one does in the proof of �(M(G)) = �(G) + 1. Re
all

that V (M(G)) = f0; 1g � V (G) [ fzg.

For the upper bound 
onsider a 
oloring 


0

of G establishing its lo
al 
hromati
 number

and let � and � be two 
olors not used by 


0

. We de�ne 
((0; x)) = 


0

(x), 
((1; x)) = �

and 
(z) = �. This proper 
oloring shows  (M(G)) �  (G) + 1.

For the lower bound 
onsider an arbitrary proper 
oloring 
 of M(G). We have to

show that some vertex must see at least  (G) di�erent 
olors in its neighborhood.

We de�ne the 
oloring 


0

of G as follows:




0

(x) =

�


((0; x)) if 
((0; x)) 6= 
(z)


((1; x)) otherwise.

It follows from the 
onstru
tion that 


0

is a proper 
oloring of G. Note that 


0

does not

use the 
olor 
(z).
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By the de�nition of  (G), there is some vertex x of G that has at least  (G) � 1

di�erent 
olors in its neighborhood N

G

(x). If 


0

(y) = 
(0; y) for all verti
es y 2 N

G

(x),

then the vertex (1; x) has all these 
olors in its neighborhood, and also the additional


olor 
(z). If however 


0

(y) 6= 
(0; y) for a neighbor y of x, then the vertex (0; x) sees

all the 
olors 


0

(N

G

(x)) in its neighborhood N

M(G)

(0; x), and also the additional 
olor


(0; y) = 
(z). In both 
ases a vertex has  (G) di�erent 
olors in its neighborhood as


laimed. �

We remark that M

1

(G) is simply the graph G with a new vertex 
onne
ted to every

vertex of G, therefore the following trivially holds.

Proposition 11 For any graph G we have

 (M

1

(G)) = �(G) + 1:

�

For our �rst upper bound we apply Lemma 4.1. We use the following result of Gy�arf�as,

Jensen, and Stiebitz [23℄. The lemma below is an immediate generalization of the l = 2

spe
ial 
ase of Theorem 4.1 in [23℄. We reprodu
e the simple proof from [23℄ for the sake

of 
ompleteness.

Lemma 4.3 ([23℄) If G has a wide 
oloring with t 
olors and r � 7, then M

r

(G) has a

wide 
oloring with t+ 1 
olors.

Proof. As there is a homomorphism from M

r

(G) to M

7

(G) if r > 7 it is enough to give

the 
oloring for r = 7. We �x a wide t-
oloring 


0

of G and use the additional 
olor 
.

The 
oloring of M

7

(G) is given as


((v; x)) =

�


 if v is the vertex at distan
e 3, 5 or 7 from the loop




0

(x) otherwise.

It is straightforward to 
he
k that 
 is a wide 
oloring. �

We 
an apply the results of Stiebitz and Gy�arf�as et al. re
ursively to give tight or

almost tight bounds for the lo
al 
hromati
 number of the graphsM

(d)

r

(G) in many 
ases:

Corollary 12 If G has a wide t-
oloring and r = (r

1

; : : : ; r

d

) with r

i

� 7 for all i, then

 (M

(d)

r

(G)) �

t+d

2

+ 2.

If H(G) is homotopy equivalent to a sphere S

h

, then  (M

(d)

r

(G)) �

h+d

2

+ 2.

Proof. For the �rst statement we apply Lemma 4.3 re
ursively to show that M

(d)

r

(G)

has a wide (t+ d)-
oloring and then apply Lemma 4.1.

For the se
ond statement we apply the result of Stiebitz re
ursively to show that

H(M

(d)

r

(G)) is homotopy equivalent to S

h+d

. As noted in the preliminaries of the present
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subse
tion this implies 
oind(H(M

(d)

r

(G))) � h+d. By Theorem 1 the statement follows.

�

Theorem 5 (restated) If r = (r

1

; : : : ; r

d

), d is odd, and r

i

� 7 for all i, then

 (M

(d)

r

(K

2

)) =

�

d

2

�

+ 2:

Proof. Noti
e that for r = (r

1

; : : : ; r

d

) with d odd and r

i

� 7 for all i the lower

and upper bounds of Corollary 12 give the exa
t value for the lo
al 
hromati
 number

 (M

(d)

r

(K

2

)) = (d+ 5)=2. This proves the theorem. �

Noti
e that a similar argument gives the exa
t value of  (G) for the more 
ompli
ated

graph G = M

(d)

r

(SG(n; k)) whenever n + d is odd, r

i

� 7 for all i, and n � 4t

2

� 7t for

t = n � 2k + 2. This follows from Corollary 12 via the wide 
olorability of SG(n; k) for

n � 4t

2

� 7t shown in the proof of Theorem 3 and Bj�orner and de Longueville's result

[8℄ about the homotopy equivalen
e of H(SG(n; k)) to S

n�2k

. (Instead of the latter we


an also use Csorba's result [12℄ mentioned above and refer to the strong topologi
al

t-
hromati
ity of SG(n; k).)

We summarize our knowledge on  (M

(d)

r

(K

2

)) after proving the following theorem,

whi
h shows that almost the same upper bound as in Corollary 12 is implied from the

relaxed 
ondition r

i

� 4.

Theorem 13 For r = (r

1

; : : : ; r

d

) with r

i

� 4 for all i one has

 (M

(d)

r

(G)) �  (G) +

�

d

2

�

+ 2:

Moreover, for G

�

=

K

2

, the following slightly sharper bound holds:

 (M

(d)

r

(K

2

)) �

�

d

2

�

+ 3:

Proof. We denote the verti
es of Y := M

(d)

r

(G) in a

ordan
e to the des
ription of

the generalized My
ielski 
onstru
tion via graph produ
ts. That is, a vertex of Y is a

sequen
e a

1

a

2

: : : a

d

u of length (d+1), where 8i : a

i

2 f0; 1; : : : ; r

i

g[f�g, u 2 V (G)[f�g

and if a

i

= r

i

for some i then ne
essarily u = � and a

j

= � for every j > i, and this is the

only way � 
an appear in a sequen
e. To de�ne adja
en
y we denote by

^

P

r

i

+1

the path

on f0; 1; : : : ; r

i

g where the edges are of the form fi � 1; ig; i 2 f1; : : : ; r

i

g and there is a

loop at vertex 0. Two verti
es a

1

a

2

: : : a

d

u and a

0

1

a

0

2

: : : a

0

d

u

0

are adja
ent in Y if and only

if

u = � or u

0

= � or fu; u

0

g 2 E(G) and

19



8i : a

i

= � or a

0

i

= � or fa

i

; a

0

i

g 2 E(

^

P

r

i

+1

):

Our strategy is similar to that used in Remark 4. Namely, we give an original 
oloring




0

, identify the set of \troublesome" verti
es for this 
oloring, and re
olor most of the

neighbors of these verti
es to a new 
olor.

Let us �x a 
oloring 


G

of G with at most  (G) � 1 
olors in the neighborhood of a

vertex. Let the 
olors we use in this 
oloring be 
alled 0;�1;�2, et
. Now we de�ne 


0

as follows.




0

(a

1

: : : a

d

u) =

8

<

:




G

(u) if 8i : a

i

� 2

i if a

i

� 3 is odd and a

j

� 2 for all j < i

0 if 9i : a

i

� 4 is even and a

j

� 2 for all j < i

It is 
lear that verti
es having the same 
olor form independent sets, i.e., 


0

is a proper


oloring. Noti
e that if a vertex has neighbors of many di�erent \positive" 
olors, then it

must have many 
oordinates that are equal to 2. Now we re
olor most of the neighbors

of these verti
es.

Let � be a 
olor not used by 


0

and set 
(a

1

: : : a

d

u) = � if jfi : a

i

is oddgj > d=2.

(In fa
t, it would be enough to give 
olor � only to those of the above verti
es, for whi
h

the �rst b

d

2


 odd 
oordinates are equal to 1. We re
olor more verti
es for the sake of

simpli
ity.) Otherwise, let 
(a

1

: : : a

d

u) = 


0

(a

1

: : : a

d

u).

First, we have to show that 
 is proper. To this end we only have to show that no

pair of verti
es getting 
olor � 
an be adja
ent. If two verti
es, x = x

1

: : : x

d

v

x

and

y = y

1

: : : y

d

v

y

are 
olored � then both have more than d=2 odd 
oordinates (among their

�rst d 
oordinates). Thus there is some 
ommon 
oordinate i for whi
h x

i

and y

i

are both

odd. This implies that x and y are not adja
ent.

Now we show that for any vertex a we have j
(N(a)) \ f1; : : : ; dgj � d=2. Indeed, if

j


0

(N(a))\f1; : : : ; dgj > d=2 then we have a = a

1

: : : a

d

u with more than d=2 
oordinates

a

i

that are even and positive. Furthermore, the �rst bd=2
 of these 
oordinates should

be 2. Let I be the set of indi
es of these �rst bd=2
 even and positive 
oordinates. We


laim that 
(N(a))\f1; : : : ; dg � I. This is so, sin
e if a neighbor has an odd 
oordinate

somewhere outside I, then it 
annot have � at the positions of I, therefore it has more

than d=2 odd 
oordinates and it is re
olored by 
 to the 
olor �.

It is also 
lear that no vertex 
an see more than  (G) � 1 \negative" 
olors in its

neighborhood in either 
oloring 


0

or 
. Thus the neighborhood of any vertex 
an 
ontain

at most bd=2
+ ( (G)� 1) + 2 
olors, where the last 2 is added be
ause of the possible

appearan
e of 
olors � and 0 in the neighborhood. This proves  (Y ) � d=2 +  (G) + 2

proving the �rst statement in the theorem.

For G

�

=

K

2

the above gives  (M

(d)

r

(K

2

)) � bd=2
 + 4 whi
h implies the se
ond

statement for odd d. For even d the bound of the se
ond statement is 1 less. We 
an gain

1 as follows. When de�ning 
 let us re
olor to � those verti
es a = a

1

: : : a

d

u, too, for

whi
h the number of odd 
oordinates a

i

is exa
tly

d

2

and 


G

(u) = �1. The proof pro
eeds
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similarly as before but we gain 1 by observing that those verti
es who see �1 
an see only

d

2

� 1 \positive" 
olors. �

We 
olle
t the impli
ations of Theorems 5, 13 and Propositions 10 and 11. It would be

interesting to estimate the value  (M

(d)

r

(K

2

)) for the missing 
ase r = (3; : : : ; 3). What

we know then is dd=2e+ 2 �  � d+ 2.

Corollary 14 For r = (r

1

; : : : ; r

d

) we have

 (M

(d)

r

(K

2

)) =

8

<

:

(d+ 5)=2 if d is odd and 8i : r

i

� 7

dd=2e+ 2 or dd=2e+ 3 if 8i : r

i

� 4

d+ 2 if r

d

= 1 or 8i : r

i

= 2:

�

Remark 5. The improvement for even d given in the last paragraph of the proof of

Theorem 13 
an also be obtained in a di�erent way we explain here. Instead of 
hanging

the rule for re
oloring, we 
an enfor
e that a vertex 
an see only  (G)�2 negative 
olors.

This 
an be a
hieved by setting the starting graph G to be M

4

(K

2

)

�

=

C

9

instead of K

2

itself and 
oloring this C

9

with the pattern �1; 0;�1;�2; 0;�2;�3; 0;�3 along the 
y
le.

One 
an readily 
he
k that every vertex 
an see only one non-0 
olor in its neighborhood.

The same tri
k 
an be used also if the starting graph is not K

2

or C

9

, but some

large enough S
hrijver graph of odd 
hromati
 number. Coloring it as in the proof of

Lemma 4.1 (using the wide 
oloring as given in the proof of Theorem 3), we arrive to the

same phenomenon if we let the new 
olor (of the proof of Lemma 4.1) be 0. �

Remark 6. Gy�arf�as, Jensen, and Stiebitz [23℄ use generalized My
ielski graphs to show

that another graph they denote by G

k

is k-
hromati
. The way they prove it is that they

exhibit a homomorphism from M

(k�2)

r

(K

2

) to G

k

for r = (4; : : : ; 4). The existen
e of

this homomorphism implies that G

k

is strongly topologi
ally k-
hromati
, thus its lo
al


hromati
 number is at least k=2 + 1. We do not know any non-trivial upper bound

for  (G

k

). Also note that [23℄ gives universal graphs for the property of having a wide

t-
oloring. By Lemma 4.1 this graph has  � t=2 + 2. On the other hand, sin
e any

graph with a wide t-
oloring admits a homomorphism to this graph, and we have seen

the wide t-
olorability of some strongly topologi
ally t-
hromati
 graphs, it is strongly

topologi
ally t-
hromati
, as well. This gives  � t=2 + 1. �

4.4 Borsuk graphs and the tightness of Ky Fan's theorem

The following de�nition goes ba
k to Erd}os and Hajnal [15℄, see also [37℄.

De�nition 5 The Borsuk graph B(n; �) of parameters n and 0 < � < 2 is the in�nite

graph whose verti
es are the points of the unit sphere in R

n

(i.e., S

n�1

) and its edges


onne
t the pairs of points with distan
e at least �.
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The Borsuk-Ulam theorem implies that �(B(n; �)) � n + 1, and, as Lov�asz [37℄

remarks, these two statements are in fa
t equivalent. For � large enough (depending

on n) this lower bound on the 
hromati
 number is sharp as shown by the standard

(n+ 1)-
oloring of the sphere S

n�1

(see [37, 39℄ or 
f. the proof of Corollary 15 below).

The lo
al 
hromati
 number of Borsuk graphs for large enough � 
an also be de-

termined by our methods. First we want to argue that Theorem 1 is appli
able for this

in�nite graph. Lov�asz gives in [37℄ for any n and � a �nite graphG

P

= G

P

(n; �) � B(n; �)

whi
h has the property that its neighborhood 
omplex N (G

P

) is homotopy equivalent to

S

n�1

. Now we 
an 
ontinue the argument the same way as in the previous subse
tion:

Proposition 4.2 in [3℄ states that N (F ) is homotopy equivalent to H(F ) for every graph

F , thus 
oind(H(G

P

)) � n � 1, i.e., G

P

is strongly topologi
ally (n + 1)-
hromati
. As

G

P

� B(n; �) we have d

n+3

2

e �  (G

P

) �  (B(n; �)) by Theorem 1.

The following lemma shows the spe
ial role of Borsuk graphs among strongly topo-

logi
ally t-
hromati
 graphs. It will also show that our earlier upper bounds on the lo
al


hromati
 number have dire
t impli
ations for Borsuk graphs.

Lemma 4.4 A �nite graph G is strongly topologi
ally (n+1)-
hromati
 if and only if for

some � < 2 there is a graph homomorphism from B(n; �) to G.

Proof. For the if part 
onsider the �nite graph G

P

� B(n; �) given by Lov�asz [37℄

satisfying 
oind(H(G

P

)) � n � 1. If there is a homomorphism from B(n; �) to G, it


learly gives a homomorphism also from G

P

to G whi
h further generates a Z

2

-map from

H(G

P

) to H(G). This proves 
oind(H(G)) � n� 1.

For the only if part, let f : S

n�1

! H(G) be a Z

2

-map. For a point x 2 S

n�1

write f(x) 2 H(G) as the 
onvex 
ombination f(x) =

P

�

v

(x)jj+vjj+

P

�

v

(x)jj�vjj of

the verti
es of jjB

0

(G)jj. Here the summations are for the verti
es v of G,

P

�

v

(x) =

P

�

v

(x) = 1=2, and fv : �

v

(x) > 0g ℄ fv : �

v

(x) > 0g 2 B

0

(G). Note that �

v

and

�

v

are 
ontinuous as f is 
ontinuous and �

v

(x) = �

v

(�x) by the equivarian
e of f . Set

" = 1=(2jV (G)j). For x 2 S

n�1

sele
t an arbitrary vertex v = g(x) of G with �

v

� ". We


laim that g is a graph homomorphism from B(n; �) to G if � is 
lose enough to 2. By


ompa
tness it is enough to prove that if we have verti
es v and w of G and sequen
es

x

i

! x and y

i

! �x of points in S

n�1

with g(x

i

) = v and g(y

i

) = w for all i, then v

and w are 
onne
ted in G. But sin
e �

v

is 
ontinuous we have �

v

(x) � " and similarly

�

w

(x) = �

w

(�x) � " and so +v and �w are 
ontained in the smallest simplex of B

0

(G)


ontaining f(x) proving that v and w are 
onne
ted. �

By Lemma 4.4 either of Theorems 3 or 5 implies that the above given lower bound

on  (B(n; �)) is tight whenever �(B(n; �)) is odd, that is, n is even, and � < 2 is 
lose

enough to 2. In the following 
orollary we give an expli
it bound on � by proving for that

value of � that the standard 
oloring is wide.

Corollary 15 If n is even and 2�

1

25n+50

� � < 2, then

 (B(n; �)) =

n

2

+ 2:
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Proof. The lower bound on  (B(n; �)) follows from the dis
ussion pre
eding Lemma 4.4.

The upper bound follows from Lemma 4.1 as long as we 
an give a wide (n+ 1)-
oloring

of the graph B(n; �).

To this end we use the standard (n+1)-
oloring ofB(n; �) (see, e.g., [37, 39℄). Consider

a regular simplex R ins
ribed into the unit sphere S

n�1

and 
olor a point x 2 S

n�1

by the

fa
et of R interse
ted by the segment from the origin to x. If this segment meets a lower

dimensional fa
e then we arbitrarily 
hoose a fa
et 
ontaining this fa
e. To see for what

� gives this a proper 
oloring we have to �nd the maximal distan
e �

0

between pairs of

points that we 
an 
olor the same. Cal
ulation shows that proje
tions from the origin of

the middle points of two disjoint (n=2�1)-dimensional fa
es of R are farthest apart, thus

�

0

= 2

p

1� 1=(n+ 2). (Noti
e that [37℄ gives a di�erent treshold value for �. We were

informed by L�aszl�o Lov�asz [38℄, however, that it was noti
ed by several resear
hers that

the 
orre
t value is larger than the one given in [37℄.)

We let ' = 2 ar

os(�=2). Clearly, x and y is 
onne
ted if and only if the length of the

shortest ar
 on S

n�1


onne
ting �x and y is at most '. Therefore x and y are 
onne
ted

by a walk of length 5 if and only if the length of this same minimal ar
 is at most 5'. For

the standard 
oloring the length of the shortest ar
 between �x and y for two verti
es

x and y 
olored with the same 
olor is at least 2 ar

os(�

0

=2) = 2 ar
sin(n + 2)

�1=2

.

Therefore the standard 
oloring is wide as long as � > 2 
os

�

ar
sin(n+2)

�1=2

5

�

. Here easy


al
ulation gives that the right hand side is less than 2�

1

25n+50

. �

Our investigations of the lo
al 
hromati
 number led us to 
onsider the following

fun
tion Q(h). The question of its values was independently asked by Mi
ha Perles

motivated by a related question of Matatyahu Rubin

1

.

De�nition 6 For a nonnegative integer parameter h let Q(h) denote the minimum l for

whi
h S

h


an be 
overed by open sets in su
h a way that no point of the sphere is 
ontained

in more than l of these sets and none of the 
overing sets 
ontains an antipodal pair of

points.

Ky Fan's theorem implies Q(h) �

h

2

+ 1. Either of Theorems 3 or 5 implies the upper

bound Q(h) �

h

2

+2. Using the 
on
epts of Corollary 15 and Lemma 4.1 one 
an give an

expli
it 
overing of the sphere S

2l�3

by open subsets where no point is 
ontained in more

than l of the sets and no set 
ontains an antipodal pair of points. In fa
t, the 
overing

we give satis�es a stronger requirement and proves that version (ii) of Ky Fan's theorem

is tight, while version (i) is almost tight.

Corollary 16 There is a 
on�guration A of k+2 open (
losed) sets su
h that [

A2A

(A[

�A) = S

k

, all sets A 2 A satisfy A \ �A = ;, and no x 2 S

k

is 
ontained in more than

�

k+1

2

�

of these sets.

Furthermore, for every x the number of sets in A 
ontaining either x or �x is at

most k + 1.

1

We thank Imre B�ar�any [6℄ and Gil Kalai [29℄ for this information.
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Proof. First we 
onstru
t 
losed sets. Consider the unit sphere S

k

in R

k+1

. Let R be

a regular simplex ins
ribed in the sphere. Let B

1

; : : : ; B

k+2

be the subsets of the sphere

obtained by the 
entral proje
tion of the fa
ets of R. These 
losed sets 
over S

k

. Let C

0

be the set of points 
overed by at least

�

k+3

2

�

of the sets B

i

. Noti
e that C

0

is the union of

the 
entral proje
tions of the b

k�1

2


-dimensional fa
es of R. For odd k let C = C

0

, while

for even k let C = C

0

[C

1

, where C

1

is the set of points in B

1


overed by exa
tly k=2+ 1

of the sets B

i

. Thus C

1

is the union of the 
entral proje
tions of the

k

2

-dimensional fa
es

of a fa
et of R. Observe that C \ �C = ;. Take 0 < Æ < dist(C;�C)=2 and let D be

the open Æ-neighborhood of C in S

k

. For 1 � i � k + 2 let A

i

= B

i

n D. These 
losed

sets 
over S

k

nD and none of them 
ontains a pair of antipodal points. As D \ �D = ;

we have [

k+2

i=1

(A

i

[ �A

i

) = S

k

. It is 
lear that every point of the sphere is 
overed by at

most

�

k+1

2

�

of the sets A

i

proving the �rst statement of the 
orollary.

For the se
ond statement note that if ea
h set B

i


ontains at least one of a pair of

antipodal points, then one of these points belongs to C and is therefore not 
overed by

any of the sets A

i

. Note also, that for odd k the se
ond statement follows also from the

�rst.

To 
onstru
t open sets as required we 
an simply take the open "-neighborhoods of

A

i

. For small enough " > 0 they maintain the properties required in the 
orollary. �

Corollary 17 There is a 
on�guration of k + 3 open (
losed) sets 
overing S

k

none of

whi
h 
ontains a pair of antipodal points, su
h that no x 2 S

k

is 
ontained in more than

d

k+3

2

e of these sets and for every x 2 S

k

the number of sets that 
ontain one of x and

�x is at most k + 2.

Proof. For 
losed sets 
onsider the sets A

i

in the proof of Corollary 16 together with the


losure of D. For open sets 
onsider the open "-neighborhoods of these sets for suitably

small " > 0. �

Note that 
overing with k+3 sets is optimal in Corollary 17 if k � 3. By the Borsuk-

Ulam Theorem (form (i)) fewer than k+2 open (or 
losed) sets not 
ontaining antipodal

pairs of points is not enough to 
over S

k

. If we 
over with k + 2 sets (open or 
losed),

then it gives rise to a proper 
oloring of B(k + 1; �) for large enough � in a natural way.

This 
oloring uses the optimal number k+2 of 
olors, therefore it has a vertex with k+1

di�erent 
olors in its neighborhood. A 
ompa
tness argument establishes from this that

there is a point in S

k


overed by k + 1 sets. A similar argument gives that k + 2 in

Corollary 16 is also optimal if k � 3.

Corollary 18

h

2

+ 1 � Q(h) �

h

2

+ 2:

Proof. The lower bound is implied by Ky Fan's theorem. The upper bound follows from

Corollary 17. �
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Noti
e that for odd h Corollary 18 gives the exa
t value Q(h) =

h+3

2

. For h even we

either have Q(h) =

h

2

+ 1 or Q(h) =

h

2

+ 2. It is trivial that Q(0) = 1. In [47℄ we show

Q(2) = 3. This was independently proved by Imre B�ar�any [6℄. For h > 2 even it remains

open whether the lower or the upper bound of Corollary 18 is exa
t. We also refer to

[47℄ for a more 
omplete dis
ussion of the 
onne
tions between lo
al 
olorings and the

problem of Q(h).

5 Cir
ular 
olorings

In this se
tion we show an appli
ation of the Zig-zag Theorem for the 
ir
ular 
hromati


number of graphs. This will result in the partial solution of a 
onje
ture by Johnson,

Holroyd, and Stahl [28℄ and in a partial answer to a question of Hajiabolhassan and Zhu

[24℄ 
on
erning the 
ir
ular 
hromati
 number of Kneser graphs and S
hrijver graphs,

respe
tively. We also answer a question of Chang, Huang, and Zhu [10℄ 
on
erning the


ir
ular 
hromati
 number of iterated My
ielskians of 
omplete graphs.

The 
ir
ular 
hromati
 number of a graph was introdu
ed by Vin
e [52℄ under the

name star 
hromati
 number as follows.

De�nition 7 For positive integers p and q a 
oloring 
 : V (G) ! [p℄ of a graph G is


alled a (p; q)-
oloring if for all adja
ent verti
es u and v one has q � j
(u)�
(v)j � p�q.

The 
ir
ular 
hromati
 number of G is de�ned as

�




(G) = inf

�

p

q

: there is a (p; q)-
oloring of G

�

:

It is known that the above in�mum is always attained for �nite graphs. An alternative

des
ription of �




(G), explaining its name, is that it is the minimum length of the perimeter

of a 
ir
le on whi
h we 
an represent the verti
es of G by ar
s of length 1 in su
h a way

that ar
s belonging to adja
ent verti
es do not overlap. For a proof of this equivalen
e

and for an extensive bibliography on the 
ir
ular 
hromati
 number we refer to Zhu's

survey arti
le [53℄.

It is known that for every graph G one has �(G) � 1 < �




(G) � �(G). Thus �




(G)

determines the value of �(G) while this is not true the other way round. Therefore the


ir
ular 
hromati
 number 
an be 
onsidered as a re�nement of the 
hromati
 number.

Our main result on the 
ir
ular 
hromati
 number is Theorem 6. Here we restate the

theorem with the expli
it meaning of being topologi
ally t-
hromati
.

Theorem 6 (restated) For a �nite graph G we have �




(G) � 
oind(B

0

(G)) + 1 if


oind(B

0

(G)) is odd.

Proof. Let t = 
oind(B

0

(G)) + 1 be an even number and let 
 be a (p; q)-
oloring of G.

By the Zig-zag Theorem there is a K

t

2

;

t

2

in G whi
h is 
ompletely multi
olored by 
olors

appearing in an alternating manner in its two sides. Let these 
olors be 


1

< 


2

< : : : < 


t

.
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Sin
e the vertex 
olored 


i

is adja
ent to that 
olored 


i+1

, we have 


i+1

� 


i

+ q and




t

� 


1

+(t�1)q. Sin
e t is even, the verti
es 
olored 


1

and 


t

are also adja
ent, therefore

we must have 


t

� 


1

� p� q. The last two inequalities give p=q � t as needed. �

This result has been independently obtained by Meunier [42℄ for S
hrijver graphs.

5.1 Cir
ular 
hromati
 number of even 
hromati
 Kneser and

S
hrijver graphs

Johnson, Holroyd, and Stahl [28℄ 
onsidered the 
ir
ular 
hromati
 number of Kneser

graphs and formulated the following 
onje
ture. (See also as Conje
ture 7.1 and Question

8.27 in [53℄.)

Conje
ture (Johnson, Holroyd, Stahl [28℄): For any n � 2k

�




(KG(n; k)) = �(KG(n; k)):

It is proven in [28℄ that the above 
onje
ture holds if k = 2 or n = 2k + 1 or n = 2k + 2.

Lih and Liu [35℄ investigated the 
ir
ular 
hromati
 number of S
hrijver graphs and

proved that �




(SG(n; 2)) = n � 2 = �(SG(n; 2)) whenever n 6= 5. (For n = 2k + 1 one

always has �




(SG(2k + 1; k)) = 2 +

1

k

.) It was 
onje
tured in [35℄ and proved in [24℄

that for every �xed k there is a threshold l(k) for whi
h n � l(k) implies �




(SG(n; k)) =

�(SG(n; k)). This 
learly implies the analogous statement for Kneser graphs, for whi
h

the expli
it threshold l(k) = 2k

2

(k � 1) is given in [24℄. At the end of their paper

[24℄ Hajiabolhassan and Zhu ask what is the minimum l(k) for whi
h n � l(k) implies

�




(SG(n; k)) = �(SG(n; k)). We show that no su
h threshold is needed if n is even.

Corollary 19 The Johnson-Holroyd-Stahl 
onje
ture holds for every even n. Moreover,

if n is even, then the stronger equality

�




(SG(n; k)) = �(SG(n; k))

also holds.

Proof. As t-
hromati
 Kneser graphs and S
hrijver graphs are topologi
ally t-
hromati
,

Theorem 6 implies the statement of the 
orollary. �

As mentioned above this result has been obtained independently by Meunier [42℄.

We show in Subse
tion 5.3 that for odd n the situation is di�erent.

5.2 Cir
ular 
hromati
 number of My
ielski graphs and Borsuk

graphs

The 
ir
ular 
hromati
 number of My
ielski graphs was also studied extensively, 
f. [10,

16, 25, 53℄. Chang, Huang, and Zhu [10℄ formulated the 
onje
ture that �




(M

d

(K

n

)) =
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�(M

d

(K

n

)) = n + d whenever n � d + 2. Here M

d

(G) denotes the d-fold iterated

My
ielskian of graph G, i.e., using the notation of Subse
tion 4.3 we have M

d

(G) =

M

(d)

r

(G) with r = (2; : : : ; 2). The above 
onje
ture was veri�ed for the spe
ial 
ases

d = 1; 2 in [10℄, where it was also shown that �




(M

d

(G)) � �(M

d

(G)) � 1=2 if �(G) =

d + 1. A simpler proof for the above spe
ial 
ases of the 
onje
ture was given (for d = 2

with the extra 
ondition n � 5) in [16℄. Re
ently Hajiabolhassan and Zhu [25℄ proved

that n � 2

d

+ 2 implies �




(M

d

(K

n

)) = �(M

d

(K

n

)) = n + d. Our results show that

�




(M

d

(K

n

)) = �(M

d

(K

n

)) = n + d always holds if n + d is even. This also answers the

question of Chang, Huang, and Zhu asking the value of �




(M

n

(K

n

)) (Question 2 in [10℄).

The stated equality is given by the following immediate 
onsequen
e of Theorem 6.

Corollary 20 If H(G) is homotopy equivalent to the sphere S

h

, r is a ve
tor of positive

integers, and h+ d is even, then �




(M

(d)

r

(G)) � d+ h+ 2.

In parti
ular, �




(M

(d)

r

(K

n

)) = n+ d whenever n + d is even.

Proof. The 
ondition on G implies 
oind(H(M

(d)

r

(G))) = h + d by Stiebitz's re-

sult [48℄ (
f. the dis
ussion and Proposition 9 in Subse
tion 4.3), whi
h further implies


oind(B

0

(M

(d)

r

(G))) = h+ d+ 1. This gives the 
on
lusion by Theorem 6.

The se
ond statement follows by the homotopy equivalen
e of H(K

n

) with S

n�2

and

the 
hromati
 number of M

(d)

r

(K

n

) being n+ d. �

The above mentioned 
onje
ture of Chang, Huang, and Zhu for n + d even is a spe
ial


ase with r = (2; 2; : : : ; 2) and n � d + 2. Sin
e n + n is always even, the answer

�




(M

n

(K

n

)) = 2n to their question also follows.

Corollary 20 also implies a re
ent result of Lam, Lin, Gu, and Song [33℄ who proved that

for the generalized My
ielskian of odd order 
omplete graphs �




(M

r

(K

2m�1

)) = 2m.

Lam, Lin, Gu, and Song [33℄ also determined the 
ir
ular 
hromati
 number of the

generalized My
ielskian of even order 
omplete graphs. They proved �




(M

r

(K

2m

)) =

2m + 1=(b(r � 1)=m
 + 1). This result 
an be used to bound the 
ir
ular 
hromati


number of the Borsuk graph B(2s; �) from above.

Theorem 21 For the Borsuk graph B(n; �) we have

(i) �




(B(n; �)) = n+ 1 if n is odd and � is large enough;

(ii) �




(B(n; �))! n as �! 2 if n is even.

Proof. The lower bound of part (i) immediately follows from Theorem 6 
onsidering

again the �nite subgraph G

P

of B(n; �) de�ned in [37℄ and already mentioned in the

proof of Lemma 4.4. The mat
hing upper bound is provided by �(B(n; �)) = n + 1 for

large enough �, see [37℄ and Subse
tion 4.4.

For (ii) we have �




(B(n; �)) > �(B(n; �))� 1 � n. For an upper bound we use that

�




(M

r

(K

n

))! n if r goes to in�nity by the result of Lam, Lin, Gu, and Song [33℄ quoted
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above. By the result of Stiebitz [48℄ and Lemma 4.4 we have a graph homomorphism from

B(n; �) to M

r

(K

n

) for any r and large enough �. As (p; q)-
olorings 
an be de�ned in

terms of graph homomorphisms (see [9℄), we have �




(G) � �




(H) if there exists a graph

homomorphism from G to H. This �nishes the proof of part (ii) of the theorem. �

Remark 7. By Theorem 21 (ii) we have a sequen
e of (p

i

; q

i

)-
olorings of the graphs

B(n; �

i

) where n is even su
h that �

i

! 2 and p

i

=q

i

! n. By a dire
t 
onstru
tion

we 
an show that a single fun
tion g : S

n�1

! C is enough. Here C is a 
ir
le of unit

perimeter. We need

inffdist

C

(g(x); g(y)) : fx;yg 2 E(B(n; �))g ! 1=n as � < 2 goes to 2: (2)

The distan
e dist

C

(�; �) is measured along the 
ir
le C. Clearly, if p=q > n and we split C

into p ar
s a

1

; : : : ; a

p

of equal length and 
olor the point x with i if g(x) 2 a

i

, then this

is a (p; q)-
oloring of B(n; �) for � 
lose enough to 2.

For n = 2 any Z

2

-map g : S

1

! C satis�es expression (2). Let n > 2. The map g to

be 
onstru
ted must not be 
ontinuous by the Borsuk-Ulam theorem. Let us 
hoose a set

H of n � 1 equidistant points in C and for b 2 C let T (b) denote the unique set of n=2

equidistant points in C 
ontaining b.

We 
onsider S

n�1

as the join of the sphere S

n�3

and the 
ir
le S

1

. All points in S

n�1

are now either in S

n�3

, or in S

1

, or in the interval 
onne
ting a point in S

n�3

to a point

in S

1

. We de�ne g on S

n�3

su
h that it takes values only from H and it is a proper


oloring of B(n � 2; �) for large enough �. We de�ne g on S

1

su
h that if y goes a full


ir
le around S

1

with uniform velo
ity, then its image g(y) 
overs an ar
 of length 2=n

of C and it also moves with uniform velo
ity. Noti
e that although g is not 
ontinuous

on S

1

, the set T (g(y)) depends on y 2 S

1

in a 
ontinuous manner. Also note that for a

point x 2 S

1

the images g(x) and g(�x) are 1=n apart on C and T (g(x)) [ T (g(�x)) is

a set of n equidistant points.

Let x 2 S

n�3

and y 2 S

1

. Assume that a point z moves with uniform velo
ity from

x to y along the interval 
onne
ting them. We de�ne g on this interval su
h that g(z)

moves with uniform velo
ity along C 
overing an ar
 of length at most 1=n from g(x)

to a point in T (g(y)). The 
hoi
e of the point in T (g(y)) is uniquely determined unless

g(x) 2 T (g(�y)). In the latter 
ase we make an arbitrary 
hoi
e of the two possible

points for the destination of the image g(z).

It is not hard to prove that the fun
tion g de�ned above satis�es expression (2). �

5.3 Cir
ular 
hromati
 number of odd 
hromati
 S
hrijver

graphs

In this subse
tion we show that the parity 
ondition on �(SG(n; k)) in Corollary 19

is relevant, for odd 
hromati
 S
hrijver graphs the 
ir
ular 
hromati
 number 
an be

arbitrarily 
lose to its lower bound.
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Theorem 22 For every " > 0 and every odd t � 3 if n � t

3

=" and t = n� 2k + 2, then

1� " < �(SG(n; k))� �




(SG(n; k)) < 1:

The se
ond inequality is well-known and holds for any graph. We in
luded it only for


ompleteness. To prove the �rst inequality we need some preparation. We remark that

the bound on n in the theorem is not best possible. Our method proves �(SG(n; k)) �

�




(SG(n; k)) � 1� 1=i if i is a positive integer and n � 6(i� 1)

�

t

3

�

+ t.

First we extend our notion of wide 
oloring.

De�nition 8 For a positive integer s we 
all a vertex 
oloring of a graph s-wide if the

two end verti
es of any walk of length 2s� 1 re
eive di�erent 
olors.

Our original wide 
olorings are 3-wide, while 1-wide simply means proper. Gy�arf�as,

Jensen, and Stiebitz [23℄ investigated s-wide 
olorings (in di�erent terms) and mention

(referring to a referee in the s > 2 
ase) the existen
e of homomorphism universal graphs

for s-wide 
olorability with t 
olors. We give a somewhat di�erent family of su
h universal

graphs. In the s = 2 
ase the 
olor-
riti
ality of the given universal graph is proven

in [23℄ implying its minimality among graphs admitting 2-wide t-
olorings. Later in

Subse
tion 6.1 we generalize this result showing that the members of our family are 
olor-


riti
al for every s. Thus they must be minimal and therefore isomorphi
 to a retra
t of

the 
orresponding graphs given in [23℄.

De�nition 9 Let H

s

be the path on the verti
es 0; 1; 2; : : : ; s (i and i � 1 
onne
ted for

1 � i � s) with a loop at s. We de�ne W (s; t) to be the graph with

V (W (s; t)) = f(x

1

: : : x

t

) : 8i x

i

2 f0; 1; : : : ; sg; 9!i x

i

= 0; 9j x

j

= 1g;

E(W (s; t)) = ffx

1

: : : x

t

; y

1

: : : y

t

g : 8i fx

i

; y

i

g 2 E(H

s

)g:

Note that W (s; t) is an indu
ed subgraph of the dire
t power H

t

s

(
f. Subse
tion 4.3).

Proposition 23 A graph G admits an s-wide 
oloring with t 
olors if and only if there

is a homomorphism from G to W (s; t).

Proof. For the if part 
olor vertex x = x

1

: : : x

t

of W (s; t) with 
(x) = i if x

i

= 0. Any

walk between two verti
es 
olored i either has even length or 
ontains two verti
es y and

z with y

i

= z

i

= s. These y and z are both at least at distan
e s apart from both ends

of the walk, thus our 
oloring of W (s; t) with t 
olors is s-wide. Any graph admitting a

homomorphism ' to W (s; t) is s-widely 
olored with t 
olors by 


G

(v) := 
('(v)).

For the only if part assume 
 is an s-wide t-
oloring of G with 
olors 1; : : : ; t. Let '(v)

be an arbitrary vertex of W (s; t) if v is an isolated vertex of G. For a non-isolated vertex

v of G let '(v) = x = x

1

: : : x

t

with x

i

= min(s; d

i

(v)), where d

i

(v) is the distan
e of 
olor


lass i from v. It is 
lear that x

i

= 0 for i = 
(v) and for no other i, while x

i

= 1 for the
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olors of the neighbors of v in G. Thus the image of ' is indeed in V (W (s; t)). It takes

an easy 
he
king that ' is a homomorphism. �

The following lemma is a straightforward extension of the argument given in the proof

of Theorem 3.

Lemma 5.1 If n � (2s� 2)t

2

� (4s� 5)t then SG(n; k) admits an s-wide t-
oloring.

Proof. We use the notation introdu
ed in the proof of Theorem 3.

Let n � t(2(s�1)(t�2)+1) as in the statement and let 


0

be the 
oloring de�ned in the

mentioned proof. The lower bound on n now allows to assume that jC

i

j � (s�1)(t�2)+1.

We show that 


0

is s-wide.

Consider a walk x

0

x

1

: : : x

2s�1

of length (2s� 1) in SG(n; k) and let i = 


0

(x

0

). Then

C

i

� x

0

. By Lemma 4.2 jx

0

n x

2s�2

j � (s � 1)(t � 2) < jC

i

j. Thus x

2s�2

is not disjoint

from C

i

. As x

2s�1

is disjoint from x

2s�2

, it does not 
ontain C

i

and thus its 
olor is not

i. �

Lemma 5.2 W (s; t) admits a homomorphism to M

s

(K

t�1

).

Proof. Re
all our notation for the (iterated) generalized My
ielskians from Subse
tion

4.3.

We de�ne the following mapping from V (W (s; t)) to V (M

s

(K

t�1

)).

'(x

1

: : : x

t

) :=

�

(s� x

t

; i) if x

t

6= x

i

= 0

(s; �) if x

t

= 0:

One 
an easily 
he
k that ' is indeed a homomorphism. �

Proof of Theorem 22. By Lemma 5.1, if n � (2s � 2)t

2

� (4s � 5)t, then SG(n; k)

has an s-wide t-
oloring, thus by Proposition 23 it admits a homomorphism to W (s; t).

Composing this with the homomorphism given by Lemma 5.2 we 
on
lude that SG(n; k)

admits a homomorphism to M

s

(K

t�1

), implying �




(SG(n; k)) � �




(M

s

(K

t�1

)).

We 
ontinue by using Lam, Lin, Gu, and Song's result [33℄, who proved, as already

quoted in the previous subse
tion, that �




(M

s

(K

t�1

)) = t � 1 +

1

b

2s�2

t�1




+1

if t is odd.

Thus, for odd t and i > 0 integer we 
hoose s = (t � 1)(i� 1)=2 + 1 and �(SG(n; k))�

�




(SG(n; k)) = t� �




(SG(n; k)) � 1� 1=i follows from the n � 6(i� 1)

�

t

3

�

+ t bound.

To get the form of the statement 
laimed in the theorem we 
hoose i = b1="
+ 1. �

Remark 8 It is not hard to see that the graphs M

s

(K

t�1

) 
an also be interpreted as

homomorphism universal graphs for a property related to wide 
olorings. Namely, a

graph admits a homomorphism into M

s

(K

t�1

) if and only if it 
an be 
olored with t


olors so that there is no walk of length 2s� 1 
onne
ting two (not ne
essarily di�erent)

points of one parti
ular 
olor 
lass, say, 
olor 
lass t. Realizing this, the statement of

Lemma 5.2 is immediate. �
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6 Further remarks

6.1 Color-
riti
ality of W (s; t)

In this subse
tion we prove the edge 
olor-
riti
ality of the graphs W (s; t) introdu
ed in

the previous se
tion. This generalizes Theorem 2.3 in [23℄, see Remark 9 after the proof.

Theorem 24 For every integer s � 1 and t � 2 the graph W (s; t) has 
hromati
 number

t, but deleting any of its edges the resulting graph is (t� 1)-
hromati
.

Proof. �(W (s; t)) � t follows from the fa
t that some t-
hromati
 S
hrijver graphs

admit a homomorphism to W (s; t) whi
h is implied by Lemma 5.1 and Proposition 23.

The 
oloring giving vertex x = x

1

: : : x

t

of W (s; t) 
olor i i� x

i

= 0 is proper proving

�(W (s; t)) � t.

We prove edge-
riti
ality by indu
tion on t. For t = 2 the statement is trivial as

W (s; t) is isomorphi
 to K

2

. Assume that t � 3 and edge-
riti
ality holds for t � 1. Let

fx

1

: : : x

t

; y

1

: : : y

t

g be an edge of W (s; t) and W

0

be the graph remaining after removal of

this edge. We need to give a proper (t� 1)-
oloring 
 of W

0

.

Let i and j be the 
oordinates for whi
h x

i

= y

j

= 0. We have x

j

= y

i

= 1, in

parti
ular, i 6= j. Let r be a 
oordinate di�erent from both i and j. We may assume

without loss of generality that r = 1, and also that y

1

� x

1

. Coordinates i and j make sure

that x

2

x

3

: : : x

t

and y

2

y

3

: : : y

t

are verti
es of W (s; t� 1), and in fa
t, they are 
onne
ted

by an edge e.

A proper (t�2)-
oloring of the graphW (s; t�1)ne exists by the indu
tion hypothesis.

Let 


0

be su
h a 
oloring. Let � be a 
olor of 


0

and � a 
olor that does not appear in 


0

.

We de�ne the 
oloring 
 of W

0

as follows:


(z

1

z

2

: : : z

t

) =

8

>

>

>

>

<

>

>

>

>

:

� if z

1

< x

1

; x

1

� z

1

is even

� if z

1

< x

1

; x

1

� z

1

is odd

� if z

1

= x

1

= 1; z

i

6= 1 for i > 1

� if z

1

> x

1

; z

i

= x

i

for i > 1




0

(z

2

z

3

: : : z

t

) otherwise.

It takes a straightforward 
ase analysis to 
he
k that 
 is a proper (t� 1)-
oloring of

W

0

. �

Remark 9. Gy�arf�as, Jensen, and Stiebitz [23℄ proved the s = 2 version of the previous

theorem using a homomorphism from their universal graph with parameter t to a gener-

alized My
ielskian of the same type of graph with parameter t � 1. In fa
t, our proof is

a dire
t generalization of theirs using very similar ideas. Behind the 
oloring we gave is

the re
ognition of a homomorphism from W (s; t) to M

3s�2

(W (s; t� 1)). �
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6.2 Hadwiger's 
onje
ture and the Zig-zag theorem

Hadwiger's 
onje
ture, one of the most famous open problems in graph theory, states that

if a graph G 
ontains no K

r+1

minor, then �(G) � r. For detailed information on the

history and status of this 
onje
ture we refer to Toft's survey [51℄. We only mention that

even �(G) = O(r) is not known to be implied by the hypothesis for general r.

As a fra
tional and linear approximation version, Reed and Seymour [44℄ proved that

if G has no K

r+1

minor then �

f

(G) � 2r. This means that graphs with �

f

(G) and �(G)

appropriately 
lose and not 
ontaining a K

r+1

minor satisfy �(G) = O(r).

We know that the main examples of graphs in [45℄ for �

f

(G) << �(G) (Kneser

graphs, My
ielski graphs), as well as many other graphs studied in this paper, satisfy

the hypothesis of the Zig-zag theorem, therefore their t-
hromati
 versions must 
ontain

K

d

t

2

e;b

t

2




subgraphs. (We mention that for strongly topologi
ally t-
hromati
 graphs this


onsequen
e, in fa
t, the 
ontainment of K

a;b

for every a; b satisfying a + b = t, was

proven by Csorba, Lange, S
hurr, and Wassmer [13℄.) However, a K

d

t

2

e;b

t

2




subgraph


ontains a K

b

t

2


+1

minor (just take a mat
hing of size b

t�2

2


 plus one point from ea
h side

of the bipartite graph) proving the following statement whi
h shows that the same kind

of approximation is valid for these graphs, too.

Corollary 25 If a topologi
ally t-
hromati
 graph 
ontains no K

r+1

minor, then t < 2r:

�
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