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Abstrat

The loal hromati number of a graph was introdued in [14℄. It is in between the hro-

mati and frational hromati numbers. This motivates the study of the loal hromati

number of graphs for whih these quantities are far apart. Suh graphs inlude Kneser

graphs, their vertex olor-ritial subgraphs, the Shrijver (or stable Kneser) graphs; My-

ielski graphs, and their generalizations; and Borsuk graphs. We give more or less tight

bounds for the loal hromati number of many of these graphs.

We use an old topologial result of Ky Fan [17℄ whih generalizes the Borsuk-Ulam

theorem. It implies the existene of a multiolored opy of the omplete bipartite graph

K

dt=2e;bt=2

in every proper oloring of many graphs whose hromati number t is deter-

mined via a topologial argument. (This was in partiular noted for Kneser graphs by

Ky Fan [18℄.) This yields a lower bound of dt=2e + 1 for the loal hromati number of

these graphs. We show this bound to be tight or almost tight in many ases.

As another onsequene of the above we prove that the graphs onsidered here have

equal irular and ordinary hromati numbers if the latter is even. This partially proves a

onjeture of Johnson, Holroyd, and Stahl and was independently attained by F. Meunier

[42℄. We also show that odd hromati Shrijver graphs behave di�erently, their irular

hromati number an be arbitrarily lose to the other extreme.



1 Introdution

The loal hromati number of a graph is de�ned in [14℄ as the minimum number of olors

that must appear within distane 1 of a vertex. For the formal de�nition letN(v) = N

G

(v)

denote the neighborhood of a vertex v in a graph G, that is, N(v) is the set of verties v

is onneted to.

De�nition 1 ([14℄) The loal hromati number  (G) of a graph G is

 (G) := min



max

v2V (G)

jf(u) : u 2 N(v)gj+ 1;

where the minimum is taken over all proper olorings  of G.

The +1 term omes traditionally from onsidering \losed neighborhoods" N(v)[fvg

and results in a simpler form of the relations with other oloring parameters.

It is obvious that the loal hromati number of a graph G annot be more than

the hromati number �(G). If G is properly olored with �(G) olors then eah olor

lass must ontain a vertex, whose neighborhood ontains all other olors. Thus a value

 (G) < �(G) an only be attained with a oloring in whih more than �(G) olors

are used. Therefore it is somewhat surprising, that the loal hromati number an be

arbitrarily less than the hromati number, f. [14℄, [19℄.

On the other hand, it was shown in [31℄ that

 (G) � �

f

(G)

holds for any graph G, where �

f

(G) denotes the frational hromati number of G. For

the de�nition and basi properties of the frational hromati number we refer to the

books [45, 21℄.

This suggests to investigate the loal hromati number of graphs for whih the hro-

mati number and the frational hromati number are far apart. This is our main goal

in this paper.

Prime examples of graphs with a large gap between the hromati and the frational

hromati numbers are Kneser graphs and Myielski graphs, f. [45℄. Other, losely re-

lated examples are provided by Shrijver graphs, that are vertex olor-ritial indued

subgraphs of Kneser graphs, and many of the so-alled generalized Myielski graphs.

In this introdutory setion we fous on Kneser graphs and Shrijver graphs, Myielski

graphs and generalized Myielski graphs will be treated in detail in Subsetion 4.3.

We reall that the Kneser graph KG(n; k) is de�ned for parameters n � 2k as the

graph with all k-subsets of an n-set as verties where two suh verties are onneted

if they represent disjoint k-sets. It is a elebrated result of Lov�asz [36℄ (see also [5,

22℄) proving the earlier onjeture of Kneser, that �(KG(n; k)) = n � 2k + 2. For the

frational hromati number one has �

f

(KG(n; k)) = n=k as easily follows from the

vertex-transitivity of KG(n; k) via the Erd}os-Ko-Rado theorem, see [45, 21℄.
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B�ar�any's proof [5℄ of the Lov�asz-Kneser theorem was generalized by Shrijver [46℄ who

found a fasinating family of subgraphs of Kneser graphs that are vertex-ritial with

respet to the hromati number.

Let [n℄ denote the set f1; 2; : : : ; ng.

De�nition 2 ([46℄) The stable Kneser graph or Shrijver graph SG(n; k) is de�ned as

follows.

V (SG(n; k)) = fA � [n℄ : jAj = k; 8i : fi; i+ 1g * A and f1; ng * Ag;

E(SG(n; k)) = ffA;Bg : A \B = ;g:

Thus SG(n; k) is the subgraph indued by those verties of KG(n; k) that ontain

no neighboring elements in the ylially arranged basi set f1; 2; : : : ; ng. These are

sometimes alled stable k-subsets. The result of Shrijver in [46℄ is that �(SG(n; k)) =

n � 2k + 2(= �(KG(n; k)), but deleting any vertex of SG(n; k) the hromati number

drops, i.e., SG(n; k) is vertex-ritial with respet to the hromati number. Reently

Talbot [49℄ proved an Erd}os-Ko-Rado type result, onjetured by Holroyd and Johnson

[27℄, whih implies that the ratio of the number of verties and the independene number

in SG(n; k) is n=k. This gives n=k � �

f

(SG(n; k)) and equality follows by �

f

(SG(n; k)) �

�

f

(KG(n; k)) = n=k. Notie that SG(n; k) is not vertex-transitive in general. See more

on Shrijver graphs in [8, 35, 39, 54℄.

Conerning the loal hromati number it was observed by several people [20, 30℄,

that  (KG(n; k)) � n� 3k + 3 holds, sine the neighborhood of any vertex in KG(n; k)

indues a KG(n� k; k) with hromati number n� 3k+2. Thus for n=k �xed but larger

than 3,  (G) goes to in�nity with n and k. In fat, the results of [14℄ have a similar

impliation also for 2 < n=k � 3: Namely, it follows from those results, that if a series of

graphs G

1

; : : : ; G

i

; : : : is suh that  (G

i

) is bounded, while �(G

i

) goes to in�nity, then the

number of olors to be used in olorings attaining the loal hromati number grows at

least doubly exponentially in the hromati number. However, Kneser graphs with n=k

�xed and n (therefore also the hromati number n � 2k + 2) going to in�nity annot

satisfy this, sine the total number of verties grows simply exponentially in the hromati

number.

The estimates mentioned in the previous paragraph are elementary. On the other

hand, all known proofs for �(KG(n; k)) � n � 2k + 2 use topology or at least have a

topologial avor (see [36, 5, 22, 40℄ to mention just a few suh proofs). They use (or at

least, are inspired by) the Borsuk-Ulam theorem.

In this paper we use a stronger topologial result due to Ky Fan [17℄ to establish

that all proper olorings of a t-hromati Kneser, Shrijver or generalized Myielski graph

ontain a multiolored opy of a balaned omplete bipartite graph. This was notied by

Ky Fan for Kneser graphs [18℄. We also show that the implied lower bound of dt=2e + 1

on the loal hromati number is tight or almost tight for many Shrijver graphs and

generalized Myielski graphs.

In the following setion we summarize our main results in more detail.
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2 Results

In this setion we summarize our results without introduing the topologial notions

needed to state the results in their full generality. We will introdue the phrase that a

graphG is topologially t-hromatimeaning that �(G) � t and this fat an be shown by a

spei� topologial method, see Subsetion 3.2. Here we use this phrase only to emphasize

the generality of the orresponding statements, but the reader an always substitute the

phrase \a topologially t-hromati graph" by \a t-hromati Kneser graph" or \a t-

hromati Shrijver graph" or by \a generalized Myielski graph of hromati number t".

Our general lower bound for the loal hromati number proven in Setion 3 is the

following.

Theorem 1 If G is topologially t-hromati for some t � 2, then

 (G) �

�

t

2

�

+ 1:

This result on the loal hromati number is the immediate onsequene of the Zig-zag

theorem in Subsetion 3.3 that we state here in a somewhat weaker form:

Theorem 2 Let G be a topologially t-hromati graph and let  be a proper oloring of

G with an arbitrary number of olors. Then there exists a omplete bipartite subgraph

K

d

t

2

e;b

t
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of G all verties of whih reeive a di�erent olor in .

We use Ky Fan's generalization of the Borsuk-Ulam theorem [17℄ for the proof. The

Zig-zag theorem was previously established for Kneser graphs by Ky Fan [18℄.

We remark that J�anos K�orner [30℄ suggested to introdue a graph invariant b(G) whih

is the size (number of points) of the largest ompletely multiolored omplete bipartite

graph that should appear in any proper oloring of graph G. It is obvious from the

de�nition that this parameter is bounded from above by �(G) and bounded from below

by the loal hromati number  (G). An obvious onsequene of Theorem 2 is that if G

is topologially t-hromati, then b(G) � t.

In Setion 4 we show that Theorem 1 is essentially tight for several Shrijver and

generalized Myielski graphs. In partiular, this is always the ase for a topologially

t-hromati graph that has a wide t-oloring as de�ned in De�nition 4 in Subsetion 4.1.

As the �rst appliation of our result on wide olorings we show, that if the hro-

mati number is �xed and odd, and the size of the Shrijver graph is large enough, then

Theorem 1 is exatly tight:

Theorem 3 If t = n� 2k + 2 > 2 is odd and n � 4t

2

� 7t then

 (SG(n; k)) =

�

t

2

�

+ 1:
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See Remark 4 in Subsetion 4.2 for a relaxed bound on n. The proof of Theorem 3

is ombinatorial. It will also show that the laimed value of  (SG(n; k)) an be attained

with a oloring using t + 1 olors and avoiding the appearane of a totally multiolored

K

d

t

2

e;d

t

2

e

: To appreiate the latter property, f. Theorem 2.

Sine SG(n; k) is an indued subgraph of SG(n+1; k) Theorem 3 immediately implies

that for every �xed even t = n� 2k + 2 and n; k large enough

 (SG(n; k)) 2

�

t

2

+ 1;

t

2

+ 2

�

:

The lower bound for the loal hromati number in Theorem 1 is smaller than t

whenever t � 4 but Theorem 3 laims the existene of Shrijver graphs with smaller

loal than ordinary hromati number only with hromati number 5 and up. In [47℄ we

prove that the loal hromati number of all 4-hromati Kneser, Shrijver, or generalized

Myielski graphs is 4. The reason is that all these graphs satisfy a somewhat stronger

property, they are strongly topologially 4-hromati (see De�nition 3). On the other

hand, we also show in [47℄ that topologially 4-hromati graphs of loal hromati number

3 do exist.

To demonstrate that requiring large n and k in Theorem 3 is ruial we prove the

following statement.

Proposition 4  (SG(n; 2)) = n� 2 = �(SG(n; 2)) for every n � 4.

As a seond appliation of wide olorings we prove in Subsetion 4.3 that Theorem 1

is also tight for several generalized Myielski graphs. These graphs will be denoted by

M

(d)

r

(K

2

) where r = (r

1

; : : : ; r

d

) is a vetor of positive integers. See Subsetion 4.3 for

the de�nition. Informally, d is the number of iterations and r

i

is the number of \levels"

in iteration i of the generalized Myielski onstrution. M

(d)

r

(K

2

) is proven to be (d+2)-

hromati \beause of a topologial reason" by Stiebitz [48℄. This topologial reason

implies that these graphs are strongly topologially (d + 2)-hromati. Thus Theorem 1

applies and gives the lower bound part of the following result.

Theorem 5 If r = (r

1

; : : : ; r

d

), d is odd, and r

i

� 7 for all i, then

 (M

(d)

r

(K

2

)) =

�

d

2

�

+ 2:

It will be shown in Theorem 13 that relaxing the r

i

� 7 ondition to r

i

� 4 an

only slightly weaker upper bound is still valid. As a ounterpart we also show (see

Proposition 10 in Subsetion 4.3) that for the ordinary Myielski onstrution, whih

is the speial ase of r = (2; : : : ; 2), the loal hromati number behaves just like the

hromati number.

The Borsuk-Ulam Theorem in topology is known to be equivalent (see Lov�asz [37℄)

to the validity of a tight lower bound on the hromati number of graphs de�ned on
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the n-dimensional sphere, alled Borsuk graphs. In Subsetion 4.4 we prove that the

loal hromati number of Borsuk graphs behaves similarly as that of the graphs already

mentioned above. In this subsetion we also formulate a topologial onsequene of our

results on the tightness of Ky Fan's theorem [17℄. We also give a diret proof for the same

tightness result.

The irular hromati number �



(G) of a graph G was introdued by Vine [52℄, see

De�nition 7 in Setion 5. It satis�es �(G) � 1 < �



(G) � �(G). In Setion 5 we prove

the following result using the Zig-zag theorem.

Theorem 6 If G is topologially t-hromati and t is even, then �



(G) � t.

This theorem implies that �



(G) = �(G) if the hromati number is even for Kneser

graphs, Shrijver graphs, generalized Myielski graphs, and ertain Borsuk graphs. The

result on Kneser and Shrijver graphs gives a partial solution of a onjeture by Johnson,

Holroyd, and Stahl [28℄ and a partial answer to a question of Hajiabolhassan and Zhu

[24℄. These results were independently obtained by Meunier [42℄. The result on generalized

Myielski graphs answers a question of Chang, Huang, and Zhu [10℄.

We will also disuss the irular hromati number of odd hromati Borsuk and

Shrijver graphs showing that they an be lose to one less than the hromati number.

We will use a a similar result for generalized Myielski graphs proven by Lam, Lin, Gu,

and Song [33℄.

3 Lower bound

3.1 Topologial preliminaries

The following is a brief overview of some of the topologial onepts we need. We refer to

[7, 26℄ and [39℄ for basi onepts and also for a more detailed disussion of the notions

and fats given below.

A Z

2

-spae (or involution spae) is a pair (T; �) of a topologial spae T and the involution

� : T ! T , whih is ontinuous and satis�es that �

2

is the identity map. The points x 2 T

and �(x) are alled antipodal. The involution � and the Z

2

-spae (T; �) are free if �(x) 6= x

for all points x of T . If the involution is understood from the ontext we speak about T

rather than the pair (T; �). This is the ase, in partiular, for the unit sphere S

d

in R

d+1

with the involution given by the entral reetion x 7! �x. A ontinuous map f : S ! T

between Z

2

-spaes (S; �) and (T; �) is a Z

2

-map (or an equivariant map) if it respets the

respetive involutions, that is f Æ � = � Æ f . If suh a map exists we write (S; �)! (T; �).

If (S; �) ! (T; �) does not hold we write (S; �) 6! (T; �). If both S ! T and T ! S we

all the Z

2

-spaes S and T Z

2

-equivalent and write S $ T .

We try to avoid using homotopy equivalene and Z

2

-homotopy equivalene (i.e., ho-

motopy equivalene given by Z

2

-maps), but we will have to use two simple observations.
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First, if the Z

2

-spaes S and T are Z

2

-homotopy equivalent, then S $ T . Seond, if

the spae S is homotopy equivalent to a sphere S

h

(this relation is between topologial

spaes, not Z

2

-spaes), then for any involution � we have S

h

! (S; �).

The Z

2

-index of a Z

2

-spae (T; �) is de�ned (see e.g. [41, 39℄) as

ind(T; �) := minfd � 0 : (T; �)! S

d

g;

where ind(T; �) is set to be 1 if (T; �) 6! S

d

for all d.

The Z

2

-oindex of a Z

2

-spae (T; �) is de�ned as

oind(T; �) := maxfd � 0 : S

d

! (T; �)g:

If suh a map exists for all d, then we set oind(T; �) = 1. Notie that if (T; �) is not

free, we have ind(T; �) = oind(T; �) =1.

Note that S ! T implies ind(S) � ind(T ) and oind(S) � oind(T ). In partiular,

Z

2

-equivalent spaes have equal index and also equal oindex.

The elebrated Borsuk-Ulam Theorem an be stated in many equivalent forms. Here

we state three of them. For more equivalent versions and several proofs we refer to [39℄.

Here (i) and (ii) are standard forms of the Borsuk-Ulam Theorem, while (iii) is learly

equivalent to (ii).

Borsuk-Ulam Theorem.

(i) (Lyusternik-Shnirel'man version) Let d � 0 and let H be a olletion of open (or

losed) sets overing S

d

with no H 2 H ontaining a pair of antipodal points. Then

jHj � d+ 2.

(ii) S

d+1

6! S

d

for any d � 0.

(iii) For a Z

2

-spae T we have ind(T ) � oind(T ).

The suspension susp(S) of a topologial spae S is de�ned as the fator of the spae

S � [�1; 1℄ that identi�es all the points in S � f�1g and identi�es also the points in

S � f1g. If S is a Z

2

-spae with the involution �, then the suspension susp(S) is also

a Z

2

-spae with the involution (x; t) 7! (�(x);�t). Any Z

2

-map f : S ! T naturally

extends to a Z

2

-map susp(f) : susp(S) ! susp(T ) given by (x; t) 7! (f(x); t). We have

susp(S

n

)

�

=

S

n+1

with a Z

2

-homeomorphism. These observations show the well known

inequalities below.

Lemma 3.1 For any Z

2

-spae S ind(susp(S)) � ind(S) + 1 and oind(susp(S)) �

oind(S) + 1.

A(n abstrat) simpliial omplex K is a non-empty, hereditary set system. That is,

F 2 K, F

0

� F implies F

0

2 K and we have ; 2 K. In this paper we onsider only
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�nite simpliial omplexes. The non-empty sets in K are alled simplies. We all the set

V (K) = fx : fxg 2 Kg the set of verties of K. In a geometri realization of K a vertex x

orresponds to a point jjxjj in a Eulidean spae, a simplex � orresponds to its body, the

onvex hull of its verties: jj�jj = onv(fjjxjj : x 2 �g). We assume that the points jjxjj

for x 2 � are aÆne independent, and so jj�jj is a geometri simplex. We also assume that

disjoint simplies have disjoint bodies. The body of the omplex K is jjKjj = [

�2K

jj�jj,

it is determined up to homeomorphism by K. Any point in p 2 jjKjj has a unique

representation as a onvex ombination p =

P

x2V (K)

�

x

jjxjj suh that fx : �

x

> 0g 2 K.

A map f : V (K) ! V (L) is alled simpliial if it maps simplies to simplies, that

is � 2 K implies f(�) 2 L. In this ase we de�ne jjf jj : jjKjj ! jjLjj by setting

jjf jj(jjxjj) = jjf(x)jj for verties x 2 V (K) and taking an aÆne extension of this funtion

to the bodies of eah of the simplies in K. If jjKjj and jjLjj are Z

2

-spaes (usually with

an involution also given by simpliial maps), then we say that f is a Z

2

-map if jjf jj is a

Z

2

-map. If jjKjj is a Z

2

-spae we use ind(K) and oind(K) for ind(jjKjj) and oind(jjKjj),

respetively.

Following the papers [1, 32, 41℄ we introdue the box omplex B

0

(G) for any �nite graph

G. See [41℄ for several similar omplexes. We de�ne B

0

(G) to be a simpliial omplex on

the verties V (G)�f1; 2g. For subsets S; T � V (G) we denote the set S �f1g[ T �f2g

by S ℄ T , following the onvention of [39, 41℄. For v 2 V (G) we denote by +v the vertex

(v; 1) 2 fvg ℄ ; and �v denotes the vertex (v; 2) 2 ; ℄ fvg. We set S ℄ T 2 B

0

(G) if

S \ T = ; and the omplete bipartite graph with sides S and T is a subgraph of G. Note

that V (G) ℄ ; and ; ℄ V (G) are simplies of B

0

(G).

The Z

2

-map S ℄ T 7! T ℄ S ats simpliially on B

0

(G). It makes the body of the

omplex a free Z

2

-spae.

We de�ne the hom spae H(G) of G to be the subspae onsisting of those points

p 2 jjB

0

(G)jj that, when written as a onvex ombination p =

P

x2V (B

0

(G))

�

x

jjxjj with

fx : �

x

> 0g 2 B

0

(G) give

P

x2V (G)℄;

�

x

= 1=2.

Notie that H(G) an also be obtained as the body of a ell omplex Hom(K

2

; G), see

[3℄, or of a simpliial omplex B

hain

(G), see [41℄.

A useful onnetion between B

0

(G) and H(G) follows from a ombination of results

of Csorba [11℄ and Matou�sek and Ziegler [41℄.

Proposition 7 jjB

0

(G)jj $ susp(H(G))

Proof. Csorba [11℄ proves the Z

2

-homotopy equivalene of jjB

0

(G)jj and the suspension

of the body of yet another box omplex B(G) of G. As we mentioned, Z

2

-homotopy

equivalene implies Z

2

-equivalene. Matou�sek and Ziegler [41℄ prove the Z

2

-equivalene

of jjB(G)jj and H(G). Finally for Z

2

-spaes S and T if S ! T , then susp(S)! susp(T ),

therefore jjB(G)jj $ H(G) implies susp(jjB(G)jj)$ susp(H(G)). �

Note that Csorba [11℄ proves, f. also

�

Zivaljevi� [55℄, the Z

2

-homotopy equivalene

of jjB(G)jj and H(G), and therefore we ould also laim Z

2

-homotopy equivalene in

Proposition 7.
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3.2 Some earlier topologial bounds

A graph homomorphism is an edge preserving map from the vertex set of a graph F to

the vertex set of another graph G. If there is a homomorphism f from F to G, then it

generates a simpliial map from B

0

(F ) to B

0

(G) in the natural way. This map is a Z

2

-map

and thus it shows jjB

0

(F )jj ! jjB

0

(G)jj. One an often prove jjB

0

(F )jj 6! jjB

0

(G)jj using

the indexes or oindexes of these omplexes and this relation implies the non-existene of

a homomorphism from F to G. A similar argument applies with the spaes H(�) in plae

of jjB

0

(�)jj.

Coloring a graph G with m olors an be onsidered as a graph homomorphism

from G to the omplete graph K

m

. The box omplex B

0

(K

m

) is the boundary om-

plex of the m-dimensional ross-polytope (i.e., the onvex hull of the basis vetors

and their negatives in R

m

), thus jjB

0

(K

m

)jj

�

=

S

m�1

with a Z

2

-homeomorphism and

oind(B

0

(G)) � ind(B

0

(G)) � m � 1 is neessary for G being m-olorable. Similarly,

oind(H(G)) � ind(H(G)) � m� 2 is also neessary for �(G) � m sine H(K

m

) an be

obtained from interseting the boundary of the m-dimensional ross-polytope with the

hyperplane

P

x

i

= 0, and therefore H(K

m

)

�

=

S

m�2

with a Z

2

-homeomorphism. These

four lower bounds on �(G) an be arranged in a single line of inequalities using Lemma 3.1

and Proposition 7:

�(G) � ind(H(G)) + 2 � ind(B

0

(G)) + 1 � oind(B

0

(G)) + 1 � oind(H(G)) + 2 (1)

In fat, many of the known proofs of Kneser's onjeture an be interpreted as a

proof of an appropriate lower bound on the (o)index of one of the above omplexes. In

partiular, B�ar�any's simple proof [5℄ exhibits a map showing S

n�2k

! H(KG(n; k)) to

onlude that oind(H(KG(n; k))) � n � 2k and thus �(KG(n; k)) � n � 2k + 2. The

even simpler proof of Greene [22℄ exhibits a map showing S

n�2k+1

! B

0

(KG(n; k)) to

onlude that oind(B

0

(KG(n; k))) � n � 2k + 1 and thus �(KG(n; k)) � n � 2k + 2.

Shrijver's proof [46℄ of �(SG(n; k)) � n � 2k + 2 is a generalization of B�ar�any's and it

also an be interpreted as a proof of S

n�2k

! H(SG(n; k)). We remark that the same

kind of tehnique is used with other omplexes related to graphs, too. In partiular,

Lov�asz's original proof [36℄ an also be onsidered as exhibiting a Z

2

-map from S

n�2k

to

suh a omplex, di�erent from the ones we onsider here. For a detailed disussion of

several suh omplexes and their usefulness in bounding the hromati number we refer

the reader to [41℄.

The above disussion gives several possible \topologial reasons" that an fore a graph

to be at least t-hromati. Here we single out two suh reasons. We would like to stress

that these two reasons are just two out of many and refer to the paper [2℄ for some that

are not even mentioned above. In this sense, our terminology is somewhat arbitrary. The

statement of our results in Setion 2 beomes preise by applying the onventions given

by the following de�nition.

8



De�nition 3 We say that a graph G is topologially t-hromati if

oind(B

0

(G)) � t� 1:

We say that a graph G is strongly topologially t-hromati if

oind(H(G)) � t� 2:

By inequality (1) if a graph is strongly topologially t-hromati, then it is topologi-

ally t-hromati, and if G is topologially t-hromati, then �(G) � t. In [47℄ we show

the existene of a graph for any t � 4 that is topologially t-hromati but not strongly

topologially t-hromati. We also show there that the two notions have di�erent onse-

quenes in terms of the loal hromati number for t = 4.

The notion that a graph is (strongly) topologially t-hromati is useful, as it ap-

plies to many widely studied lasses of graphs. As we mentioned above, B�ar�any [5℄ and

Shrijver [46℄ establish this for t-hromati Kneser and Shrijver graphs. For the reader's

onveniene we reall the proof here. See the analogous statement for generalized Myiel-

ski graphs and (ertain �nite subgraphs of the) Borsuk graphs after we introdue those

graphs.

Proposition 8 (B�ar�any; Shrijver) The t-hromati Kneser and Shrijver graphs are

strongly topologially t-hromati.

Proof. We need to prove that SG(n; k) is strongly topologially (n� 2k+ 2)-hromati,

i.e., that oind(H(SG(n; k))) � n�2k. The statement for Kneser graphs follows. For x 2

S

n�2k

let H

x

denote the open hemisphere in S

n�2k

around x. Consider an arrangement

of the elements of [n℄ on S

n�2k

so that eah open hemisphere ontains a stable k-subset,

i.e., a vertex of SG(n; k). It is not hard to hek that identifying i 2 [n℄ with v

i

=jv

i

j for

v

i

= (�1)

i

(1; i; i

2

; : : : ; i

n�2k

) 2 R

n�2k+1

provides suh an arrangement. (See [46℄ or [39℄ for

details of this.) For eah vertex v of SG(n; k) and x 2 S

n�2k

letD

v

(x) denote the smallest

distane of a point in v from the set S

n�2k

n H

x

and let D(x) =

P

v2V (SG(n;k))

D

v

(x).

Note that D

v

(x) > 0 if v is ontained in H

x

and therefore D(x) > 0 for all x. Let

f(x) :=

1

2D(x)

P

v2V (SG(n;k))

D

v

(x)jj+vjj+

1

2D(�x)

P

v2V (SG(n;k))

D

v

(�x)jj�vjj. This f is a

Z

2

-map S

n�2k

! H(SG(n; k)) proving the proposition. �

3.3 Ky Fan's result on overs of spheres and the Zig-Zag theo-

rem

The following result of Ky Fan [17℄ implies the Lyusternik-Shnirel'man version of the

Borsuk-Ulam theorem. Here we state two equivalent versions of the result, both in terms

of sets overing the sphere. See the original paper for another version generalizing another

standard form of the Borsuk-Ulam theorem.

Ky Fan's Theorem.
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(i) Let A be a system of open (or a �nite system of losed) subsets of S

k

overing the

entire sphere. Assume a linear order < is given on A and all sets A 2 A satisfy

A \ �A = ;. Then there are sets A

1

< A

2

< : : : < A

k+2

of A and a point x 2 S

k

suh that (�1)

i

x 2 A

i

for all i = 1; : : : ; k + 2.

(ii) Let A be a system of open (or a �nite system of losed) subsets of S

k

suh that

[

A2A

(A [ �A) = S

k

. Assume a linear order < is given on A and all sets A 2 A

satisfy A \ �A = ;. Then there are sets A

1

< A

2

< : : : < A

k+1

of A and a point

x 2 S

k

suh that (�1)

i

x 2 A

i

for all i = 1; : : : ; k + 1.

The Borsuk-Ulam theorem is easily seen to be implied by version (i), that shows in

partiular, that jAj � k + 2. We remark that [17℄ ontains the above statements only

about losed sets. The statements on open sets an be dedued by a standard argument

using the ompatness of the sphere. We also remark that version (ii) is formulated a

little di�erently in [17℄. A plae where one �nds exatly the above formulation (for losed

sets, but for any Z

2

-spae) is Baon's paper [4℄.

Zig-zag Theorem Let G be a topologially t-hromati �nite graph and let  be an ar-

bitrary proper oloring of G by an arbitrary number of olors. We assume the olors are

linearly ordered. Then G ontains a omplete bipartite subgraph K

d

t

2

e;b

t

2



suh that  as-

signs distint olors to all t verties of this subgraph and these olors appear alternating

on the two sides of the bipartite subgraph with respet to their order.

Proof. We have oind(B

0

(G)) � t� 1, so there exists a Z

2

-map f : S

t�1

! B

0

(G). For

any olor i we de�ne a set A

i

� S

t�1

letting x 2 A

i

if and only if for the minimal simplex

U

x

℄ V

x

ontaining f(x) there exists a vertex z 2 U

x

with (z) = i. These sets are open,

but they do not neessarily over the entire sphere S

t�1

. Notie that �A

i

onsists of the

points x 2 S

t�1

with �x 2 A

i

, whih happens if and only if there exists a vertex z 2 U

�x

with (z) = i. Here U

�x

= V

x

. For every x 2 S

t�1

either U

x

or V

x

is not empty, therefore

we have [

i

(A

i

[ �A

i

) = S

t�1

. Assume for a ontradition that for a olor i we have

A

i

\ �A

i

6= ; and let x be a point in the intersetion. We have a vertex z 2 U

x

and a

vertex z

0

2 V

x

with (z) = (z

0

) = i. By the de�nition of B

0

(G) the verties z and z

0

are

onneted in G. This ontradits the hoie of  as a proper oloring. The ontradition

shows that A

i

\ �A

i

= ; for all olors i.

Applying version (ii) of Ky Fan's theorem we get that for some olors i

1

< i

2

< : : : < i

t

and a point x 2 S

t�1

we have (�1)

j

x 2 A

i

j

for j = 1; 2; : : : t. This implies the existene

of verties z

j

2 U

(�1)

j

x

with (z

j

) = i

j

. Now U

(�1)

j

x

= U

x

for even j and U

(�1)

j

x

= V

x

for

odd j. Therefore the omplete bipartite graph with sides fz

j

jj is eveng and fz

j

jj is oddg

is a subgraph of G with the required properties. �

This result was previously established for Kneser graphs in [18℄.

Remark 1. Sine for any �xed oloring we are allowed to order the olors in an arbitrary

manner, the Zig-zag Theorem implies the existene of several totally multiolored opies

of K

d

t

2

e;b

t

2



. For a uniform random order any �xed totally multiolored K

d

t

2

e;b

t

2



satis�es
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the zig-zag rule with probability 1=

�

t

bt=2

�

if t is odd and with probability 2=

�

t

t=2

�

if t is

even. Thus the Zig-zag Theorem implies the existene of many di�erently olored totally

multiolored subgraphs K

d

t

2

e;b

t

2



in G:

�

t

bt=2

�

opies for odd t and

�

t

t=2

�

=2 opies for even

t.

If the oloring uses only t olors we get a totally multiolored K

d

t

2

e;b

t

2



subgraph with

all possible olorings, and the number of these di�erent subgraphs is exatly the lower

bound stated. �

Proof of Theorems 1 and 2.

Theorems 1 and 2 are diret onsequenes of the Zig-zag theorem. For Theorem 2 this

is obvious. To prove Theorem 1 onsider any vertex of the bt=2 side of a multiolored

omplete bipartite graph. It has dt=2e di�erently olored neighbors on the other side,

thus at least dt=2e di�erent olors in its neighborhood. �

Remark 2. Theorem 1 gives tight lower bounds for the loal hromati number of topo-

logially t-hromati graphs for odd t as several examples of the next setion will show.

In [47℄ we present examples that show that the situation is similar for even values of

t. However, the graphs establishing this fat are not strongly topologially t-hromati,

whereas the graphs showing tightness of Theorem 1 for odd t are. This leaves open the

question whether  (G) � t=2 + 2 holds for all strongly topologially t-hromati graphs

G and even t � 4. While we prove this statement in [47℄ for t = 4 we do not know the

answer for higher values of t. �

4 Upper bound

In this setion we present the ombinatorial onstrutions that prove Theorems 3 and 5.

In both ases general observations on wide olorings (to be de�ned below) prove useful.

The upper bound in either of Theorems 3 or 5 implies the existene of ertain open overs

of spheres. These topologial onsequenes and the loal hromati number of Borsuk

graphs are disussed in the last subsetion of this setion.

4.1 Wide olorings

We start here with a general method to alter a t-oloring and get a (t+1)-oloring showing

that  � t=2 + 2. It works if the original oloring was wide as de�ned below.

De�nition 4 A vertex oloring of a graph is alled wide if the end verties of all walks

of length 5 reeive di�erent olors.

Note that any wide oloring is proper, furthermore any pair of verties of distane 3

or 5 reeive distint olors. Moreover, if a graph has a wide oloring it does not ontain

a yle of length 3 or 5. For graphs that do not have yles of length 3, 5, 7, or 9

any oloring is wide that assigns di�erent olors to verties of distane 1, 3 or 5 apart.

11



Another equivalent de�nition (onsidered in [23℄) is that a proper oloring is wide if the

neighborhood of any olor lass is an independent set and so is the seond neighborhood.

Lemma 4.1 If a graph G has a wide oloring using t olors, then  (G) � bt=2 + 2.

Proof. Let 

0

be the wide t-oloring of G. We alter this oloring by swithing the olor

of the neighbors of the troublesome verties to a new olor. We de�ne a vertex x to be

troublesome if j

0

(N(x))j > t=2. Assume the olor � is not used in the oloring 

0

. For

x 2 V (G) we let

(x) =

�

� if x has a troublesome neighbor



0

(x) otherwise.

The olor lass � in  is the union of the neighborhoods of troublesome verties. To

see that this is an independent set onsider any two verties z and z

0

of olor �. Let y be

a troublesome neighbor of z and let y

0

be a troublesome neighbor of z

0

. Both 

0

(N(y))

and 

0

(N(y

0

)) ontain more than half of the t olors in 

0

, therefore these sets are not

disjoint. We have a neighbor x of y and a neighbor x

0

of y

0

satisfying 

0

(x) = 

0

(x

0

). This

shows that z and z

0

are not onneted, as otherwise the walk xyzz

0

y

0

x

0

of length 5 would

have two end verties in the same olor lass.

All other olor lasses of  are subsets of the orresponding olor lasses in 

0

, and are

therefore independent. Thus  is a proper oloring.

Any troublesome vertex x has now all its neighbors reolored, therefore (N(x)) = f�g.

For the verties of G that are not troublesome one has j

0

(N(x))j � t=2 and (N(x)) �



0

(N(x)) [ f�g, therefore j(N(x))j � t=2+ 1. Thus the oloring  shows  (G) � t=2 + 2

as laimed. �

We note that the oloring  found in the proof uses t + 1 olors and any vertex that

sees the maximal number bt=2+1 of the olors in its neighborhood must have a neighbor

of olor �. In partiular, for odd t one will always �nd two verties of the same olor in

any K

(t+1)=2;(t+1)=2

subgraph.

4.2 Shrijver graphs

In this subsetion we prove Theorem 3 whih shows that the loal hromati number of

Shrijver graphs with ertain parameters are as low as allowed by Theorem 1. We also

prove Proposition 4 to show that for some other Shrijver graphs the loal hromati

number agrees with the hromati number.

For the proof of Theorem 3 we will use the following simple lemma.

Lemma 4.2 Let u; v � [n℄ be two verties of SG(n; k). If there is a walk of length 2s

between u and v in SG(n; k) then jv n uj � s(t� 2), where t = n� 2k+ 2 = �(SG(n; k)).

12



Proof. Let xyz be a length two walk in SG(n; k). Sine y is disjoint from x, it ontains

all but n � 2k = t� 2 elements of [n℄ n x. As z is disjoint from y it an ontain at most

t� 2 elements not ontained in x. This proves the statement for s = 1.

Now let x

0

x

1

: : : x

2s

be a 2s-length walk between u = x

0

and v = x

2s

and assume the

statement is true for s� 1. Sine jv nuj � jv nx

2s�2

j+ jx

2s�2

nuj � (t� 2)+ (s� 1)(t� 2)

we an omplete the proof by indution. �

We remark that Lemma 4.2 remains true for KG(n; k) with literally the same proof,

but we will need it for SG(n; k), this is why it is stated that way.

Theorem 3 (restated) If t = n� 2k + 2 > 2 is odd and n � 4t

2

� 7t, then

 (SG(n; k)) =

�

t

2

�

+ 1:

Proof. We need to show that  (SG(n; k)) = (t+3)=2. Note that the t = 3 ase is trivial

as all 3-hromati graphs have loal hromati number 3. The lower bound for the loal

hromati number follows from Theorem 1 and Proposition 8.

We de�ne a wide oloring 

0

of SG(n; k) using t olors. From this Lemma 4.1 gives

the upper bound on  (SG(n; k)).

Let [n℄ = f1; : : : ; ng be partitioned into t sets, eah ontaining an odd number of

onseutive elements of [n℄. More formally, [n℄ is partitioned into disjoint sets A

1

; : : : ; A

t

,

where eah A

i

ontains onseutive elements and jA

i

j = 2p

i

� 1. We need p

i

� 2t� 3 for

the proof, this is possible as long as n � t(4t� 7) as assumed.

Notie, that

P

t

i=1

(p

i

� 1) = k � 1, and therefore any k-element subset x of [n℄ must

ontain more than half (i.e., at least p

i

) of the elements in some A

i

. We de�ne our oloring



0

by arbitrarily hoosing suh an index i as the olor 

0

(x). This is a proper oloring

even for the graph KG(n; k) sine if two sets x and y both ontain more than half of the

elements of A

i

, then they are not disjoint.

As a oloring of KG(n; k) the oloring 

0

is not wide. We need to show that the

oloring 

0

beomes wide if we restrit it to the subgraph SG(n; k).

The main observation is the following: A

i

ontains a single subset of ardinality p

i

that does not ontain two onseutive elements. Let C

i

be this set onsisting of the �rst,

third, et. elements of A

i

. A vertex of SG(n; k) has no two onseutive elements, thus a

vertex x of SG(n; k) of olor i must ontain C

i

.

Consider a walk x

0

x

1

: : : x

5

of length 5 in SG(n; k) and let i = 

0

(x

0

). Thus the set

x

0

ontains C

i

. By Lemma 4.2 jx

4

n x

0

j � 2(t� 2). In partiular, x

4

ontains all but at

most 2t� 4 elements of C

i

. As p

i

= jC

i

j � 2t� 3, this means x

4

\ C

i

6= ;: Thus the set

x

5

, whih is disjoint from x

4

, annot ontain all elements of C

i

, showing 

0

(x

5

) 6= i. This

proves that the oloring 

0

is wide, thus Lemma 4.1 ompletes the proof of the theorem.

�

Note that the smallest Shrijver graph for whih the above proof gives  (SG(n; k)) <

�(SG(n; k)) is G = SG(65; 31) with �(G) = 5 and  (G) = 4. In Remark 4 below we
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show how the lower bound on n an be lowered somewhat. After that we show that some

lower bound is needed as  (SG(n; 2)) = �(SG(n; 2)) for every n.

Remark 3. In [14℄ universal graphs U(m; r) are de�ned for whih it is shown that a graph

G an be olored with m olors suh that the neighborhood of every vertex ontains

fewer than r olors if and only if a homomorphism from G to U(m; r) exists. The proof

of Theorem 3 gives, for odd t, a (t + 1)-oloring of SG(n; k) (for appropriately large

n and k that give hromati number t) for whih no neighborhood ontains more than

(t + 1)=2 olors, thus establishing the existene of a homomorphism from SG(n; k) to

U(t + 1; (t+ 3)=2). This, in partiular, proves that �(U(t + 1; (t+ 3)=2)) � t, whih is a

speial ase of Theorem 2.6 in [14℄. It is not hard to see that this inequality is atually

an equality. Further, by the omposition of the appropriate maps, the existene of this

homomorphism also proves that U(t + 1; (t+ 3)=2) is strongly topologially t-hromati.

�

Remark 4. For the prie of letting the proof be a bit more ompliated one an improve

upon the bound given on n in Theorem 3. In partiular, one an show that the same

onlusion holds for odd t and n � 2t

2

�4t+3. More generally, we an show  (SG(n; k)) �

�(SG(n; k)) � m = n � 2k + 2 � m provided that �(SG(n; k)) � 2m + 3 and n �

8m

2

+ 16m+ 9 or �(SG(n; k)) � 4m+ 3 and n � 20m+ 9. The smallest Shrijver graph

for whih we an prove that the loal hromati number is smaller than the ordinary

hromati number is SG(33; 15) with 1496 verties and � = 5 but  = 4. (In general,

one has jV (SG(n; k))j =

n

k

�

n�k�1

k�1

�

, f. Lemma 1 in [49℄.) The smallest n and k for whih

we an prove  (SG(n; k)) < �(SG(n; k)) is for the graph SG(29; 12) for whih � = 7 but

 � 6.

We only sketh the proof. For a similar and more detailed proof see Theorem 13.

The idea is again to take a basi oloring 

0

of SG(n; k) and obtain a new oloring 

by reoloring to a new olor some neighbors of those verties v for whih j

0

(N(v))j is

too large. The novelty is that now we do not reolor all suh neighbors, just enough of

them, and also the de�nition of the basi oloring 

0

is a bit di�erent. Partition [n℄ into

t = n� 2k + 2 intervals A

1

; : : : ; A

t

, eah of odd length as in the proof of Theorem 3 and

also de�ne C

i

similarly to be the unique largest subset of A

i

not ontaining onseutive

elements. For a vertex x we de�ne 

0

(x) to be the smallest i for whih C

i

� x. Note that

suh an i must exist. Now we de�ne when to reolor a vertex to the new olor � if our goal

is to prove  (SG(n; k)) � b := t�m, where m > 0. We let (y) = � i� y is the neighbor

of a vertex x having at least b� 2 di�erent olors smaller than 

0

(y) in its neighborhood.

Otherwise, (y) = 

0

(y). It is lear that j(N(x))j � b � 1 is satis�ed, the only problem

we fae is that  may not be a proper oloring. To avoid this problem we only need that

the reolored verties form an independent set. For eah vertex v de�ne the index set

I(v) := fj : v \ C

j

= ;g. If y and y

0

are reolored verties then they are neighbors of

some x and x

0

, respetively, where I(x) ontains 

0

(y) and at least b � 2 indies smaller

than 

0

(y) and I(x

0

) ontains 

0

(y

0

) and at least b � 2 indies smaller than 

0

(y

0

). Sine

j[n℄ n (x [ y)j = t � 2, there are at most t � 2 elements in [

j2I(x)

C

j

not ontained in y.
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The de�nition of 

0

also implies that at least one element of C

j

is missing from y for every

j < 

0

(y). Similarly, there are at most t�2 elements in [

j2I(x

0

)

C

j

not ontained in y

0

and

at least one element of C

j

is missing from y

0

for every j < 

0

(y

0

): These onditions lead to

y\y

0

6= ; if the sizes jA

i

j = 2jC

i

j�1 are appropriately hosen. In partiular, if t � 2m+3

and jA

t

j � 1; jA

t�1

j � 2m + 3; jA

t�2

j � : : : � jA

t�(2m+2)

j � 4m + 5, or t � 4m + 3 and

jA

t

j � 1; jA

t�1

j � 3; jA

t�2

j � : : : � jA

t�(4m+2)

j � 5, then the above argument leads to a

proof of  (SG(n; k)) � t �m. (It takes some further but simple argument why the last

two intervals A

i

an be hosen smaller than the previous ones.) These two possible hoies

of the interval sizes give the two general bounds on n we laimed suÆient for attaining

 (SG(n; k)) � t�m. The strengthening of Theorem 3 is obtained by the m = (t� 3)=2

speial ase of the �rst bound. �

Proposition 4 (restated)  (SG(n; 2)) = n� 2 = �(SG(n; 2)) for every n � 4.

Proof. In the n = 4 ase SG(n; 2) onsists of a single edge and the statement of the

proposition is trivial. Assume for a ontradition that  (SG(n; 2)) � n � 3 for some

n � 5 and let  be a proper oloring of SG(n; 2) showing this with the minimal number

of olors. As �(SG(n; 2)) = n� 2 and a oloring of a graph G with exatly �(G) olors

annot show  (G) < �(G) the oloring  uses at least n� 1 olors.

It is worth visualizing the verties of SG(n; 2) as diagonals of an n-gon (f. [8℄).

In other words, SG(n; 2) is the omplement of the line graph of D

n

, where D

n

is the

omplement of the yle C

n

. The olor lasses are independent sets in SG(n; 2), so they

are either stars or triangles in D

n

.

We say that a vertex x sees the olor lasses of its neighbors. By our assumption every

vertex sees at most n� 4 olor lasses.

Assume a olor lass onsists of a single vertex x. As x sees at most n � 4 of the

at least n � 1 olor lasses we an hoose a di�erent olor for x. The resulting oloring

attains the same loal hromati number with fewer olors. This ontradits the hoie

of  and shows that no olor lass is a singleton.

A triangle olor lass is seen by all other edges of D

n

. A star olor lass with enter

i and at least three elements is seen by all verties that, as edges of D

n

, are not inident

to i. For star olor lasses of two edges there an be one additional vertex not seeing the

lass. So every olor lass is seen by all but at most n� 2 verties. We double ount the

pairs of a vertex x and a olor lass C seen by x. On one hand every vertex sees at most

n�4 lasses. On the other hand all the olor lasses are seen by at least

��

n

2

�

� n

�

�(n�2)

verties. We have

(n� 1)

��

n

2

�

� 2n + 2

�

�

��

n

2

�

� n

�

(n� 4);

and this ontradits our n � 5 assumption. The ontradition proves the statement.

�
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4.3 Generalized Myielski graphs

Another lass of graphs for whih the hromati number is known only via the topologial

method is formed by generalized Myielski graphs, see [23, 39, 48℄. They are interesting

for us also for another reason: there is a big gap between their frational and ordinary

hromati numbers (see [34, 50℄), therefore the loal hromati number an take its value

from a large interval.

Reall that the MyielskianM(G) of a graphG is the graph de�ned on (f0; 1g�V (G))[

fzg with edge set E(M(G)) = ff(0; v); (i; w)g : fv; wg 2 E(G); i 2 f0; 1gg [ ff(1; v); zg :

v 2 V (G)g. Myielski [43℄ used this onstrution to inrease the hromati number of a

graph while keeping the lique number �xed: �(M(G)) = �(G)+1 and !(M(G)) = !(G).

Following Tardif [50℄, the same onstrution an also be desribed as the diret (also

alled ategorial) produt of G with a path on three verties having a loop at one end and

then identifying all verties that have the other end of the path as their �rst oordinate.

Reall that the diret produt of F and G is a graph on V (F )�V (G) with an edge between

(u; v) and (u

0

; v

0

) if and only if fu; u

0

g 2 E(F ) and fv; v

0

g 2 E(G). The generalized

Myielskian of G (alled a one over G by Tardif [50℄) M

r

(G) is then de�ned by taking

the diret produt of P and G, where P is a path on r + 1 verties having a loop at

one end, and then identifying all the verties in the produt with the loopless end of the

path as their �rst oordinate. With this notation M(G) = M

2

(G). These graphs were

onsidered by Stiebitz [48℄, who proved that if G is k-hromati \for a topologial reason"

then M

r

(G) is (k + 1)-hromati for a similar reason. (Gy�arf�as, Jensen, and Stiebitz [23℄

also onsider these graphs and quote Stiebitz's argument a speial ase of whih is also

presented in [39℄.) The topologial reason of Stiebitz is in di�erent terms than those we

use in this paper but using results of [3℄ they imply strong topologial (t+d)-hromatiity

for graphs obtained by d iterations of the generalized Myhielski onstrution starting, e.g,

from K

t

or from a t-hromati Shrijver graph. More preisely, Stiebitz proved that the

body of the so-alled neighborhood omplex N (M

r

(G)) of M

r

(G), introdued in [36℄ by

Lov�asz, is homotopy equivalent to the suspension of jjN (G)jj. Sine susp(S

n

)

�

=

S

n+1

this

implies that whenever jjN (G)jj is homotopy equivalent to an n-dimensional sphere, then

jjN (M

r

(G))jj is homotopy equivalent to the (n + 1)-dimensional sphere. This happens,

for example, if G is a omplete graph, or an odd yle. By a reent result of Bj�orner

and de Longueville [8℄ we also have a similar situation if G is isomorphi to any Shrijver

graph SG(n; k). Notie that the latter inlude omplete graphs and odd yles.

It is known, that jjN (F )jj is homotopy equivalent to H(F ) for every graph F , see

Proposition 4.2 in [3℄. All this implies that oind(H(M

r

(G))) = oind(H(G))+1 whenever

H(G) is homotopy equivalent to a sphere, in partiular, whenever G is a omplete graph

or an odd yle, or, more generally, a Shrijver graph. In the �rst version of this paper

we wrote that it is very likely that Stiebitz's proof an be generalized to show that

H(M

r

(G)) $ susp(H(G)) and therefore oind(H(M

r

(G))) � oind(H(G)) + 1 holds

always. Sine then Csorba [12℄ sueeded to prove this generalization. In fat, he proved

Z

2

-homotopy equivalene of H(M

r

(G)) and susp(H(G)). Nevertheless, here we restrit
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attention to graphs G with H(G) homotopy equivalent to a sphere.

For an integer vetor r = (r

1

; : : : ; r

d

) with r

i

� 1 for all i we let M

(d)

r

(G) =

M

r

d

(M

r

d�1

(: : :M

r

1

(G) : : :)) denote the graph obtained by a d-fold appliation of the gen-

eralized Myielski onstrution with respetive parameters r

1

; : : : ; r

d

.

Proposition 9 (Stiebitz) If G is a graph for whih H(G) is homotopy equivalent to a

sphere S

h

with h = �(G) � 2 (in partiular, G is a omplete graph or an odd yle,

or, more generally, a Shrijver graph) and r = (r

1

; : : : ; r

d

) is arbitrary, then M

(d)

r

(G) is

strongly topologially t-hromati for t = �(M

(d)

r

(G)) = �(G) + d. �

It is interesting to remark that �(M

r

(G)) > �(G) does not hold in general if r � 3, e.g.,

for C

7

, the omplement of the 7-yle, one has �(M

3

(C

7

)) = �(C

7

) = 4 (f. [50℄). Still,

the result of Stiebitz implies that the sequene f�(M

(d)

r

(G))g

1

d=1

may avoid to inrease

only a �nite number of times.

The frational hromati number of Myielski graphs were determined by Larsen,

Propp, and Ullman [34℄, who proved that �

f

(M(G)) = �

f

(G) +

1

�

f

(G)

holds for every G.

This already shows that there is a large gap between the hromati and the frational

hromati numbers of M

(d)

r

(G) if d is large enough and r

i

� 2 for all i, sine obviously,

�

f

(M

r

(F )) � �

f

(M(F )) holds if r � 2. The previous result was generalized by Tardif

[50℄ who showed that �

f

(M

r

(G)) an also be expressed by �

f

(G) as �

f

(G)+

1

P

r�1

i=0

(�

f

(G)�1)

i

whenever G has at least one edge.

First we show that for the original Myielski onstrution the loal hromati number

behaves similarly to the hromati number.

Proposition 10 For any graph G we have

 (M(G)) =  (G) + 1:

Proof. We proeed similarly as one does in the proof of �(M(G)) = �(G) + 1. Reall

that V (M(G)) = f0; 1g � V (G) [ fzg.

For the upper bound onsider a oloring 

0

of G establishing its loal hromati number

and let � and � be two olors not used by 

0

. We de�ne ((0; x)) = 

0

(x), ((1; x)) = �

and (z) = �. This proper oloring shows  (M(G)) �  (G) + 1.

For the lower bound onsider an arbitrary proper oloring  of M(G). We have to

show that some vertex must see at least  (G) di�erent olors in its neighborhood.

We de�ne the oloring 

0

of G as follows:



0

(x) =

�

((0; x)) if ((0; x)) 6= (z)

((1; x)) otherwise.

It follows from the onstrution that 

0

is a proper oloring of G. Note that 

0

does not

use the olor (z).
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By the de�nition of  (G), there is some vertex x of G that has at least  (G) � 1

di�erent olors in its neighborhood N

G

(x). If 

0

(y) = (0; y) for all verties y 2 N

G

(x),

then the vertex (1; x) has all these olors in its neighborhood, and also the additional

olor (z). If however 

0

(y) 6= (0; y) for a neighbor y of x, then the vertex (0; x) sees

all the olors 

0

(N

G

(x)) in its neighborhood N

M(G)

(0; x), and also the additional olor

(0; y) = (z). In both ases a vertex has  (G) di�erent olors in its neighborhood as

laimed. �

We remark that M

1

(G) is simply the graph G with a new vertex onneted to every

vertex of G, therefore the following trivially holds.

Proposition 11 For any graph G we have

 (M

1

(G)) = �(G) + 1:

�

For our �rst upper bound we apply Lemma 4.1. We use the following result of Gy�arf�as,

Jensen, and Stiebitz [23℄. The lemma below is an immediate generalization of the l = 2

speial ase of Theorem 4.1 in [23℄. We reprodue the simple proof from [23℄ for the sake

of ompleteness.

Lemma 4.3 ([23℄) If G has a wide oloring with t olors and r � 7, then M

r

(G) has a

wide oloring with t+ 1 olors.

Proof. As there is a homomorphism from M

r

(G) to M

7

(G) if r > 7 it is enough to give

the oloring for r = 7. We �x a wide t-oloring 

0

of G and use the additional olor .

The oloring of M

7

(G) is given as

((v; x)) =

�

 if v is the vertex at distane 3, 5 or 7 from the loop



0

(x) otherwise.

It is straightforward to hek that  is a wide oloring. �

We an apply the results of Stiebitz and Gy�arf�as et al. reursively to give tight or

almost tight bounds for the loal hromati number of the graphsM

(d)

r

(G) in many ases:

Corollary 12 If G has a wide t-oloring and r = (r

1

; : : : ; r

d

) with r

i

� 7 for all i, then

 (M

(d)

r

(G)) �

t+d

2

+ 2.

If H(G) is homotopy equivalent to a sphere S

h

, then  (M

(d)

r

(G)) �

h+d

2

+ 2.

Proof. For the �rst statement we apply Lemma 4.3 reursively to show that M

(d)

r

(G)

has a wide (t+ d)-oloring and then apply Lemma 4.1.

For the seond statement we apply the result of Stiebitz reursively to show that

H(M

(d)

r

(G)) is homotopy equivalent to S

h+d

. As noted in the preliminaries of the present

18



subsetion this implies oind(H(M

(d)

r

(G))) � h+d. By Theorem 1 the statement follows.

�

Theorem 5 (restated) If r = (r

1

; : : : ; r

d

), d is odd, and r

i

� 7 for all i, then

 (M

(d)

r

(K

2

)) =

�

d

2

�

+ 2:

Proof. Notie that for r = (r

1

; : : : ; r

d

) with d odd and r

i

� 7 for all i the lower

and upper bounds of Corollary 12 give the exat value for the loal hromati number

 (M

(d)

r

(K

2

)) = (d+ 5)=2. This proves the theorem. �

Notie that a similar argument gives the exat value of  (G) for the more ompliated

graph G = M

(d)

r

(SG(n; k)) whenever n + d is odd, r

i

� 7 for all i, and n � 4t

2

� 7t for

t = n � 2k + 2. This follows from Corollary 12 via the wide olorability of SG(n; k) for

n � 4t

2

� 7t shown in the proof of Theorem 3 and Bj�orner and de Longueville's result

[8℄ about the homotopy equivalene of H(SG(n; k)) to S

n�2k

. (Instead of the latter we

an also use Csorba's result [12℄ mentioned above and refer to the strong topologial

t-hromatiity of SG(n; k).)

We summarize our knowledge on  (M

(d)

r

(K

2

)) after proving the following theorem,

whih shows that almost the same upper bound as in Corollary 12 is implied from the

relaxed ondition r

i

� 4.

Theorem 13 For r = (r

1

; : : : ; r

d

) with r

i

� 4 for all i one has

 (M

(d)

r

(G)) �  (G) +

�

d

2

�

+ 2:

Moreover, for G

�

=

K

2

, the following slightly sharper bound holds:

 (M

(d)

r

(K

2

)) �

�

d

2

�

+ 3:

Proof. We denote the verties of Y := M

(d)

r

(G) in aordane to the desription of

the generalized Myielski onstrution via graph produts. That is, a vertex of Y is a

sequene a

1

a

2

: : : a

d

u of length (d+1), where 8i : a

i

2 f0; 1; : : : ; r

i

g[f�g, u 2 V (G)[f�g

and if a

i

= r

i

for some i then neessarily u = � and a

j

= � for every j > i, and this is the

only way � an appear in a sequene. To de�ne adjaeny we denote by

^

P

r

i

+1

the path

on f0; 1; : : : ; r

i

g where the edges are of the form fi � 1; ig; i 2 f1; : : : ; r

i

g and there is a

loop at vertex 0. Two verties a

1

a

2

: : : a

d

u and a

0

1

a

0

2

: : : a

0

d

u

0

are adjaent in Y if and only

if

u = � or u

0

= � or fu; u

0

g 2 E(G) and
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8i : a

i

= � or a

0

i

= � or fa

i

; a

0

i

g 2 E(

^

P

r

i

+1

):

Our strategy is similar to that used in Remark 4. Namely, we give an original oloring



0

, identify the set of \troublesome" verties for this oloring, and reolor most of the

neighbors of these verties to a new olor.

Let us �x a oloring 

G

of G with at most  (G) � 1 olors in the neighborhood of a

vertex. Let the olors we use in this oloring be alled 0;�1;�2, et. Now we de�ne 

0

as follows.



0

(a

1

: : : a

d

u) =

8

<

:



G

(u) if 8i : a

i

� 2

i if a

i

� 3 is odd and a

j

� 2 for all j < i

0 if 9i : a

i

� 4 is even and a

j

� 2 for all j < i

It is lear that verties having the same olor form independent sets, i.e., 

0

is a proper

oloring. Notie that if a vertex has neighbors of many di�erent \positive" olors, then it

must have many oordinates that are equal to 2. Now we reolor most of the neighbors

of these verties.

Let � be a olor not used by 

0

and set (a

1

: : : a

d

u) = � if jfi : a

i

is oddgj > d=2.

(In fat, it would be enough to give olor � only to those of the above verties, for whih

the �rst b

d

2

 odd oordinates are equal to 1. We reolor more verties for the sake of

simpliity.) Otherwise, let (a

1

: : : a

d

u) = 

0

(a

1

: : : a

d

u).

First, we have to show that  is proper. To this end we only have to show that no

pair of verties getting olor � an be adjaent. If two verties, x = x

1

: : : x

d

v

x

and

y = y

1

: : : y

d

v

y

are olored � then both have more than d=2 odd oordinates (among their

�rst d oordinates). Thus there is some ommon oordinate i for whih x

i

and y

i

are both

odd. This implies that x and y are not adjaent.

Now we show that for any vertex a we have j(N(a)) \ f1; : : : ; dgj � d=2. Indeed, if

j

0

(N(a))\f1; : : : ; dgj > d=2 then we have a = a

1

: : : a

d

u with more than d=2 oordinates

a

i

that are even and positive. Furthermore, the �rst bd=2 of these oordinates should

be 2. Let I be the set of indies of these �rst bd=2 even and positive oordinates. We

laim that (N(a))\f1; : : : ; dg � I. This is so, sine if a neighbor has an odd oordinate

somewhere outside I, then it annot have � at the positions of I, therefore it has more

than d=2 odd oordinates and it is reolored by  to the olor �.

It is also lear that no vertex an see more than  (G) � 1 \negative" olors in its

neighborhood in either oloring 

0

or . Thus the neighborhood of any vertex an ontain

at most bd=2+ ( (G)� 1) + 2 olors, where the last 2 is added beause of the possible

appearane of olors � and 0 in the neighborhood. This proves  (Y ) � d=2 +  (G) + 2

proving the �rst statement in the theorem.

For G

�

=

K

2

the above gives  (M

(d)

r

(K

2

)) � bd=2 + 4 whih implies the seond

statement for odd d. For even d the bound of the seond statement is 1 less. We an gain

1 as follows. When de�ning  let us reolor to � those verties a = a

1

: : : a

d

u, too, for

whih the number of odd oordinates a

i

is exatly

d

2

and 

G

(u) = �1. The proof proeeds
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similarly as before but we gain 1 by observing that those verties who see �1 an see only

d

2

� 1 \positive" olors. �

We ollet the impliations of Theorems 5, 13 and Propositions 10 and 11. It would be

interesting to estimate the value  (M

(d)

r

(K

2

)) for the missing ase r = (3; : : : ; 3). What

we know then is dd=2e+ 2 �  � d+ 2.

Corollary 14 For r = (r

1

; : : : ; r

d

) we have

 (M

(d)

r

(K

2

)) =

8

<

:

(d+ 5)=2 if d is odd and 8i : r

i

� 7

dd=2e+ 2 or dd=2e+ 3 if 8i : r

i

� 4

d+ 2 if r

d

= 1 or 8i : r

i

= 2:

�

Remark 5. The improvement for even d given in the last paragraph of the proof of

Theorem 13 an also be obtained in a di�erent way we explain here. Instead of hanging

the rule for reoloring, we an enfore that a vertex an see only  (G)�2 negative olors.

This an be ahieved by setting the starting graph G to be M

4

(K

2

)

�

=

C

9

instead of K

2

itself and oloring this C

9

with the pattern �1; 0;�1;�2; 0;�2;�3; 0;�3 along the yle.

One an readily hek that every vertex an see only one non-0 olor in its neighborhood.

The same trik an be used also if the starting graph is not K

2

or C

9

, but some

large enough Shrijver graph of odd hromati number. Coloring it as in the proof of

Lemma 4.1 (using the wide oloring as given in the proof of Theorem 3), we arrive to the

same phenomenon if we let the new olor (of the proof of Lemma 4.1) be 0. �

Remark 6. Gy�arf�as, Jensen, and Stiebitz [23℄ use generalized Myielski graphs to show

that another graph they denote by G

k

is k-hromati. The way they prove it is that they

exhibit a homomorphism from M

(k�2)

r

(K

2

) to G

k

for r = (4; : : : ; 4). The existene of

this homomorphism implies that G

k

is strongly topologially k-hromati, thus its loal

hromati number is at least k=2 + 1. We do not know any non-trivial upper bound

for  (G

k

). Also note that [23℄ gives universal graphs for the property of having a wide

t-oloring. By Lemma 4.1 this graph has  � t=2 + 2. On the other hand, sine any

graph with a wide t-oloring admits a homomorphism to this graph, and we have seen

the wide t-olorability of some strongly topologially t-hromati graphs, it is strongly

topologially t-hromati, as well. This gives  � t=2 + 1. �

4.4 Borsuk graphs and the tightness of Ky Fan's theorem

The following de�nition goes bak to Erd}os and Hajnal [15℄, see also [37℄.

De�nition 5 The Borsuk graph B(n; �) of parameters n and 0 < � < 2 is the in�nite

graph whose verties are the points of the unit sphere in R

n

(i.e., S

n�1

) and its edges

onnet the pairs of points with distane at least �.
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The Borsuk-Ulam theorem implies that �(B(n; �)) � n + 1, and, as Lov�asz [37℄

remarks, these two statements are in fat equivalent. For � large enough (depending

on n) this lower bound on the hromati number is sharp as shown by the standard

(n+ 1)-oloring of the sphere S

n�1

(see [37, 39℄ or f. the proof of Corollary 15 below).

The loal hromati number of Borsuk graphs for large enough � an also be de-

termined by our methods. First we want to argue that Theorem 1 is appliable for this

in�nite graph. Lov�asz gives in [37℄ for any n and � a �nite graphG

P

= G

P

(n; �) � B(n; �)

whih has the property that its neighborhood omplex N (G

P

) is homotopy equivalent to

S

n�1

. Now we an ontinue the argument the same way as in the previous subsetion:

Proposition 4.2 in [3℄ states that N (F ) is homotopy equivalent to H(F ) for every graph

F , thus oind(H(G

P

)) � n � 1, i.e., G

P

is strongly topologially (n + 1)-hromati. As

G

P

� B(n; �) we have d

n+3

2

e �  (G

P

) �  (B(n; �)) by Theorem 1.

The following lemma shows the speial role of Borsuk graphs among strongly topo-

logially t-hromati graphs. It will also show that our earlier upper bounds on the loal

hromati number have diret impliations for Borsuk graphs.

Lemma 4.4 A �nite graph G is strongly topologially (n+1)-hromati if and only if for

some � < 2 there is a graph homomorphism from B(n; �) to G.

Proof. For the if part onsider the �nite graph G

P

� B(n; �) given by Lov�asz [37℄

satisfying oind(H(G

P

)) � n � 1. If there is a homomorphism from B(n; �) to G, it

learly gives a homomorphism also from G

P

to G whih further generates a Z

2

-map from

H(G

P

) to H(G). This proves oind(H(G)) � n� 1.

For the only if part, let f : S

n�1

! H(G) be a Z

2

-map. For a point x 2 S

n�1

write f(x) 2 H(G) as the onvex ombination f(x) =

P

�

v

(x)jj+vjj+

P

�

v

(x)jj�vjj of

the verties of jjB

0

(G)jj. Here the summations are for the verties v of G,

P

�

v

(x) =

P

�

v

(x) = 1=2, and fv : �

v

(x) > 0g ℄ fv : �

v

(x) > 0g 2 B

0

(G). Note that �

v

and

�

v

are ontinuous as f is ontinuous and �

v

(x) = �

v

(�x) by the equivariane of f . Set

" = 1=(2jV (G)j). For x 2 S

n�1

selet an arbitrary vertex v = g(x) of G with �

v

� ". We

laim that g is a graph homomorphism from B(n; �) to G if � is lose enough to 2. By

ompatness it is enough to prove that if we have verties v and w of G and sequenes

x

i

! x and y

i

! �x of points in S

n�1

with g(x

i

) = v and g(y

i

) = w for all i, then v

and w are onneted in G. But sine �

v

is ontinuous we have �

v

(x) � " and similarly

�

w

(x) = �

w

(�x) � " and so +v and �w are ontained in the smallest simplex of B

0

(G)

ontaining f(x) proving that v and w are onneted. �

By Lemma 4.4 either of Theorems 3 or 5 implies that the above given lower bound

on  (B(n; �)) is tight whenever �(B(n; �)) is odd, that is, n is even, and � < 2 is lose

enough to 2. In the following orollary we give an expliit bound on � by proving for that

value of � that the standard oloring is wide.

Corollary 15 If n is even and 2�

1

25n+50

� � < 2, then

 (B(n; �)) =

n

2

+ 2:
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Proof. The lower bound on  (B(n; �)) follows from the disussion preeding Lemma 4.4.

The upper bound follows from Lemma 4.1 as long as we an give a wide (n+ 1)-oloring

of the graph B(n; �).

To this end we use the standard (n+1)-oloring ofB(n; �) (see, e.g., [37, 39℄). Consider

a regular simplex R insribed into the unit sphere S

n�1

and olor a point x 2 S

n�1

by the

faet of R interseted by the segment from the origin to x. If this segment meets a lower

dimensional fae then we arbitrarily hoose a faet ontaining this fae. To see for what

� gives this a proper oloring we have to �nd the maximal distane �

0

between pairs of

points that we an olor the same. Calulation shows that projetions from the origin of

the middle points of two disjoint (n=2�1)-dimensional faes of R are farthest apart, thus

�

0

= 2

p

1� 1=(n+ 2). (Notie that [37℄ gives a di�erent treshold value for �. We were

informed by L�aszl�o Lov�asz [38℄, however, that it was notied by several researhers that

the orret value is larger than the one given in [37℄.)

We let ' = 2 aros(�=2). Clearly, x and y is onneted if and only if the length of the

shortest ar on S

n�1

onneting �x and y is at most '. Therefore x and y are onneted

by a walk of length 5 if and only if the length of this same minimal ar is at most 5'. For

the standard oloring the length of the shortest ar between �x and y for two verties

x and y olored with the same olor is at least 2 aros(�

0

=2) = 2 arsin(n + 2)

�1=2

.

Therefore the standard oloring is wide as long as � > 2 os

�

arsin(n+2)

�1=2

5

�

. Here easy

alulation gives that the right hand side is less than 2�

1

25n+50

. �

Our investigations of the loal hromati number led us to onsider the following

funtion Q(h). The question of its values was independently asked by Miha Perles

motivated by a related question of Matatyahu Rubin

1

.

De�nition 6 For a nonnegative integer parameter h let Q(h) denote the minimum l for

whih S

h

an be overed by open sets in suh a way that no point of the sphere is ontained

in more than l of these sets and none of the overing sets ontains an antipodal pair of

points.

Ky Fan's theorem implies Q(h) �

h

2

+ 1. Either of Theorems 3 or 5 implies the upper

bound Q(h) �

h

2

+2. Using the onepts of Corollary 15 and Lemma 4.1 one an give an

expliit overing of the sphere S

2l�3

by open subsets where no point is ontained in more

than l of the sets and no set ontains an antipodal pair of points. In fat, the overing

we give satis�es a stronger requirement and proves that version (ii) of Ky Fan's theorem

is tight, while version (i) is almost tight.

Corollary 16 There is a on�guration A of k+2 open (losed) sets suh that [

A2A

(A[

�A) = S

k

, all sets A 2 A satisfy A \ �A = ;, and no x 2 S

k

is ontained in more than

�

k+1

2

�

of these sets.

Furthermore, for every x the number of sets in A ontaining either x or �x is at

most k + 1.

1

We thank Imre B�ar�any [6℄ and Gil Kalai [29℄ for this information.
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Proof. First we onstrut losed sets. Consider the unit sphere S

k

in R

k+1

. Let R be

a regular simplex insribed in the sphere. Let B

1

; : : : ; B

k+2

be the subsets of the sphere

obtained by the entral projetion of the faets of R. These losed sets over S

k

. Let C

0

be the set of points overed by at least

�

k+3

2

�

of the sets B

i

. Notie that C

0

is the union of

the entral projetions of the b

k�1

2

-dimensional faes of R. For odd k let C = C

0

, while

for even k let C = C

0

[C

1

, where C

1

is the set of points in B

1

overed by exatly k=2+ 1

of the sets B

i

. Thus C

1

is the union of the entral projetions of the

k

2

-dimensional faes

of a faet of R. Observe that C \ �C = ;. Take 0 < Æ < dist(C;�C)=2 and let D be

the open Æ-neighborhood of C in S

k

. For 1 � i � k + 2 let A

i

= B

i

n D. These losed

sets over S

k

nD and none of them ontains a pair of antipodal points. As D \ �D = ;

we have [

k+2

i=1

(A

i

[ �A

i

) = S

k

. It is lear that every point of the sphere is overed by at

most

�

k+1

2

�

of the sets A

i

proving the �rst statement of the orollary.

For the seond statement note that if eah set B

i

ontains at least one of a pair of

antipodal points, then one of these points belongs to C and is therefore not overed by

any of the sets A

i

. Note also, that for odd k the seond statement follows also from the

�rst.

To onstrut open sets as required we an simply take the open "-neighborhoods of

A

i

. For small enough " > 0 they maintain the properties required in the orollary. �

Corollary 17 There is a on�guration of k + 3 open (losed) sets overing S

k

none of

whih ontains a pair of antipodal points, suh that no x 2 S

k

is ontained in more than

d

k+3

2

e of these sets and for every x 2 S

k

the number of sets that ontain one of x and

�x is at most k + 2.

Proof. For losed sets onsider the sets A

i

in the proof of Corollary 16 together with the

losure of D. For open sets onsider the open "-neighborhoods of these sets for suitably

small " > 0. �

Note that overing with k+3 sets is optimal in Corollary 17 if k � 3. By the Borsuk-

Ulam Theorem (form (i)) fewer than k+2 open (or losed) sets not ontaining antipodal

pairs of points is not enough to over S

k

. If we over with k + 2 sets (open or losed),

then it gives rise to a proper oloring of B(k + 1; �) for large enough � in a natural way.

This oloring uses the optimal number k+2 of olors, therefore it has a vertex with k+1

di�erent olors in its neighborhood. A ompatness argument establishes from this that

there is a point in S

k

overed by k + 1 sets. A similar argument gives that k + 2 in

Corollary 16 is also optimal if k � 3.

Corollary 18

h

2

+ 1 � Q(h) �

h

2

+ 2:

Proof. The lower bound is implied by Ky Fan's theorem. The upper bound follows from

Corollary 17. �
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Notie that for odd h Corollary 18 gives the exat value Q(h) =

h+3

2

. For h even we

either have Q(h) =

h

2

+ 1 or Q(h) =

h

2

+ 2. It is trivial that Q(0) = 1. In [47℄ we show

Q(2) = 3. This was independently proved by Imre B�ar�any [6℄. For h > 2 even it remains

open whether the lower or the upper bound of Corollary 18 is exat. We also refer to

[47℄ for a more omplete disussion of the onnetions between loal olorings and the

problem of Q(h).

5 Cirular olorings

In this setion we show an appliation of the Zig-zag Theorem for the irular hromati

number of graphs. This will result in the partial solution of a onjeture by Johnson,

Holroyd, and Stahl [28℄ and in a partial answer to a question of Hajiabolhassan and Zhu

[24℄ onerning the irular hromati number of Kneser graphs and Shrijver graphs,

respetively. We also answer a question of Chang, Huang, and Zhu [10℄ onerning the

irular hromati number of iterated Myielskians of omplete graphs.

The irular hromati number of a graph was introdued by Vine [52℄ under the

name star hromati number as follows.

De�nition 7 For positive integers p and q a oloring  : V (G) ! [p℄ of a graph G is

alled a (p; q)-oloring if for all adjaent verties u and v one has q � j(u)�(v)j � p�q.

The irular hromati number of G is de�ned as

�



(G) = inf

�

p

q

: there is a (p; q)-oloring of G

�

:

It is known that the above in�mum is always attained for �nite graphs. An alternative

desription of �



(G), explaining its name, is that it is the minimum length of the perimeter

of a irle on whih we an represent the verties of G by ars of length 1 in suh a way

that ars belonging to adjaent verties do not overlap. For a proof of this equivalene

and for an extensive bibliography on the irular hromati number we refer to Zhu's

survey artile [53℄.

It is known that for every graph G one has �(G) � 1 < �



(G) � �(G). Thus �



(G)

determines the value of �(G) while this is not true the other way round. Therefore the

irular hromati number an be onsidered as a re�nement of the hromati number.

Our main result on the irular hromati number is Theorem 6. Here we restate the

theorem with the expliit meaning of being topologially t-hromati.

Theorem 6 (restated) For a �nite graph G we have �



(G) � oind(B

0

(G)) + 1 if

oind(B

0

(G)) is odd.

Proof. Let t = oind(B

0

(G)) + 1 be an even number and let  be a (p; q)-oloring of G.

By the Zig-zag Theorem there is a K

t

2

;

t

2

in G whih is ompletely multiolored by olors

appearing in an alternating manner in its two sides. Let these olors be 

1

< 

2

< : : : < 

t

.
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Sine the vertex olored 

i

is adjaent to that olored 

i+1

, we have 

i+1

� 

i

+ q and



t

� 

1

+(t�1)q. Sine t is even, the verties olored 

1

and 

t

are also adjaent, therefore

we must have 

t

� 

1

� p� q. The last two inequalities give p=q � t as needed. �

This result has been independently obtained by Meunier [42℄ for Shrijver graphs.

5.1 Cirular hromati number of even hromati Kneser and

Shrijver graphs

Johnson, Holroyd, and Stahl [28℄ onsidered the irular hromati number of Kneser

graphs and formulated the following onjeture. (See also as Conjeture 7.1 and Question

8.27 in [53℄.)

Conjeture (Johnson, Holroyd, Stahl [28℄): For any n � 2k

�



(KG(n; k)) = �(KG(n; k)):

It is proven in [28℄ that the above onjeture holds if k = 2 or n = 2k + 1 or n = 2k + 2.

Lih and Liu [35℄ investigated the irular hromati number of Shrijver graphs and

proved that �



(SG(n; 2)) = n � 2 = �(SG(n; 2)) whenever n 6= 5. (For n = 2k + 1 one

always has �



(SG(2k + 1; k)) = 2 +

1

k

.) It was onjetured in [35℄ and proved in [24℄

that for every �xed k there is a threshold l(k) for whih n � l(k) implies �



(SG(n; k)) =

�(SG(n; k)). This learly implies the analogous statement for Kneser graphs, for whih

the expliit threshold l(k) = 2k

2

(k � 1) is given in [24℄. At the end of their paper

[24℄ Hajiabolhassan and Zhu ask what is the minimum l(k) for whih n � l(k) implies

�



(SG(n; k)) = �(SG(n; k)). We show that no suh threshold is needed if n is even.

Corollary 19 The Johnson-Holroyd-Stahl onjeture holds for every even n. Moreover,

if n is even, then the stronger equality

�



(SG(n; k)) = �(SG(n; k))

also holds.

Proof. As t-hromati Kneser graphs and Shrijver graphs are topologially t-hromati,

Theorem 6 implies the statement of the orollary. �

As mentioned above this result has been obtained independently by Meunier [42℄.

We show in Subsetion 5.3 that for odd n the situation is di�erent.

5.2 Cirular hromati number of Myielski graphs and Borsuk

graphs

The irular hromati number of Myielski graphs was also studied extensively, f. [10,

16, 25, 53℄. Chang, Huang, and Zhu [10℄ formulated the onjeture that �



(M

d

(K

n

)) =

26



�(M

d

(K

n

)) = n + d whenever n � d + 2. Here M

d

(G) denotes the d-fold iterated

Myielskian of graph G, i.e., using the notation of Subsetion 4.3 we have M

d

(G) =

M

(d)

r

(G) with r = (2; : : : ; 2). The above onjeture was veri�ed for the speial ases

d = 1; 2 in [10℄, where it was also shown that �



(M

d

(G)) � �(M

d

(G)) � 1=2 if �(G) =

d + 1. A simpler proof for the above speial ases of the onjeture was given (for d = 2

with the extra ondition n � 5) in [16℄. Reently Hajiabolhassan and Zhu [25℄ proved

that n � 2

d

+ 2 implies �



(M

d

(K

n

)) = �(M

d

(K

n

)) = n + d. Our results show that

�



(M

d

(K

n

)) = �(M

d

(K

n

)) = n + d always holds if n + d is even. This also answers the

question of Chang, Huang, and Zhu asking the value of �



(M

n

(K

n

)) (Question 2 in [10℄).

The stated equality is given by the following immediate onsequene of Theorem 6.

Corollary 20 If H(G) is homotopy equivalent to the sphere S

h

, r is a vetor of positive

integers, and h+ d is even, then �



(M

(d)

r

(G)) � d+ h+ 2.

In partiular, �



(M

(d)

r

(K

n

)) = n+ d whenever n + d is even.

Proof. The ondition on G implies oind(H(M

(d)

r

(G))) = h + d by Stiebitz's re-

sult [48℄ (f. the disussion and Proposition 9 in Subsetion 4.3), whih further implies

oind(B

0

(M

(d)

r

(G))) = h+ d+ 1. This gives the onlusion by Theorem 6.

The seond statement follows by the homotopy equivalene of H(K

n

) with S

n�2

and

the hromati number of M

(d)

r

(K

n

) being n+ d. �

The above mentioned onjeture of Chang, Huang, and Zhu for n + d even is a speial

ase with r = (2; 2; : : : ; 2) and n � d + 2. Sine n + n is always even, the answer

�



(M

n

(K

n

)) = 2n to their question also follows.

Corollary 20 also implies a reent result of Lam, Lin, Gu, and Song [33℄ who proved that

for the generalized Myielskian of odd order omplete graphs �



(M

r

(K

2m�1

)) = 2m.

Lam, Lin, Gu, and Song [33℄ also determined the irular hromati number of the

generalized Myielskian of even order omplete graphs. They proved �



(M

r

(K

2m

)) =

2m + 1=(b(r � 1)=m + 1). This result an be used to bound the irular hromati

number of the Borsuk graph B(2s; �) from above.

Theorem 21 For the Borsuk graph B(n; �) we have

(i) �



(B(n; �)) = n+ 1 if n is odd and � is large enough;

(ii) �



(B(n; �))! n as �! 2 if n is even.

Proof. The lower bound of part (i) immediately follows from Theorem 6 onsidering

again the �nite subgraph G

P

of B(n; �) de�ned in [37℄ and already mentioned in the

proof of Lemma 4.4. The mathing upper bound is provided by �(B(n; �)) = n + 1 for

large enough �, see [37℄ and Subsetion 4.4.

For (ii) we have �



(B(n; �)) > �(B(n; �))� 1 � n. For an upper bound we use that

�



(M

r

(K

n

))! n if r goes to in�nity by the result of Lam, Lin, Gu, and Song [33℄ quoted
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above. By the result of Stiebitz [48℄ and Lemma 4.4 we have a graph homomorphism from

B(n; �) to M

r

(K

n

) for any r and large enough �. As (p; q)-olorings an be de�ned in

terms of graph homomorphisms (see [9℄), we have �



(G) � �



(H) if there exists a graph

homomorphism from G to H. This �nishes the proof of part (ii) of the theorem. �

Remark 7. By Theorem 21 (ii) we have a sequene of (p

i

; q

i

)-olorings of the graphs

B(n; �

i

) where n is even suh that �

i

! 2 and p

i

=q

i

! n. By a diret onstrution

we an show that a single funtion g : S

n�1

! C is enough. Here C is a irle of unit

perimeter. We need

inffdist

C

(g(x); g(y)) : fx;yg 2 E(B(n; �))g ! 1=n as � < 2 goes to 2: (2)

The distane dist

C

(�; �) is measured along the irle C. Clearly, if p=q > n and we split C

into p ars a

1

; : : : ; a

p

of equal length and olor the point x with i if g(x) 2 a

i

, then this

is a (p; q)-oloring of B(n; �) for � lose enough to 2.

For n = 2 any Z

2

-map g : S

1

! C satis�es expression (2). Let n > 2. The map g to

be onstruted must not be ontinuous by the Borsuk-Ulam theorem. Let us hoose a set

H of n � 1 equidistant points in C and for b 2 C let T (b) denote the unique set of n=2

equidistant points in C ontaining b.

We onsider S

n�1

as the join of the sphere S

n�3

and the irle S

1

. All points in S

n�1

are now either in S

n�3

, or in S

1

, or in the interval onneting a point in S

n�3

to a point

in S

1

. We de�ne g on S

n�3

suh that it takes values only from H and it is a proper

oloring of B(n � 2; �) for large enough �. We de�ne g on S

1

suh that if y goes a full

irle around S

1

with uniform veloity, then its image g(y) overs an ar of length 2=n

of C and it also moves with uniform veloity. Notie that although g is not ontinuous

on S

1

, the set T (g(y)) depends on y 2 S

1

in a ontinuous manner. Also note that for a

point x 2 S

1

the images g(x) and g(�x) are 1=n apart on C and T (g(x)) [ T (g(�x)) is

a set of n equidistant points.

Let x 2 S

n�3

and y 2 S

1

. Assume that a point z moves with uniform veloity from

x to y along the interval onneting them. We de�ne g on this interval suh that g(z)

moves with uniform veloity along C overing an ar of length at most 1=n from g(x)

to a point in T (g(y)). The hoie of the point in T (g(y)) is uniquely determined unless

g(x) 2 T (g(�y)). In the latter ase we make an arbitrary hoie of the two possible

points for the destination of the image g(z).

It is not hard to prove that the funtion g de�ned above satis�es expression (2). �

5.3 Cirular hromati number of odd hromati Shrijver

graphs

In this subsetion we show that the parity ondition on �(SG(n; k)) in Corollary 19

is relevant, for odd hromati Shrijver graphs the irular hromati number an be

arbitrarily lose to its lower bound.
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Theorem 22 For every " > 0 and every odd t � 3 if n � t

3

=" and t = n� 2k + 2, then

1� " < �(SG(n; k))� �



(SG(n; k)) < 1:

The seond inequality is well-known and holds for any graph. We inluded it only for

ompleteness. To prove the �rst inequality we need some preparation. We remark that

the bound on n in the theorem is not best possible. Our method proves �(SG(n; k)) �

�



(SG(n; k)) � 1� 1=i if i is a positive integer and n � 6(i� 1)

�

t

3

�

+ t.

First we extend our notion of wide oloring.

De�nition 8 For a positive integer s we all a vertex oloring of a graph s-wide if the

two end verties of any walk of length 2s� 1 reeive di�erent olors.

Our original wide olorings are 3-wide, while 1-wide simply means proper. Gy�arf�as,

Jensen, and Stiebitz [23℄ investigated s-wide olorings (in di�erent terms) and mention

(referring to a referee in the s > 2 ase) the existene of homomorphism universal graphs

for s-wide olorability with t olors. We give a somewhat di�erent family of suh universal

graphs. In the s = 2 ase the olor-ritiality of the given universal graph is proven

in [23℄ implying its minimality among graphs admitting 2-wide t-olorings. Later in

Subsetion 6.1 we generalize this result showing that the members of our family are olor-

ritial for every s. Thus they must be minimal and therefore isomorphi to a retrat of

the orresponding graphs given in [23℄.

De�nition 9 Let H

s

be the path on the verties 0; 1; 2; : : : ; s (i and i � 1 onneted for

1 � i � s) with a loop at s. We de�ne W (s; t) to be the graph with

V (W (s; t)) = f(x

1

: : : x

t

) : 8i x

i

2 f0; 1; : : : ; sg; 9!i x

i

= 0; 9j x

j

= 1g;

E(W (s; t)) = ffx

1

: : : x

t

; y

1

: : : y

t

g : 8i fx

i

; y

i

g 2 E(H

s

)g:

Note that W (s; t) is an indued subgraph of the diret power H

t

s

(f. Subsetion 4.3).

Proposition 23 A graph G admits an s-wide oloring with t olors if and only if there

is a homomorphism from G to W (s; t).

Proof. For the if part olor vertex x = x

1

: : : x

t

of W (s; t) with (x) = i if x

i

= 0. Any

walk between two verties olored i either has even length or ontains two verties y and

z with y

i

= z

i

= s. These y and z are both at least at distane s apart from both ends

of the walk, thus our oloring of W (s; t) with t olors is s-wide. Any graph admitting a

homomorphism ' to W (s; t) is s-widely olored with t olors by 

G

(v) := ('(v)).

For the only if part assume  is an s-wide t-oloring of G with olors 1; : : : ; t. Let '(v)

be an arbitrary vertex of W (s; t) if v is an isolated vertex of G. For a non-isolated vertex

v of G let '(v) = x = x

1

: : : x

t

with x

i

= min(s; d

i

(v)), where d

i

(v) is the distane of olor

lass i from v. It is lear that x

i

= 0 for i = (v) and for no other i, while x

i

= 1 for the
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olors of the neighbors of v in G. Thus the image of ' is indeed in V (W (s; t)). It takes

an easy heking that ' is a homomorphism. �

The following lemma is a straightforward extension of the argument given in the proof

of Theorem 3.

Lemma 5.1 If n � (2s� 2)t

2

� (4s� 5)t then SG(n; k) admits an s-wide t-oloring.

Proof. We use the notation introdued in the proof of Theorem 3.

Let n � t(2(s�1)(t�2)+1) as in the statement and let 

0

be the oloring de�ned in the

mentioned proof. The lower bound on n now allows to assume that jC

i

j � (s�1)(t�2)+1.

We show that 

0

is s-wide.

Consider a walk x

0

x

1

: : : x

2s�1

of length (2s� 1) in SG(n; k) and let i = 

0

(x

0

). Then

C

i

� x

0

. By Lemma 4.2 jx

0

n x

2s�2

j � (s � 1)(t � 2) < jC

i

j. Thus x

2s�2

is not disjoint

from C

i

. As x

2s�1

is disjoint from x

2s�2

, it does not ontain C

i

and thus its olor is not

i. �

Lemma 5.2 W (s; t) admits a homomorphism to M

s

(K

t�1

).

Proof. Reall our notation for the (iterated) generalized Myielskians from Subsetion

4.3.

We de�ne the following mapping from V (W (s; t)) to V (M

s

(K

t�1

)).

'(x

1

: : : x

t

) :=

�

(s� x

t

; i) if x

t

6= x

i

= 0

(s; �) if x

t

= 0:

One an easily hek that ' is indeed a homomorphism. �

Proof of Theorem 22. By Lemma 5.1, if n � (2s � 2)t

2

� (4s � 5)t, then SG(n; k)

has an s-wide t-oloring, thus by Proposition 23 it admits a homomorphism to W (s; t).

Composing this with the homomorphism given by Lemma 5.2 we onlude that SG(n; k)

admits a homomorphism to M

s

(K

t�1

), implying �



(SG(n; k)) � �



(M

s

(K

t�1

)).

We ontinue by using Lam, Lin, Gu, and Song's result [33℄, who proved, as already

quoted in the previous subsetion, that �



(M

s

(K

t�1

)) = t � 1 +

1

b

2s�2

t�1



+1

if t is odd.

Thus, for odd t and i > 0 integer we hoose s = (t � 1)(i� 1)=2 + 1 and �(SG(n; k))�

�



(SG(n; k)) = t� �



(SG(n; k)) � 1� 1=i follows from the n � 6(i� 1)

�

t

3

�

+ t bound.

To get the form of the statement laimed in the theorem we hoose i = b1="+ 1. �

Remark 8 It is not hard to see that the graphs M

s

(K

t�1

) an also be interpreted as

homomorphism universal graphs for a property related to wide olorings. Namely, a

graph admits a homomorphism into M

s

(K

t�1

) if and only if it an be olored with t

olors so that there is no walk of length 2s� 1 onneting two (not neessarily di�erent)

points of one partiular olor lass, say, olor lass t. Realizing this, the statement of

Lemma 5.2 is immediate. �
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6 Further remarks

6.1 Color-ritiality of W (s; t)

In this subsetion we prove the edge olor-ritiality of the graphs W (s; t) introdued in

the previous setion. This generalizes Theorem 2.3 in [23℄, see Remark 9 after the proof.

Theorem 24 For every integer s � 1 and t � 2 the graph W (s; t) has hromati number

t, but deleting any of its edges the resulting graph is (t� 1)-hromati.

Proof. �(W (s; t)) � t follows from the fat that some t-hromati Shrijver graphs

admit a homomorphism to W (s; t) whih is implied by Lemma 5.1 and Proposition 23.

The oloring giving vertex x = x

1

: : : x

t

of W (s; t) olor i i� x

i

= 0 is proper proving

�(W (s; t)) � t.

We prove edge-ritiality by indution on t. For t = 2 the statement is trivial as

W (s; t) is isomorphi to K

2

. Assume that t � 3 and edge-ritiality holds for t � 1. Let

fx

1

: : : x

t

; y

1

: : : y

t

g be an edge of W (s; t) and W

0

be the graph remaining after removal of

this edge. We need to give a proper (t� 1)-oloring  of W

0

.

Let i and j be the oordinates for whih x

i

= y

j

= 0. We have x

j

= y

i

= 1, in

partiular, i 6= j. Let r be a oordinate di�erent from both i and j. We may assume

without loss of generality that r = 1, and also that y

1

� x

1

. Coordinates i and j make sure

that x

2

x

3

: : : x

t

and y

2

y

3

: : : y

t

are verties of W (s; t� 1), and in fat, they are onneted

by an edge e.

A proper (t�2)-oloring of the graphW (s; t�1)ne exists by the indution hypothesis.

Let 

0

be suh a oloring. Let � be a olor of 

0

and � a olor that does not appear in 

0

.

We de�ne the oloring  of W

0

as follows:

(z

1

z

2

: : : z

t

) =

8

>

>

>

>

<

>

>

>

>

:

� if z

1

< x

1

; x

1

� z

1

is even

� if z

1

< x

1

; x

1

� z

1

is odd

� if z

1

= x

1

= 1; z

i

6= 1 for i > 1

� if z

1

> x

1

; z

i

= x

i

for i > 1



0

(z

2

z

3

: : : z

t

) otherwise.

It takes a straightforward ase analysis to hek that  is a proper (t� 1)-oloring of

W

0

. �

Remark 9. Gy�arf�as, Jensen, and Stiebitz [23℄ proved the s = 2 version of the previous

theorem using a homomorphism from their universal graph with parameter t to a gener-

alized Myielskian of the same type of graph with parameter t � 1. In fat, our proof is

a diret generalization of theirs using very similar ideas. Behind the oloring we gave is

the reognition of a homomorphism from W (s; t) to M

3s�2

(W (s; t� 1)). �
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6.2 Hadwiger's onjeture and the Zig-zag theorem

Hadwiger's onjeture, one of the most famous open problems in graph theory, states that

if a graph G ontains no K

r+1

minor, then �(G) � r. For detailed information on the

history and status of this onjeture we refer to Toft's survey [51℄. We only mention that

even �(G) = O(r) is not known to be implied by the hypothesis for general r.

As a frational and linear approximation version, Reed and Seymour [44℄ proved that

if G has no K

r+1

minor then �

f

(G) � 2r. This means that graphs with �

f

(G) and �(G)

appropriately lose and not ontaining a K

r+1

minor satisfy �(G) = O(r).

We know that the main examples of graphs in [45℄ for �

f

(G) << �(G) (Kneser

graphs, Myielski graphs), as well as many other graphs studied in this paper, satisfy

the hypothesis of the Zig-zag theorem, therefore their t-hromati versions must ontain

K

d

t

2

e;b

t

2



subgraphs. (We mention that for strongly topologially t-hromati graphs this

onsequene, in fat, the ontainment of K

a;b

for every a; b satisfying a + b = t, was

proven by Csorba, Lange, Shurr, and Wassmer [13℄.) However, a K

d

t

2

e;b

t

2



subgraph

ontains a K

b

t

2

+1

minor (just take a mathing of size b

t�2

2

 plus one point from eah side

of the bipartite graph) proving the following statement whih shows that the same kind

of approximation is valid for these graphs, too.

Corollary 25 If a topologially t-hromati graph ontains no K

r+1

minor, then t < 2r:

�
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