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Abstrat

It is well known that probabilisti boolean deision trees annot be muh more powerful

than deterministi ones (N. Nisan, SIAM Journal on Computing, 20(6):999{1007, 1991).

Motivated by a question if randomization an signi�antly speed up a nondeterministi

omputation via a boolean deision tree, we address strutural properties of Arthur-Merlin

games in this model and prove some lower bounds.

We onsider two ases of interest, the �rst when the length of ommuniation between

the players is bounded and the seond if it is not. While in the �rst ase we an arry over

the relations between the orresponding Turing omplexity lasses, in the seond ase we

observe in ontrast with Turing omplexity that a one round Merlin-Arthur protool is as

powerful as a general interative proof system and, in partiular, an simulate a one-round

Arthur-Merlin protool.

Moreover, we show that sometimes a Merlin-Arthur protool an be more eÆient

than an Arthur-Merlin protool, and than a Merlin-Arthur protool with limited om-

muniation. This is the ase for a boolean funtion whose set of zeroes is a ode with

high minimum distane and a natural uniformity ondition. Suh funtions provide an

example when the Merlin-Arthur omplexity is 1 with one-sided error � 2 (

2

3

; 1), but at

the same time the nondeterministi deision tree omplexity is 
(n). The latter should

be ontrasted with another fat we prove. Namely, if a funtion has Merlin-Arthur om-

plexity 1 with one-sided error probability � 2 (0;

2

3

℄, then its nondeterministi omplexity

is bounded by a onstant.

Other results of the paper inlude onnetions with the blok sensitivity and related

ombinatorial properties of a boolean funtion.
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1 Introdution

A boolean deision tree is an algorithm that omputes a boolean funtion

f(x

1

; : : : ; x

n

) by asking, step by step, values of the variables x

1

; : : : ; x

n

. Eah hoie

of a variable to ask is based on the knowledge of the variables that have been asked

before. The ost of omputation is the number of variables to be queried. By

d

(f)

we denote the minimum number of queries needed for a deision tree to ompute f

on every input.

Randomized omputations via deision trees an be de�ned in a standard vein.

Let us denote the orresponding omplexity measure by

r

(f). In this setion we

assume the error probability

1

3

unless it is spei�ed expliitly. It is well known [12℄

that randomization annot help muh in boolean deision trees. More spei�ally,

d

(f) = O(

r

(f)

3

): (1)

It is quite natural to ask if randomization an signi�antly speed up a nondeter-

ministi omputation. Two models ombining randomness and nondeterminism are

suggested in [1℄ (Arthur-Merlin games) and [5℄ (interative proof systems) and both

an be diretly extended over boolean deision trees. Our work is motivated by a

question (posed in [15℄) if these models an be more eÆient than a mere nondeter-

ministi deision tree.

First we address strutural properties of interative proof systems and Arthur-

Merlin games in boolean deision trees. We onsider two ases, the �rst when

the length of ommuniation between the players is bounded and the seond if

it is not. The ase when the restrition on ommuniation is a polylogarithm of

input size n is of partiular interest, sine it is losely related to omputations via

polynomial time Turing mahines with aess to an orale (see, e.g., [16, page 294℄

and [11, Setion 5.3℄ for formal treatment). Bounds on the boolean deision trees

omplexity are useful tools in onstruting orales with desired relations between

Turing omplexity lasses and in proving onditional results [2, 7, 8℄.

Conversely, all the fats proven for the orresponding Turing omplexity lasses

that hold true under any orale an be diretly arried over deision trees. We

mention three examples.

1. Arthur-Merlin games are as powerful as a general interative proof system [6℄.

2. The error in an Arthur-Merlin game an be made one-sided [18, 4℄.

3. A one round Arthur-Merlin game an simulate a one round Merlin-Arthur

game [1℄.

Let us state the latter fat more aurately. We use the following notation. By

am(f) and ma(f) we denote the omplexity measures in the boolean deision tree
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model that orrespond to one round Arthur-Merlin and Merlin-Arthur games, re-

spetively. Here we assume no limitations on the length of ommuniation. When

we allow Merlin to send messages of length at most l, we supply the orresponding

measures with upper index l writing am

(l)

(f) and ma

(l)

(f). We impose no restri-

tions on the number of Arthur's random bits (see Remark 2.1 below). Then a formal

statement of the above laim 3, that follows from [1℄, is

am

(l)

(f) = O(lma

(l)

(f)): (2)

Other omplexity measures we are interested in also have bounded and un-

bounded versions. ip

(l)

(f) denotes the omplexity measure of a boolean funtion

with respet to a many-round Arthur-Merlin game with total length of Merlin's

messages at most l, while the measure ip(f) is respetively to an interative proof

system without any limitations in the deision tree model. Similarly, nd

(l)

(f) refers

to the nondeterministi deision tree omplexity with witness of length at most l,

while nd(f) is its powerful version.

It turns out that if we do not restrit the length of ommuniation, the strutural

properties 1 and 2 an be strengthened and proven muh simpler.

1. A one round Merlin-Arthur game is as powerful as a general interative proof

system, i.e., ma(f) = ip(f).

2. Error probability � in a one round Merlin-Arthur game an be made one-sided

at ost of inreasing it to

�

1��

.

As for property 3, relation (2) without any limits on l beomes meaningless.

Instead, by item 1 we have ma(f) � am(f). Thus, we have two hierarhies of

omplexity measures

ip

(l)

(f) � am

(l)

(f); am

(l)

(f) = O(lma

(l)

(f)); ma

(l)

(f) � nd

(l)

(f)

(parallel to inlusions NP �MA � AM � IP in Turing omplexity), and

ip(f) = ma(f) � am(f) � nd(f): (3)

The problem is how dense or sparse these hierarhies are.

The main result of this paper shows a large gap between ma(f) and nd(f), and

some gap even between ma(f) and am(f). A large gap is also shown between ma(f)

and ma

(l)

(f) for l muh smaller than n.

It is useful to get more broad view of the situation by pre�xing some lower

bounds on ip(f) to (3). The �rst bound of interest is

ip(f) > bs(f)=2; (4)
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where bs(f) denotes the blok sensitivity of a boolean funtion [12℄

1

, the maximum

number of zeroes of f that di�er from some one of f in disjoint bloks of variables.

This is a simple extension of the bound

r

(f) = 
(bs(f)) from [12℄. Note that

bound (4) together with relations

nd(f) � bs(f) bs(:f) (5)

and

d

(f) � nd(f) nd(:f) (6)

proven in [12℄ and [2, 7, 14℄, respetively, implies the relation

d

(f) =

O(ip(f)

2

ip(:f)

2

), whih is a qualitative generalization of (1) and (6).

We suggest also a bound that is in a sense tighter. Namely,

ip(f) > sep(f)=2; (7)

where sep(f) is a ombinatorial harateristi of a boolean funtion that we all

separability of f and de�ne as follows. Given w, a one of f , and D, a set of zeroes of

f , let sep(w;D) denote the minimum s suh that w an be distinguished from any

element of D by looking at only s positions. sep(f) is the maximum of

sep(w;D)

log jDj

over

all w and D. It is easy to see that sep(f) �

bs(f)

log bs(f)

. The hierarhy (3) an now be

updated to

bs(f)=(2 log bs(f)) � sep(f)=2 � ip(f) = ma(f) � am(f) � nd(f):

We point out a simple example when bs(f) � 3 and at the same time sep(f) >

p

n

log n

. Thus, (7) an be onsidered as a sharpening of (4). This example also shows

that bs(f) an be muh smaller than nd(f) (though both bs(f) and bs(:f) annot

by (5)). We will see that sep(f) also an sometimes be muh smaller than nd(f).

Therefore, (7) annot help if we try to show that ip(f) and nd(f) are polynomially

related. But if we are going to prove the opposite, (7) beomes useful. This relation

suggests a domain whih we should inspet to solve the ip(f) versus nd(f) question.

The domain onsists of funtions f with small sep(f) and large nd(f).

We onsider the following lass of funtions that meet both of these onditions.

Let U be a binary ode with minimum distane Æn, where Æ 2 (0;

1

2

). Set up

F (w) = 1 i� w =2 U . We all F the hek funtion of U . It is not hard to see

that sep(F ) is bounded by a onstant. If in addition U is densely dispersed in the

boolean ube, whih is a natural property of a ode, then nd(F ) is big. Taking

U random, we get F with nd(F ) = 
(n). It turns out, this onstrution provides

an example of a funtion with large gap not only between sep(f) and nd(f), but

1

In fat, our terminology and notation slightly di�er from [12℄. Our de�nition of the blok

sensitivity orresponds to notion of the blok sensitivity on 1-instanes in [12℄, where notation

bs

1

(f) is used. We suppress the index for notation simpliity.
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even between ma(f) and nd(f). We observe that ma(F ) = 1 with one-sided error

probability 1� Æ=2.

Making use of the property that U is dispersed in the boolean ube in a sense

uniformly, we prove lower bounds am(F ) = 
(logn) and ma

(l)

(F ) = 
(

n

l

). Sum-

ming up, we have got an example of boolean funtion F for whih the following

bounds are true simultaneously:

� ma(F ) = O(1);

� nd(F ) = 
(n);

� ma

(l)

(F ) = 
(

n

l

);

� am(F ) = 
(logn).

The main question we leave open is if the omplexity measures am(f) and nd(f)

are polynomially related. It would be insightful to improve our logarithmi lower

bound on am(F ) or, alternatively, give an upper bound.

A related question is if am(f) = O(1) implies nd(f) = O(1). In the last part of

the paper we prove suh an impliation in a few partiular ases. We here mention

only one laim of suh a kind. Namely, ma(f) � 1 implies nd(f) � 2 if the error

probability is in range (0;

2

5

℄ or the one-sided error is in (0;

2

3

℄. This should be

ontrasted with our example of funtion F , for whih nd(F ) = 
(n) and at the

same time ma(F ) = 1 with one-sided error 1� Æ=2. Notie that the error here an

be arbitrary in the interval (

3

4

; 1), as Æ an be taken arbitrarily lose to

1

2

. Moreover,

we are able to improve this range to (

2

3

; 1), thereby showing that

2

3

is the exat

threshold in suh kind of examples.

In [9℄ the harateristi funtions of odes were used to obtain lower bounds for

some kind of branhing programs. It is interesting to note that both [9℄ and our

paper employ in essene the same properties of odes.

The paper is organized as follows. In Setion 2 we de�ne the model and omplex-

ity measures under onsideration and disuss their strutural properties. Setion 3

establishes relations with the blok sensitivity and the separability. In Setion 4

we introdue hek funtions for odes and estimate their omplexity. We in detail

give a probabilisti onstrution of odes with the desired properties, mention an

algebrai-geometry onstrution, and disuss what an be shown for some lassial

odes. In Setion 5 we onsider properties of funtions with Merlin-Arthur om-

plexity bounded by a onstant. Setion 6 sums up our onsiderations and lists open

questions.

2 The model and its strutural properties

A deterministi boolean deision tree T over the variable set X = fx

1

; : : : ; x

n

g is

a rooted, ordered, binary tree. Eah internal node has two out-going edges and
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Figure 1. This depth-2 determin-

isti deision tree omputes the

boolean funtion (1�x

1

)x

2

+x

1

x

3

.

one in-going (exepting the root). Additionally, eah internal node is labelled by a

variable from X, and eah leaf is labelled by either 0 or 1.

The deision tree T omputes a boolean funtion f(x

1

; : : : ; x

n

) in the following

sense. Eah boolean assignment w to the variables x

1

; : : : ; x

n

determines a path in

T from the root to a leaf by the following rule. If an internal node is labelled by 0,

we hoose the left out-going edge; we hoose the right one otherwise. The value of

f on w must agree with the label of the leaf at the end of the path (see Figure 1).

We write T (w) = f(w).

A depth-d nondeterministi boolean deision tree S is a olletion of depth-d

deterministi deision trees. We write S(w) = 1 in the ase that at least one

deterministi member of S outputs 1 on w; otherwise we write S(w) = 0. We say

that S omputes f if S(w) = f(w) for any assignment w.

Denote the size of set S by jSj. We say that tree S is of nondeterminism l if l is

an integer and log jSj � l. This number means the length of a prompt suÆient to

�nd a 1-path onsistent with an input.

Equivalently, one an view a nondeterministi tree as several deterministi

branhes that go out of a ommon unlabelled root (see Figure 2). As usually in

a nondeterministi model, suh a tree outputs 1 on input w if there is a path from

the root to an 1-leaf that agrees with w. The root is a peuliar nondeterministi

node that has arbitrary out-degree and is disregarded when ounting the depth. Had

we allowed many suh nondeterministi nodes, the model would not have beome

more powerful. The tree is of nondeterminism dlogLe, where L is the out-degree of

the nondeterministi node.

A depth-d probabilisti deision tree R is a probability distribution over the set

of all the depth-d deterministi deision trees. Suppose that a deterministi deision

tree T is taken randomly aording to R, and let p be the probability that T (w) = 1

for an assignment w. Then we say that R(w) = 1 with probability p, and R(w) = 0

with probability 1� p. R omputes f with error � if for any assignment w, R(w) =

f(w) with probability more than 1� �.

Remark 2.1 It is not hard to show that if a funtion f(x

1

; : : : ; x

n

) is omputable
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Figure 2. This depth-1 non-

deterministi deision tree om-

putes the disjuntion of variables

x

1

; x

2

; x

3

.
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�
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�
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�

�

0 1 0 1 0

x

1

x

2

1

3

1

3

1

3

Figure 3. This depth-1 prob-

abilisti deision tree omputes

the onjuntion of variables x

1

; x

2

with error � > 1=3.

via a depth-d probabilisti deision tree with error �, then it an be omputed via a

depth-d probabilisti deision tree R whih is the uniform distribution on set of size

O(n=Æ

2

) of depth-d deterministi trees, with error �+ Æ for any Æ < �(1� �). Similar

properties hold true for other probabilisti models below. This is the reason why we

measure nondeterminism but pay no attention to randomness in the models under

onsideration.

We an view a probabilisti tree as several deterministi branhes that go out of

a ommon root. The root is a probabilisti node of arbitrary out-degree that does not

ontribute to the tree depth. It is unlabelled, but the out-going edges are labelled

by probabilities that sum to 1. Any path from the probabilisti node is hosen with

the assigned probability (see an example in Figure 3). Had we allowed many suh

probabilisti nodes, the model would not have beome more powerful.

A depth-d Arthur-Merlin deision tree Q [of nondeterminism l℄ is a probability

distribution over the set of all the depth-d nondeterministi deision trees [of non-

determinism l℄. Q omputes f with error � if for any assignment w, S(w) = f(w)

with probability more than 1��, where a nondeterministi tree S is taken randomly

aording to Q. In detail this ondition an be rewritten as follows.

1. If f(w) = 1, then a random S has a deterministi branh T suh that T (w) = 1

with probability exeeding 1� �.

7



2. If f(w) = 0, then a random S has a deterministi branh T suh that T (w) = 1

with probability less than �.

A depth-d Merlin-Arthur deision tree Q is a olletion of depth-d probabilisti

deision trees. Q omputes f with error � if for any assignment w the following is

true.

1. If f(w) = 1, then for some R 2 Q we have R(w) = 1 with probability exeeding

1� �.

2. If f(w) = 0, then for all R 2 Q we have R(w) = 1 with probability less than �.

If in the �rst ase we have a stronger ondition that R(w) = 1 with probability 1, we

say that Q omputes f with one-sided error �. We say that Merlin-Arthur deision

tree Q is of nondeterminism l if l is an integer not less than log jQj.

Note that the Arthur and Merlin trees admit a visual interpretation using both

probabilisti and nondeterministi nodes similarly to probabilisti and nondetermin-

isti trees.

The next model is most general. A depth-d interative deision tree Q is a

olletion of deterministi depth-d trees fT

i

g indexed by elements of set I. Given

set I, for eah assignment w we onsider a game of two persons, the veri�er and

the prover, that proeeds as follows. At the beginning the veri�er piks a random

string r, unknown to the prover, and initiates the message exhange between the

players. In j-th round of the exhange, the veri�er sends the prover message a

j

, after

whih the prover sends the veri�er message b

j

. The hoie of a

j

by the veri�er is

determined by r; b

1

; : : : ; b

j�1

. The prover's message b

j

is a funtion of a

1

; : : : ; a

j�1

; a

j

.

This funtion is alled a strategy of the prover. After some number k of rounds,

the veri�er terminates the game. Let i = hr; a

1

; b

1

; : : : ; a

k

; b

k

i. The prover wins if

T

i

(w) = 1.

An interative tree Q omputes a funtion f with error � if the following ondi-

tions are met.

1. If f(w) = 1, then the prover has a strategy that wins with probability more

than 1� �, where the probability is taken over random strings r.

2. If f(w) = 0, then the prover wins with probability less than � irrespetively of

his strategy.

By

d

(f) [nd(f)℄ we denote the minimum depth of a deterministi [nondeter-

ministi℄ deision tree omputing a boolean funtion f . The minimum depth of a

probabilisti [Arthur-Merlin, Merlin-Arthur, interative℄ deision tree that omputes

f with error � is denoted by

r

�

(f) [am

�

(f), ma

�

(f), ip

�

(f)℄. We use notation ma

(l)

�

(f)

and am

(l)

�

(f) for the ase when nondeterminism is limited by l. ma

0;�

(f) stands for

the omplexity of omputing f by a Merlin-Arthur tree with one-sided error �.
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Theorem 2.2 For any boolean funtion f and error � < 1=2 we have the following

relations:

(i) ma

�

(f) = ip

�

(f);

(ii) ma

0;

�

1��

(f) = ma

�

(f);

(iii) ma

�

(f) � am

�

(f) � am

(l)

�

(f) � 

�

lma

(l)

�

(f), where 

�

is a onstant depending

on �.

Proof: (i) The part \�" is trivial. We prove the part \�". Let Q be an

interative tree omputing f . Fixing prover's strategy onverts Q into a probabilisti

tree. For eah w suh that f(w) = 1, hoose an optimal strategy and denote the

orresponding probabilisti tree by R

w

. Compose a Merlin-Arthur tree from all R

w

rooting them at a nondeterministi node. As easily seen, this tree has the same

depth as Q does and omputes f with the same error.

(ii) The inequality \�" is a simple universal relation. Let us prove the inequality

\�". Consider a Merlin-Arthur tree Q omputing f with error �. We will denote

ones of f by w, and zeroes by u. For eah one w, tree Q ontains a probabilisti

branh R

w

suh that R

w

(w) = 1 with probability greater than 1��, while R

w

(u) = 1

with probability smaller than � for all zeroes u. Let R

0

w

be a distribution indued

by R

w

on those deterministi branhes that evaluate to 1 on input w. Clearly,

R

0

w

(w) = 1 with probability 1. For any zero u we have

P [R

0

w

(u) = 1℄ = P [R

w

(u) = 1 jR

w

(w) = 1℄ �

P [R

w

(u) = 1℄

P [R

w

(w) = 1℄

<

�

1� �

:

This means that a Merlin-Arthur tree Q

0

onsisting of probabilisti branhes R

0

w

,

for all ones w, omputes f with one-sided error

�

1��

.

(iii) The �rst inequality is an immediate onsequene of item (i). The seond is

trivial. The third is a translation of [1, Theorem 2.1℄ into our model.

We onlude this setion with some terminology that will be used throughout

the paper. A d-ylinder is a subset of f0; 1g

n

obtained by �xing any d � n boolean

omponents. A set W � f0; 1g

n

is alled d-open if it is a union of d-ylinders.

Let W be a set of ones of a boolean funtion f . It is not hard to see that

nd(f) � d i� W is d-open. Indeed, if W is reognizable by a nondeterministi tree

of depth d, then eah 1-path in the tree determines an assignment to d variables

whose any extension w belongs to W . Thus, eah 1-path determines a d-ylinder

within W . Sine every string w from W agrees with an 1-path in the tree, W is

the union of all these d-ylinders. Conversely, a d-ylinder is obviously reognizable

by a deterministi tree of depth d. Gathering suh trees together, we obtain a

nondeterministi tree for a d-open set.

This observation also shows that depth-d nondeterministi trees are equivalent

with d-DNF boolean formulae.

A d-neighborhood of an element w 2 f0; 1g

n

is a d-ylinder ontaining w.

9



3 Blok sensitivity and separability

Given w 2 f0; 1g

n

and a blok of positions P � [n℄, we de�ne w

(P )

2 f0; 1g

n

to be

a boolean vetor suh that w and w

(P )

di�er exatly at positions from P . Given

a boolean funtion f : f0; 1g

n

! f0; 1g and w 2 f0; 1g

n

, by bs

w

(f) we denote the

maximum size of a family of disjoint bloks P

1

; : : : ; P

t

� [n℄ suh that all the values

f(w

(P

1

)

); : : : ; f(w

(P

t

)

) di�er from f(w). The blok sensitivity bs(f) of funtion f (on

1-instanes) is the maximum of bs

w

(f) over all w suh that f(w) = 1.

We say that a ylinder C separates w 2 f0; 1g

n

from D � f0; 1g

n

if C ontains

w and is disjoint with D. By sep(w;D) we denote the minimum d suh that there is

a d-ylinder C separating w from D. We de�ne the separability sep(f) of a boolean

funtion f to be the maximum of

sep(w;D)

log jDj

over all ones w and sets D of zeroes of f

with jDj > 1.

Bound (ii) in the theorem below is an easy extension of the bound

r

�

(f) �

(1� 2�) bs(f) in [12℄. We inlude the proof for ompleteness.

Theorem 3.1 For any boolean funtion f we have the following bounds:

(i) ma

0;�

(f) > (1� �) bs(f);

(ii) ip

�

(f) >

1�2�

1��

bs(f);

(iii) ma

0;�

(f) > sep(f)=(1 + (log

1

�

)

�1

);

(iv) ip

�

(f) > sep(f)=(1 + (log

1��

�

)

�1

).

Proof: (i) Let ma

0;�

(f) = d and Q be a depth-d Merlin-Arthur tree that

omputes f with one-sided error �. Consider arbitrary w suh that f(w) = 1. There

is a probabilisti branh R of Q suh that R(w) = 1 with probability 1 and R(u) = 1

with probability less than � for any u with f(u) = 0. Number deterministi branhes

ofR arbitrarily, say, T

1

; T

2

; : : :. For eahm, T

m

(w) = 1. Thus, w determines a 1-path

in T

m

. Fixing all the variables along this path aording to w, we get a d-ylinder C

m

suh that w 2 C

m

and all elements of C

m

are aepted by T

m

. We will view R, whih

is a probability distribution over deterministi trees T

1

; T

2

; : : :, as a distribution over

their numbers. Let m be hosen randomly in aordane with R.

Let P

1

; : : : ; P

t

� [n℄ be the largest family of disjoint bloks suh that all the

elements w

(P

1

)

; : : : ; w

(P

t

)

are zeroes of f . It suÆes to show that d > (1� �)t.

By I

m

we denote the set of positions, whose entries de�ne ylinder C

m

. De�ne

E to be the average number of j 2 [t℄ for whih P

j

and I

m

interset. Sine for any

�xed set I

m

this number is at most d, we have the inequality E � d.

Now we bound E from below. By linearity of the mathematial expetation we

have E =

P

t

j=1

E

j

, where E

j

is the probability of P

j

interseting I

m

. Note that

whereas w 2 C

m

with probability 1, w

(S

j

)

2 C

m

with probability less than �. We

10



an onlude that E

j

> 1� � for all j. This implies E > (1� �)t. Putting together

the lower and upper bounds on E, we obtain the desired inequality d > (1� �)t.

(ii) immediately follows from (i) by Theorem 2.2 (i),(ii).

(iii) Consider arbitrary one w and set D of zeroes of f . We use de�nitions of

d-ylinders C

m

, where d = ma

0;�

(f), and a random variable m introdued in the

proof of laim (i). Reall that w 2 C

m

with probability 1, but for any zero u of f we

have u 2 C

m

with probability less than �. Let u be a random variable distributed

over D. It follows that P [u 2 C

m

℄ < �. This implies that some C

m

ontains less

than an � fration of D, measured by the distribution of u. We will use this fat for

uniform distributions on subsets of D.

For the uniform distribution onD, we have C

m

1

ontaining less than an � fration

ofD. Considering the uniform distribution onD\C

m

1

, we obtain C

m

2

ontaining less

than an � fration ofD\C

m

1

. Next we do the same forD\C

m

1

\C

m

2

, obtaining C

m

3

.

Iterating this proedure t �

�

log jDj

log

1

�

�

times, we get d-ylinders C

m

1

; : : : ; C

m

t

, whose

intersetion, whih is a dt-ylinder, separates w from D. Thus, sep(w;D)= log jDj

does not exeed d

�

log jDj

log

1

�

�

= log jDj, whih is less than d((log

1

�

)

�1

+ 1). The laim

follows.

(iv) immediately follows from (iii) by Theorem 2.2 (i),(ii).

Theorem 3.2

(i) sep(f) �

bs(f)

log bs(f)

whenever bs(f) > 1.

(ii) There is a funtion f(x

1

; : : : ; x

n

) with bs(f) � 3 and sep(f) >

p

n= logn

for large n.

(iii) There is a funtion f(x

1

; : : : ; x

n

) with bs(f) � 3 and nd(f) = 
(n).

Proposition (i) of the theorem demonstrates that the separability is not less than

the blok sensitivity upto a logarithmi fator. Moreover, proposition (ii) shows a

gap between these values. In this sense, bound (iv) in Theorem 3.1 an be onsidered

as sharpening bound (ii).

Theorem 3.2 (ii) together with Theorem 3.1 (iv) implies that the blok sen-

sitivity and the interative deision tree omplexity are polynomially unrelated.

Theorem 3.2 (iii) provides even an larger gap between the blok sensitivity and

the nondeterministi deision tree omplexity. Notie that suh a gap is impossible

between nd(f) and both of bs(f) and bs(:f), as nd(f) � bs(f) bs(:f) [12℄.

Proof: (i) Given a boolean funtion f , let bs(f) = t. Consider a one w of f suh

that for a family of disjoint bloks P

1

; : : : ; P

t

� [n℄ the set D = fw

(P

1

)

; : : : ; w

(P

t

)

g

onsists of zeroes of f . Evidently, sep(w;D) = t and sep(f) � t= log t.

(ii) De�ne a funtion f(x

1

; : : : ; x

n

) by desribing its set of zeroes U . Assuming

n = l(l � 1)=2, let jU j = l. We onstrut an l by n matrix M whose rows are

11



elements of U . For every two-element set fk

1

; k

2

g � [l℄, we put into M the olumn

with 0 at positions k

1

and k

2

, and 1 elsewhere. All rows of the matrix obtained are

distint, and set U is spei�ed.

To show that bs(f) is at most 3, onsider arbitrary four zeroes u

1

; u

2

; u

3

; u

4

2 U .

By onstrution of U , there is a oordinate i � n in whih u

1

and u

2

have 0, but

u

3

and u

4

have 1. This means that there is no w from whih u

1

; u

2

; u

3

; u

4

di�er in

disjoint bloks of positions.

Finally, observe that sep(1

n

; U) � l=2, as a single position an separate 1

n

only

from two elements of U . The bound sep(f) >

p

n= logn follows.

(iii) Let d = b(

1

8

log

8

5

)n and l = b(

8

5

)

n

4

. Let the set U of zeroes of f onsist

of l strings hosen independently and randomly from f0; 1g

n

. Denote the set of

ones of f by W . Our goal is to show that events nd(f) > d and bs(f) � 3 our

simultaneously with nonzero probability.

Assumption nd(f) � d implies that either 1

n

is not inluded inW or it is inluded

in W together with a d-neighborhood. The �rst event happens with probability no

more than l=2

n

<

1

3

. Consider the seond possibility.

Let C be a d-neighborhood of 1

n

. A u

i

does not fall into C with probability

1� 1=2

d

; therefore, no u

i

fall into C with probability (1� 1=2

d

)

l

. In other words, C

is inluded in W with this probability. As 1

n

has no more than n

d

d-neighborhoods,

W ontains a d-neighborhood of 1

n

with probability no more than n

d

(1� 1=2

d

)

l

�

exp(d lnn� 2

�d

l) < 1=3.

Thus, nd(f) � d with probability less than

2

3

.

Similarly to the proof of part (ii), we use the observation that if bs(f) > 3, then

there are u

1

; u

2

; u

3

; u

4

2 U that annot have exatly 2 ones and 2 zeros at one and

the same position. It follows that the probability of the event bs(f) > 3 does not

exeed

�

l

4

�

(1�

�

4

2

�

=2

4

)

n

<

1

24

l

4

(5=8)

n

�

1

24

.

Thus, with non-zero probability, both bs(f) � 3 and nd(f) > d .

In the rest of this setion we give lower bounds on Merlin-Arthur and Arthur-

Merlin omplexities in terms of related omplexity measures, whose onsideration

sometimes an be more preferable. Similarly to Turing omplexity, one an onsider

another aeptane/rejetane riterion for a probabilisti deision tree. By pp(f)

we denote the minimum depth of a probabilisti deision tree R suh that for any

input w, f(w) = 1 i� R(w) = 1 with probability exeeding

1

2

. Equivalently pp(f)

an be haraterized as the minimum order of a pereptron omputing f (see [10℄

for de�nitions). One an easy show that pp(f) � nd(f).

Lemma 3.3 pp(f) � 

�

lma

(l)

�

(f), where 

�

> 1 is a onstant depending on error �.

Proof: Consider a depth-dMerlin-Arthur tree Q omputing the funtion f with

nondeterminism l. We onvert Q into a depth-

�

ld probabilisti tree R that omputes

f in the above sense. We �rst use the standard ampli�ation proedure for eah

probabilisti branh of Q and derease the error to 2

�l�1

at ost of inreasing the

12



depth by a 

�

l fator. Seond, we make the nondeterministi root of Q probabilisti

by assigning probability 1=L to every of L out-going edges. At this stage, we get

a probabilisti tree R

0

. Reall that l = dlogLe. Now, if f(w) = 1, then R

0

(w) = 1

with probability at least

1

L

(1 � 2

�l�1

) � 2

�l

(1 � 2

�l�1

) > 2

�l�1

; while if f(u) = 0,

then R

0

(u) = 1 with probability less than 2

�l�1

.

At the �nal stage of onstrution of R we should lift the threshold 2

�l�1

to

1

2

.

For this purpose, with probability p = (2

l

�1)=(2

l+1

�1) tree R immediately outputs

1, and with probability 1� p runs tree R

0

.

The last proposition we prove in this setion is a lower bound on the Arthur-

Merlin omplexity whih also an be viewed as an alternative haraterization

thereof. Denote the sets of ones and zeroes of a boolean funtion f by W and

U , respetively. We will onsider arbitrary independent random variables w and u

distributed on W and U . We de�ne the partial separability of a funtion f with gap

1�2�, where � <

1

2

, to be the minimum d suh that for any random variables w and

u there is a depth-d nondeterministi tree S for whih E [S(w)℄�E [S(u)℄ > 1� 2�.

We denote this harateristi of f by ps

�

(f). The next lemma is a partiular ase of

the universal observation by Yao [17℄.

Lemma 3.4 ps

�

(f) � am

�

(f) � ps

�=2

(f).

Proof: Given a boolean funtion f and a natural number d, onsider the

following matrix. Rows are indexed by all the depth-d nondeterministi trees S.

Columns are indexed by all the pairs w#u, where w 2 W and u 2 U . An entry

at the intersetion of the row and the olumn is S(w) � S(u). By S and w#u we

will denote arbitrary random variables distributed over the index sets of the matrix.

Applying the min-max theorem for the two person zero sum game determined by

this matrix, we obtain the equality

max

S

min

w#u

E [S(w)� S(u)℄ = min

w#u

max

S

E [S(w)� S(u)℄ ;

where the random variables w and u in the right hand side are projetions of w#u.

Using linearity of the mathematial expetation, we rewrite this equality in the form

max

S

min

w#u

(E [S(w)℄� E [S(u)℄) = min

w;u

max

S

(E [S(w)℄�E [S(u)℄) ;

where w and u in the right hand side an now be onsidered as arbitrary independent

random variables distributed over W and U , respetively.

Consider the inequality ps

�

(f) � d. It means that for any random variables w

and u there is a depth-d nondeterministi tree S with E [S(w)℄�E [S(u)℄ > 1� 2�.

By the above equality, this is equivalent to the following laim. There exists a

probability distribution S over depth-d nondeterministi deision trees suh that for

any w 2 W and u 2 U it is true E [S(w)℄� E [S(u)℄ > 1� 2�. We an view S as a

depth-d Arthur-Merlin deision tree. Clearly, the latter ondition follows from the

assumption that am

�

(f) � d and implies that am

2�

(f) � d. This proves the �rst

and the seond inequalities of the lemma.
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4 Complexity of the hek funtion for a binary

ode

In this setion we prove the main result of the paper.

Theorem 4.1 There is a boolean funtion F : f0; 1g

n

! f0; 1g with the following

onditions true for any � <

1

2

, l � n, and n large enough:

(i) ma

�

(F ) = O(1);

(ii) nd(F ) = 
(n);

(iii) ma

(l)

�

(F ) = 
(

n

l

);

(iv) am

�

(F ) = 
(logn).

Thus, Theorem 4.1 shows a large gap between the Merlin-Arthur omplexity

and the nondeterministi omplexity. By Theorem 3.1 (iv) this implies that the

separability of a boolean funtion and its nondeterministi omplexity are unre-

lated, improving Theorem 3.2 (iii). A large gap is proven also between the Merlin-

Arthur omplexity without any restritions on nondeterminism and that with suh

restritions. Finally, a onstant versus logarithm gap is established between the

Merlin-Arthur and Arthur-Merlin omplexity measures.

When seeking for an appropriate funtion F to meet the laims of Theorem 4.1,

we �nd insightful Theorem 3.1. It suggests to examine funtions with low separa-

bility. We address one lass of suh funtions, namely, those whose set of zeroes is a

binary ode with some natural properties. More exatly, we need the following two

properties for a ode U � f0; 1g

n

.

Linear minimum distane. Any two odewords of U di�er in at least Æn positions

for some 0 < Æ <

1

2

.

Uniformity. We all a ode U s-uniform if for any t-ylinder C, where t � s, a

fration of odewords in U that belong to C is equal to 2

�t

, i.e.,

jU\Cj

jU j

= 2

�t

.

As easily seen, it is enough to require this ondition only for t = bs. We will

need s = �n for some � 2 (0;

1

2

).

We postpone onstrution of a ode with both properties to the end of this

setion. Note that a linear ode is s-uniform i� the minimum distane of its dual

exeeds s (see Lemma 4.8 below).

Given a binary ode U , we all a boolean funtion with zeroes exatly in U the

hek funtion of the ode. All of four laims of Theorem 4.1 are true for F being

the hek funtion of an �n-uniform ode with minimum distane Æn, where � and Æ

are any onstants in (0;

1

2

). Eah laim diretly follows from one of four forthoming

lemmas.
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Lemma 4.2 Let F be the hek funtion of a ode U � f0; 1g

n

with minimum

distane more than Æn. Then ma

0;1�Æ=2

(F ) = 1.

Notie that one-sided error � an be ampli�ed to �

k

at ost of inreasing the

depth by a k fator.

Proof: A Merlin-Arthur tree R we suggest for F onsists of probabilisti

branhes R

w

for eah w outside U . Denote (one of) the nearest to w odewords

by u

0

, and suppose that Hamming distane between w and u

0

is �n.

First onsider the ase that � < Æ=2. Notie that then u

0

is unique. Let P �

fx

1

; : : : ; x

n

g be the set of �n variables to whih w and u

0

assign di�erent values. We

onstrut R

w

as follows. With probability p to be spei�ed below this probabilisti

branh asks a random variable from fx

1

; : : : ; x

n

g, and with probability q = 1 � p

it asks a random variable from P . R

w

aepts i� the answer is onsistent with w.

Clearly, R

w

(w) = 1 with probability 1. Also, R

w

(u

0

) = 1 with probability p(1� �).

Notie that any other odeword u lies at distane at least (Æ� �)n from w, where Æn

is the minimun distane of U . So, R

w

(u) = 1 with probability at most q+p(1�Æ+�).

Thus, R

w

errs with probability at most maxfp(1� �); 1+ p(� � Æ)g. To minimize it,

we set p = 1=(1 + Æ � 2�) and obtain R

w

aepting any odeword with probability

at most

1��

1+Æ�2�

, whih is less than 1� Æ=2 for all � < Æ=2.

Consider the seond ase that � � Æ=2. Now let R

w

ask just a random variable in

fx

1

; : : : ; x

n

g and aept i� its value is onsistent with w. Obviously, R

w

aepts an

arbitrary odeword u 2 U with probability at most 1� � � 1� Æ=2. This ompletes

the onstrution of R and proves the lemma.

Lemma 4.3 Let F be the hek funtion of an s-uniform ode U . Then nd(F ) > s.

Proof: s-uniformity of U means that every s-ylinder ontains a zero of F .

Therefore, the set of ones of F annot be s-open. The lemma follows from the

disussion onluding Setion 2.

Lemma 4.4 Let F be the hek funtion of an s-uniform ode U . Then

(i) pp(F ) > s;

(ii) ma

(l)

�

(F ) > s=(

�

l), where 

�

> 1 is a onstant depending on the error �.

Proof: (i) Assume, to the ontrary, that pp(F ) � s. This means that some

depth-s probabilisti tree R aepts any odeword in U with probability at most

1=2, while any word outside U with probability stritly more than 1=2. It follows

that E [R(w)℄ � E [R(u)℄ > 0, where w and u are uniformly distributed on W =

f0; 1g

n

n U and U , respetively, and expetation is over distributions w, u, and R.
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This inequality implies that E [T (w)℄� E [T (u)℄ > 0 for at least one deterministi

branh T of R. Contraditory with this, we show that

E [T (w)℄� E [T (u)℄ = 0 (8)

for any depth-s deterministi deision tree T .

Let �

C

denote the harateristi funtion of set C. We an write T (w) =

P

C

�

C

(w), where the sum is over all ylinders C orresponding to 1-paths in T .

By linearity of mathematial expetation,

E [T (w)℄� E [T (u)℄ =

X

C

(E [�

C

(w)℄� E [�

C

(u)℄):

But if C is a t-ylinder, where t � s, then by s-uniformity of U we have E [�

C

(w)℄ =

E [�

C

(u)℄ = 2

�t

. Equation (8) follows.

(ii) follows from item (i) by Lemma 3.3.

In the next lemma we use the notion of partial separability introdued at the

end of Setion 3.

Lemma 4.5 Let F be the hek funtion of an s-uniform ode U with minimum

distane at least 3 and s �

n ln log n

log n

. Then

ps

�

(F ) > logn� 2 log logn

for any � 2 (0; 1) and suÆiently large n.

Together with Lemma 3.4 this immediately provides a lower bound on am

�

(F ).

Proof: We present two probability distributions on ones and zeroes of F that

are undistinguishable by a depth-d nondeterministi deision tree for d = logn �

2 log logn. More spei�ally, let a random variable u be uniformly distributed on the

entire set U and w be uniformly distributed on setW =

n

u

(i)

: u 2 U; i � n

o

, where

u

(i)

is de�ned to be a string that di�ers from u exatly at i-th position. As the ode

distane of U is at least 3, all the u

(i)

are distint ones of F . Consider an arbitrary

depth-d nondeterministi tree S and denote p

1

= E [S(w)℄ and p

0

= E [S(u)℄. Our

goal is to show that

p

1

� p

0

= O(

log logn

logn

); (9)

whih will imply ps

�

(F ) > d for any onstant �.

We split U into two parts U

1

and U

0

putting an element u into the �rst part

if S(u) = 1 and into the seond otherwise. Correspondingly, W is divided into

two parts W

1

=

n

u

(i)

: u 2 U

1

; i � n

o

and W

0

=

n

u

(i)

: u 2 U

0

; i � n

o

. Clearly,

p

0

= jU

1

j=jU j. From this and from

p

1

=

jU

1

j

jU j

E [S(w) jw 2 W

1

℄ +

jU

0

j

jU j

E [S(w) jw 2 W

0

℄
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we infer

p

1

� p

0

�

jU

0

j

jU j

E [S(w) jw 2 W

0

℄ : (10)

Given u, let us denote the number of i suh that S(u

(i)

) = 1 by m(u). Let

m = E [m(u) ju 2 U

0

℄. In this notation, E [S(w) jw 2 W

0

℄ =

m

n

and (10) an be

rewritten as

p

1

� p

0

�

jU

0

j

jU j

m

n

: (11)

In partiular,

p

1

� p

0

�

m

n

: (12)

We will also use one more onsequene of (11). De�ne U

0

= fu 2 U

0

: m(u) > m=2g.

One an easily hek that

jU

0

j

jU

0

j

>

m

2n

. Together with (11) this gives

p

1

� p

0

< 2

jU

0

j

jU j

: (13)

We will show that either (12) or (13) provides the desired bound on p

1

� p

0

.

Next what we do is upper bounding of jU

0

j=jU j. Let r = minfm=2; sg and

t = br=d. We now desribe a proedure onsisting of t steps. In j-th step we build

a overing of U

0

by at most (2

d

�1)

j

disjoint dj-ylinders. The initial overing is the

entire boolean ube, that is, it onsists of one 0-ylinder. Suppose that before j-th

step we have a overing of U

0

by at most (2

d

� 1)

j�1

disjoint d(j � 1)-ylinders. In

j-th step, every d(j�1)-ylinder C from the overing should be split into 2

d

disjoint

dj-ylinders so that at least one of those an be deleted. To do so, we hoose an

element u in C that belongs to U

0

. Let P be the set of positions speifying C. We

next hoose a position i =2 P so that S(u

(i)

) = 1. This an be done as u 2 U

0

and jP j = d(j � 1) < m=2. We split C into subylinders by assigning all the

possible values to the variables that are outside P and are queried by S along a

path aepting u

(i)

. If the number of suh variables is less than d, we assign also

arbitrary additional variables. At least one subylinder from the splitting of C does

not interset U

0

and even U

0

, namely, one that ontains u

(i)

. The reason is that eah

element of this subylinder �ts the same 1-path of S as u

(i)

does.

After t steps of the above proedure, we obtain a overing of jU

0

j by at most

(2

d

�1)

t

disjoint dt-ylinders. Sine dt � s, we an employ s-uniformity of U . Below

the summation goes over all the ylinders C from the overing.

jU

0

j

jU j

=

X

C

jU

0

\ Cj

jU j

�

X

C

jU \ Cj

jU j

� (2

d

� 1)

t

2

�dt

:

By (13), we have p

1

� p

0

< 2(1 � 2

�d

)

t

� 2 expf�t2

�d

g. Substituting d = logn �

2 log logn and t = br=d, we obtain

p

1

� p

0

= O

 

exp

(

�

r logn

n

)!

: (14)
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To omplete our analysis, we have to onsider two ases. In the �rst ase r = s

and (9) follows by (14) from the ondition imposed on s. In the seond ase that

r = m=2, (14) gives

p

1

� p

0

= O

 

exp

(

�

m logn

2n

)!

: (15)

Finally, we onsider two subases. If

m

n

�

2 ln log n

log n

, we obtain (9) by (12). If

m

n

>

2 ln log n

log n

, (9) follows by (15).

To omplete the proof of Theorem 4.1, it remains to onstrut an �n-uniform

ode with minimum distane Æn for some onstants � and Æ in interval (0; 1). It

is onvenient to �x our attention on linear odes, i.e., suppose that U is a linear

subspae of GF(2)

n

(see Remark 4.10, though). We �rst prove that the desired

linear ode exists by the probabilisti method, then refer to an algebrai-geometry

onstrution, and �nally disuss what an be done with use of some lassial odes.

Probabilisti onstrution

We use the Cherno� bound [3℄ stated in the following form.

Lemma 4.6 Let �

1

; �

2

; : : : ; �

n

be independent identially distributed random vari-

ables taking two values 0 and 1, either with probability 1=2. Then for any Æ 2 (0; 1=2℄

P

"

n

X

i=1

�

i

� Æn

#

� 2

(H(Æ)�1)n

;

where H(Æ) = �Æ log

2

Æ � (1� Æ) log

2

(1� Æ).

Lemma 4.7 If 0 < Æ < 1=2 and � < 1 � H(Æ), then a random b�n-dimensional

ode has minimum distane at least Æn with overwhelming probability (i.e., with

probability 1� o(1) for n!1).

Proof: Denote k = b�n Suppose that vetors X

1

; : : : ; X

k

are hosen in GF(2)

n

randomly and independently (they may happen to be linearly dependent). Denote

the subspae spanned by X

1

; : : : ; X

k

by U . Let us estimate the probability that

ode U has minimum distane less than Æn. Reall that the minimum distane of

a linear ode is equal to the minimum weight of a non-zero odeword. Consider a

linear ombination X = �

1

X

1

� : : : � �

k

X

k

with oeÆients �

1

; : : : ; �

k

2 GF(2).

If at least one of the oeÆients is non-zero, then X is uniformly distributed over

GF(2)

n

. If X = �

1

: : : �

n

, its weight is equal to �

1

+ : : :+ �

n

. By Lemma 4.6 this is

less than Æn with probability at most 2

(H(Æ)�1)n

. Therefore, U ontains a non-zero

vetor of weight less than Æn with probability at most 2

k

2

(H(Æ)�1)n

� 2

(�+H(Æ)�1)n

.
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Estimate now the probability of the same event under the ondition that

X

1

; : : : ; X

k

are linearly independent. Note that then U is uniformly distributed over

all k-dimensional subspaes. Observe that random and independent X

1

; : : : ; X

k

are

linearly independent with probability

(2

n

� 1)(2

n

� 2) � � � (2

n

� 2

k�1

)

2

nk

= (1�

1

2

n

)(1�

1

2

n�1

) � � � (1�

1

2

n�k+1

) >

4

�

1

2

n

�

1

2

n�1

�:::�

1

2

n�k+1

>

1

4

:

It follows that a random k-dimensional U has has minimum distane less than Æn

with probability at most 4 � 2

(�+H(Æ)�1)n

, whih approahes 0 with n inreasing.

Lemma 4.7 shows that there is no problem with ahieving high minimum dis-

tane. It suÆes to take at random a ode of appropriate dimension. To proeed

with the uniformity property, we need some preliminaries from linear algebra.

Given X = x

1

: : : x

n

and Y = y

1

: : : y

n

in GF(2)

n

, let hX; Y i = x

1

y

1

� : : :� x

n

y

n

be their inner produt. X and Y are alled orthogonal if hX; Y i = 0. The dual ode

of U is denoted by U

?

. It onsists of all those strings that are orthogonal with eah

odeword of U . It is well known that dimU

?

= n � dimU and that (U

?

)

?

= U .

We refer to the following fat (see e.g. [9℄).

Lemma 4.8 A linear ode U is s-uniform i� the minimum distane of U

?

exeeds s.

Proof: Denote t = bs. Given a set T � [n℄ of t oordinates, onsider a

linear transformation P

T

: U ! GF(2)

t

whih is the projetion onto T . For eah

v 2 GF(2)

t

, the set P

�1

T

(v) is exatly the intersetion of U and the t-ylinder C

v

spei�ed by assigning v to T .

First observe that U is s-uniform i� P

T

(U) = GF(2)

t

for any T . Indeed, if P

T

(U)

is a proper subspae of GF(2)

t

, then the uniformity ondition is violated beause

C

v

with v =2 P

T

(U) does not interset U . Conversely, P

T

(U) = GF(2)

t

implies that

all intersetions C

v

\ U = P

�1

T

(v) are non-empty and, therefore, ontain the same

number of elements. As they over U , the uniformity ondition follows.

Now show that the inequality P

T

(U) 6= GF(2)

t

is true for some T i� the minimum

distane of U

?

does not exeed t, that is, U

?

ontains a vetor of weight at most t.

Indeed, P

T

(U) 6= GF(2)

t

i� all x in U satisfy relation hx; yi = 0 for some non-zero y

whose non-zero oordinates all are in T . It remains to notie that suh a y belongs

to U

?

and its weight does not exeed t. The lemma follows.

Thus, we need a linear ode U � GF(2)

n

suh that both U and U

?

have minimum

distanes linear in n.

Lemma 4.9 Let 0 < �; Æ <

1

2

and H(�) < 1�H(Æ). Then for n suÆiently large,

there exists an �n-uniform ode with minimum distane at least Æn.
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Proof: Set up �

0

= � +

1

n

and pik � between H(�

0

) and 1 � H(Æ). Denote

k = b�n. Take at random a k-dimensional linear ode U . By Lemma 4.7 its

minimum distane is at least Æn with overwhelming probability.

Notie that U

?

is a random (n � k)-dimensional ode. Let n � k = n. For n

suÆiently large,  is arbitrarily lose to 1��, so  < 1�H(�

0

). One again referring

to Lemma 4.7, we have that the minimum distane of U

?

is at least �

0

m = �n+ 1

with overwhelming probability. By Lemma 4.8, U is �n-uniform with the same

probability.

As with non-zero probability U is simultaneously �n-uniform and has minimum

distane at least Æn, we onlude that there exists a ode with both these proper-

ties.

Remark 4.10 If we take randomly and independently 2

�n

words in f0; 1g

n

, with

high probability we obtain a ode with minimum distane at least Æn, provided Æ <

1

2

and � < (

1

2

� Æ)

2

. One annot expet that suh a ode is �n-uniform for a onstant

�, but with high probability it is almost �n-uniform in the following sense: for any

t-ylinder C with t � �n, a fration of odewords in U that belong to C deviates

from 2

�t

in at most 2

�2(�n�1)

.

The hek funtion of an almost �n-uniform ode with minimum distane Æn

satis�es all the onditions of Theorem 4.1. Though almost uniformity does not

suÆe to prove item (i) of Lemma 4.4, it suÆes to keep item (ii) of this lemma

true.

Algebrai-geometry onstrution

Another way to obtain an �n-uniform ode with minimum distane Æn is to use

the self-dual odes onstruted in [13℄ from algebrai urves. In partiular, the

onstrution in [13℄ gives us a self-dual ode over alphabet GF(64) with minimum

distane 0:3n. Replaing elements of GF(64) by strings from GF(2)

6

we get a binary

ode that is 0:05n-uniform and has minimum distane 0:05n (the ode length has

inreased by 6). Both properties hold true for an arbitrary one-to-one replaement,

even if the binary ode obtained is not linear.

Classial onstrutions

Somewhat weaker versions of bounds (i){(iii) (exept (iv)) of Theorem 4.1 an be

obtained for the hek funtions of some lassial odes. In this subsetion we do

this for two well-known odes. One of them, namely, the dual of BCH-ode, was

used in [9℄, where lower bounds where proven for some kind of branhing programs

omputing harateristi funtions of odes. It is interesting to note that both [9℄

and our paper employ in essene the same properties of odes.
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The �rst ode U

1

we onsider is the simplest version of the Reed-Solomon ode.

Let n = p2

p

and interpret the boolean ube f0; 1g

n

as the set of funtions from

GF (2

p

) into itself (represented by their graphs). Then U

1

onsists of graphs of

univariate polynomials over GF (2

p

) of degree at most r. It is not hard to hek that

U

1

is r-uniform and its minimum distane is at least 2

p

� r. We set r = 2

p�1

. Let

F

1

be the hek funtion of U

1

. Then by Lemmas 4.2, 4.3, and 4.4 we have

� ma

�

(F

1

) = O(logn);

� nd(F

1

) = 
(

n

log n

);

� pp(F

1

) = 
(

n

log n

) and ma

(l)

�

(F

1

) = 
(

n

l log n

).

For the next example, let U

2

� f0; 1g

n

be the dual of the Bose-Chaudhuri-

Hoquenghem ode of designed distane 2t + 1. Following [9℄, we take t = d

p

n=4e

to ensure 
(

p

n)-uniformity and minimum distane 
(n). For F

2

the hek funtion

of U

2

, we obtain

� ma

�

(F

2

) = O(1);

� nd(F

2

) = 
(

p

n);

� pp(F

2

) = 
(

p

n) and ma

(l)

�

(F

2

) = 
(

p

n

l

).

5 Bounded Merlin-Arthur vs. bounded nondeter-

ministi omplexity

Theorem 4.1 leaves open an intriguing question if Arthur-Merlin and nondetermin-

isti omplexities are polynomially related. A weak version of this question is if

am

�

(f) = O(1) implies nd(f) = O(1). We an answer it in aÆrmative only in the

�rst partiular ase that am

�

(f) = 1, for all � 2 (0; 1).

Theorem 5.1 am

�

(f) � 1 implies nd(f) <

1

1�2�

.

Proof: By Lemma 3.4, it suÆes to show that ps

�

(f) � 1 implies nd(f) <

1

1�2�

.

Consider an arbitrary boolean funtion f : f0; 1g

n

! f0; 1g with ps

�

(f) � 1.

Denote by W and U the sets of ones and zeroes of f , respetively. Let d = nd(f).

So, set W is d-open and is not (d� 1)-open. Therefore, there must be a d-ylinder

C � W that is not inluded into any (d � 1)-ylinder inside W . Without loss of

generality, assume that C is spei�ed by assigning the �rst d variables to a 2 f0; 1g

d

.

By a

(i)

2 f0; 1g

d

, i � d, we denote a string that di�ers from a exatly at i-th

position. For any i � d, there exists a b

i

2 f0; 1g

n�i

suh that a

(i)

b

i

2 U . Let
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random variables w and u be uniformly distributed on sets fab

1

; : : : ; ab

d

g � W and

fa

(1)

b

1

; : : : ; a

(d)

b

d

g � U , respetively.

Take an arbitrary depth-1 nondeterministi deision tree S. Denote p

1

=

E [S(w)℄ and p

0

= E [S(u)℄. Let us show that p

1

� p

0

�

1

d

. The �rst ase we

onsider is that some deterministi branh of S asks one of the �rst d variables and

aepts if it has the same value as in a. Then p

1

= 1 and p

0

� 1�

1

d

. In the seond,

opposite ase, we observe that S(a

(i)

b

i

) = 1 whenever S(ab

i

) = 1 and , therefore,

p

0

� p

1

.

The ondition ps

�

(f) � 1 means that p

1

� p

0

> 1� 2� for some depth-1 nonde-

terministi tree S. The estimate d <

1

1�2�

follows.

Theorem 5.2

(i) ma

0;1=2

(f) � 1 (or, equivalently, ma

1=3

(f) � 1) implies nd(f) � 1;

(ii) ma

0;2=3

(f) � 1 (or, equivalently, ma

2=5

(f) � 1) implies nd(f) � 2;

(iii) ma

0;1=3

(f) � 2 (or, equivalently, ma

1=4

(f) � 2) implies nd(f) � 2.

The proof is deferred to the end of this setion. In omparison with Theorem 5.1,

Theorem 5.2 relaxes the premise am

�

(f) � 1 to ma

�

(f) � 1 and even to ma

�

(f) � 2

but only for a restrited range of the error �. Suh an improvement annot be done

for all � 2 (0; 1), beause this will ontradit the example given in Setion 4. Notie

that parameter Æ in Lemma 4.9 an be hosen arbitrarily lose to

1

2

. Thus, for any

� >

3

4

this lemma provides a funtion F for whih ma

0;�

(F ) = 1 by Lemma 4.2 but

nd(F ) = 
(n) by Lemma 4.3. In fat, we are able to improve this example attaining

the error � as small as it is possible in view of Theorem 5.2 (ii).

Theorem 5.3 For any � > 0 there is a boolean funtion F : f0; 1g

n

! f0; 1g suh

that ma

0;2=3+�

(F ) = 1 and nd(F ) = 
(n).

Thus, the value � =

2

3

is the exat theshold: if � �

2

3

, then ma

0;�

(f) � 1 implies

nd(f) = O(1), while if � >

2

3

, then ma

0;�

(F ) = 1 may our simultaneously with

nd(F ) = 
(n).

For the same example of F , we have simultaneously nd(F ) = 
(n) and

ma

0;�

(F ) � 2 for any � >

4

9

, whereas by item (iii) of Theorem 5.2 the ondition

ma

0;�

(f) � 2 with � �

1

3

implies nd(f) � 2. It would be interesting to lose the gap

1

3

< � �

4

9

.

Proof of Theorem 5.3: The funtion F will be spei�ed by its set of zeroes,

that will be denoted by U . Assoiate with � a onstant k = d2=�

3

e. We need a set

U with two properties true for suÆiently large n.

1. The omplement f0; 1g

n

n U is not b�n-open for some onstant � 2 (0; 1).
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2. Let u

1

; : : : ; u

k

be arbitrary pairwise distint strings from U , and v be an arbi-

trary string from f0; 1g

k

. De�ne I � [n℄ to be the set of positions i suh that

u

1

j

i

u

2

j

i

: : : u

k

j

i

= v, where uj

i

stands for i-th omponent of u. Then any two

strings u

0

and u

00

from U nfu

1

; : : : ; u

k

g agree in at most (1+�

2

)jIj=2 positions

from I.

The seond ondition is a strengthening of the fat that U is a ode with minimum

distane at least (1� �

2

)n=2.

Suh U exists for any � > 0. It suÆes to take d2

�n

e strings independently

at random for a onstant � 2 (0; 1). Property 1 holds true with high probability,

provided � < �. Indeed, U does not interset an b�n-ylinder with probability

(1�2

�b�n

)

d2

�n

e

. So, the probability that the omplement of U ontains at least one

b�n-ylinder does not exeed 2

�n

�

n

b�n

�

(1 � 2

��n

)

2

�n

. The last value is small for

� < � and large n.

Property 2 is ful�lled also with high probability. This an be easily dedued

from the Cherno� bound (see Lemma 4.6), provided � = �(�) is small enough.

(Note that the projetion of U onto I onsists of random strings whose length with

overwhelming probability exeeds n=2

k+1

.)

From property 1, it follows immediately that nd(F ) > �n. Based on property 2,

we prove the seond needed ondition that ma

0;2=3+�

(F ) � 1. We an restate it as

follows: for any w =2 U there is a distribution i on [n℄ suh that for all u 2 U bits

uj

i

and wj

i

oinide with probability less than

2

3

+ �. By the min-max theorem, it

is equivalent to show that, given any w =2 U and an arbitrary distribution u on U ,

there is an index i with

P [uj

i

= wj

i

℄ <

2

3

+ �: (16)

When referring to the weight of a u 2 U , we mean the probability that u = u. If

there is a spei� u of weight at least

1

3

, then (16) is true for a position i where u and

w di�er. So we will suppose that u takes every its value with probability stritly

less than

1

3

. Let us rank strings in U in desending order of their weights. Denote

the weiths of the �rst k + 1 strings u

1

; : : : ; u

k

; u

k+1

by !

1

; : : : ; !

k

; !

k+1

respetively.

Observe that

!

k+1

<

1

k

: (17)

Set ! =

P

k

j=1

!

j

. As we assume that !

j

<

1

3

for all j, there is t � k suh that

!

2

�

1

6

<

t

X

j=1

!

j

<

!

2

+

1

6

: (18)

Let I � [n℄ be the set of all those positions i that

u

j

j

i

=

�

0 for j � t,

1 for t < j � k.

(19)
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Now let i denote a random index from I. Our goal is to show that uj

i

= wj

i

with

probability less than

2

3

+ �. This will imply (16) for some spei� i 2 I.

By the total probability formula

P

�

uj

i

= wj

i

�

=

k

X

j=1

P

�

u

j

j

i

= wj

i

�

!

j

+P

�

uj

i

= wj

i

�

�

�

�

u 6= u

j

for all j � k

�

(1�!) (20)

We will now bound both terms in the right hand side from above. The �rst term is

less than

!

2

+

1

6

(21)

by (18) and (19).

Let m = jIj and p

i

= P [uj

i

= wj

i

ju 6= u

j

for all j � k ℄. Without the fator of

1� !, the seond term in (20) an be rewritten as

1

m

X

i2I

p

i

=

1

2

+

1

m

X

i2I

(p

i

�

1

2

) �

1

2

+

 

1

m

X

i2I

(p

i

�

1

2

)

2

!

1=2

=

1

2

+

 

1

2

 

1

m

X

i2I

�

p

2

i

+ (1� p

i

)

2

�

�

1

2

!!

1=2

:

Consider two independent random strings u

0

and u

00

, both having the distrubution

of u onditioned on u 6= u

j

for all j � k. Notie that the sum

P

i2I

(p

2

i

+ (1� p

i

)

2

)

is equal to the everage number of positions where u

0

and u

00

agree. If u

0

6= u

00

, the

number of suh positions does not exeed (1 + �

2

)m=2 by ondition 2 imposed on

U at the very beginning. Therefore, the seond term in (20) an be bounded by

0

�

1

2

+

 

�

2

2

+P [u

0

= u

00

℄

!

1=2

1

A

(1� !):

Suppose that P [u

0

= u

00

℄ � �

2

=2. This provides us an upper bound (1=2+�)(1�

!) on the seond term in (20). Using also bound (21) on the �rst term, we obtain

P [uj

i

= wj

i

℄ <

2

3

+ �, whih implies (16).

If P [u

0

= u

00

℄ > �

2

=2, the set U n fu

1

; : : : ; u

k

g must ontain an element whose

weight exeeds �

2

(1 � !)=2. Reall that the largest weight in this set is assigned

to u

k+1

. So, !

k+1

> �

2

(1 � !)=2. By (17) and the hoie of k, we get 1 � ! <

2=(k�

2

) � �. This gives us an upper bound � on the seond term in (20). Together

with bound (21) on the �rst term, this again implies (16).

The proof is omplete.
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Proof of Theorem 5.2

We will use items (i) and (ii) of the following lemma. Item (iii) is inluded there,

as it omplements the preeding two and shows that the same method annot be

applied to derive the onlusion nd(f) = O(1) from the assumption ma

0;�

(f) � 3.

We employ the notion of separability de�ned in Setion 3.

Lemma 5.4 Let f be a boolean funtion, w denote an arbitrary one of f , and

u

1

; u

2

; u

3

; : : : ; u

y

denote arbitrary zeroes of f .

(i) if sep(w; fu

1

; u

2

g) � 1 for all w; u

1

; u

2

, then nd(f) � 1;

(ii) if sep(w; fu

1

; u

2

; u

3

g) � 2 for all w; u

1

; u

2

; u

3

, then nd(f) � 2;

(iii) for any y and suÆiently large n, there exists a boolean funtion f :

f0; 1g

n

! f0; 1g suh that sep(w; fu

1

; : : : ; u

y

g) � 3 for all w; u

1

; : : : ; u

y

but

nd(f) �

n

y2

y+1

ln lnn

.

We are now able to prove Theorem 5.2. By Theorem 2.2 (ii) it suÆes to prove

the laims only for one-sided error. Note that the proof Theorem 3.1 (iii) gives us

bound sep(w; fu

1

; : : : ; u

k

g) � ma

0;�

(f)dlog k= log(1=�)e. In partiular, ma

0;1=2

(f) �

1 implies sep(w; fu

1

; u

2

g) � 1, and ma

0;1=3

(f) � 2 implies sep(w; fu

1

; u

2

; u

3

g) � 2.

A more areful inspetion of the arguments shows that sep(w; fu

1

; u

2

; u

3

g) � 2

follows also from the assumption ma

0;2=3

(f) � 1. Applying laims (i) and (ii) of

Lemma 5.4, we get the needed impliations.

Proof of Lemma 5.4: First we introdue some unary operations over subsets

of f0; 1g

n

that resemble losure operators in Cantor disontinuum. Let U � f0; 1g

n

.

Given x � n, we de�ne

C

x

(U) = fw 2 f0; 1g

n

: eah x-neighborhood of w intersets Ug :

Furthermore, we set up

C

y

x

(U) =

[

u

1

;:::;u

y

2U

C

x

(u

1

; : : : ; u

y

):

Thus, C

x

(U) onsists of all strings exepting those that an be separated from U by

an x-neighborhood. C

y

x

(U) is more restrited. It ontains all strings exepting those

that an be separated by an x-neighborhood from any y (not neessarily distint)

elements of U .

Further on U denotes the set of zeroes of a funtion f : f0; 1g

n

! f0; 1g. Reall

that nd(f) � z i� the set of ones of f is z-open. As easily seen, the latter ondition

is equivalent to the equality C

z

(U) = U . It is also not hard to see that the ondition

sep(w; fu

1

; : : : ; u

y

g) � x true for any one w and zeroes u

1

; : : : ; u

y

of f is equivalent

to C

y

x

(U) = U . Thus, the laims of the lemma an be rewritten as follows.
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(i) for any U � f0; 1g

n

, C

2

1

(U) = U implies C

1

(U) = U ;

(ii) for any U � f0; 1g

n

, C

3

2

(U) = U implies C

2

(U) = U ;

(iii) for any y and suÆiently large n, there exists a set U � f0; 1g

n

suh that

C

y

3

(U) = U but C

z

(U) 6= U for z = b

n

y2

y+1

ln lnn

.

Let us prove the �rst item.

Proof of (i): Suppose C

2

1

(U) = U . We have to dedue that C

1

(U) = U . This will

be done if we show that U is a ylinder.

Let V be a maximum (respetively to inlusion) ylinder ontained in U . We

wish to show that U = V . Assume, to the ontrary, that there is an element

u 2 U nV . Let J � [n℄ be the set of positions, whose entries de�ne V . Let I � J be

the subset of positions, where u has the same entries. We hoose v 2 V so that v

and u di�er at all positions outside J . Thus, v and u oinide only at positions from

I. Notie that C

1

(u; v) is a ylinder de�nable by setting the oordinates from I as

in u (or v). As this ylinder properly ontains the ylinder V and is itself ontained

in C

2

1

(U) = U , we get a ontradition. This ompletes the proof of item (i).

Proof of (ii): We will use the following simple fat. Given three boolean vetors

u

1

; u

2

; u

3

2 f0; 1g

n

, let MAJ(u

1

; u

2

; u

3

) be a vetor, whose i-th entry ours at least

twie among i-th entries of u

1

; u

2

; u

3

.

Claim 1: If u

1

; u

2

; u

3

2 V , then MAJ(u

1

; u

2

; u

3

) 2 C

3

2

(V ).

Proof: As easily seen, MAJ(u

1

; u

2

; u

3

) 2 C

2

(u

1

; u

2

; u

3

). 2

Let us turn to laim (ii). Consider U � f0; 1g

n

suh that C

3

2

(U) = U . We have to

prove C

2

(U) = U . Suppose u 2 C

2

(U) and dedue u 2 U . It is not hard to see that

the bounded losure operators ommutate with shifting by any element of f0; 1g

n

.

So, without loss of generality we may assume u = 1

n

(= 11 : : : 1).

We say that V � f0; 1g

n

has a omplete i-shadow if for any I � [n℄, jIj = i, some

v 2 V has 1 at all positions from I.

Claim 2: Let 0 � i � n� 2. Then U has a omplete (i + 2)-shadow.

Proof: We proeed by indution on i. In the ase i = 0 the laim is a reformu-

lation of the fat that 1

n

2 C

2

(U). Suppose the laim is true in the ase of i � 1.

Look at the ase of i, where i � 1. Choose an arbitrary set of positions I � [n℄

with jIj = i + 2. We have to show that U ontains some v with 1's on I. Pik

three distint positions i

1

; i

2

; i

3

2 I. Let I

s

= I n fi

s

g, s = 1; 2; 3. By the indution

hypothesis, U ontains some vetors u

1

; u

2

; u

3

with 1's on I

1

; I

2

; I

3

, respetively. By

Claim 1, MAJ(u

1

; u

2

; u

3

) is in C

3

2

(U) and, therefore, in U by our assumption. It is

easy to see that MAJ(u

1

; u

2

; u

3

) has 1's at all positions in I. 2

When i = n� 2, Claim 2 means that 1

n

2 U , ompleting the proof of laim (ii).
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Note that laim (i) an be proven similarly to laim (ii). It suÆes to replae

MAJ(u

1

; u

2

; u

3

) with OR(u

1

; u

2

).

Proof of (iii): Given V � f0; 1g

n

whose elements v

1

; : : : ; v

y

are arbitrarily or-

dered, we denote a matrix of size y by n with rows v

1

; : : : ; v

y

by M(V ). By N we

denote the matrix of size y by y � 1

0 0 : : : 0

1 0 : : : 0

1 1 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

1 1 : : : 1

Claim 3: Let V � f0; 1g

n

. If the matrix M(V ) ontains all the olumns of the

matrix N , then C

3

(V ) = V .

Proof: Without loss of generality, suppose that the �rst (y�1) olumns ofM(V )

make up the matrix N . Consider a vetor v in C

3

(V ). We have to show that v must

be in V . Let m be the �rst position, where v has 0 (let m = n + 1 if v = 1

n

). The

ondition v 2 C

3

(V ) means that for any I � [n℄ with jIj = 3, some v

j

oinides with

v on I. For this reason, v = v

y

if m � y, and v = v

m

otherwise. 2

Given y and n, we set l = bz2

z+1

lnn for z = b

n

y2

y+1

ln lnn

. Choose u

1

; : : : ; u

l

from f0; 1g

n

randomly and independently from eah other, and put U = fu

1

; : : : ; u

l

g.

We are going to show for n large enough that three events 1

n

2 C

z

(U), 1

n

=2 U , and

C

y

3

(U) = U simultaneously take plae with non-zero probability. This will imply

what we need. Let us show that every one of the three events above does not our

with small probability.

1

n

=2 C

z

(U) means that for some I � [n℄ with jIj = z none of the u

1

; : : : ; u

l

has all

1's on I. This happens with probability at most

�

n

z

�

(1� 2

�z

)

l

� n

z

exp f�l2

�z

g �

n

�z

, whih is less than

1

3

for z large enough. It follows P [1

n

=2 C

z

(U)℄ <

1

3

for z large

enough.

P [1

n

2 U ℄ � l2

�n

<

1

3

for n large enough.

C

y

3

(U) 6= U implies that for some V � U with jV j = y, V is properly ontained in

C

3

(V ). So, P [C

y

3

(U) 6= U ℄ �

�

l

y

�

P [C

3

(V ) 6= V ℄, where V = fv

1

; : : : ; v

y

g onsists of

random elements of f0; 1g

n

. By Claim 3, C

3

(V ) 6= V implies that the matrix M(V )

does not have at least one of the olumns of the matrix N . Hene,

P [C

y

3

(U) 6= U ℄ �

 

l

y

!

y(1� 2

�y

)

n

� l

y

y exp

n

�n2

�y

o

<

1

3

for n large enough.

This proves laim (iii).

The proof of Lemma 5.4 is omplete.
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6 Conlusion and open problems

The main question we leave open is if am

�

(f) and nd(f) are polynomially related.

A variation of this question an be if am

(polylog n)

�

(f) = polylogn or ma

(polylog n)

�

(f) =

polylogn implies nd(f) = polylogn. For F , the hek funtion of an �n-uniform

ode with minimum distane Æn, we have shown that ma

0;1�Æ=2

(F ) = 1, while

nd(F ) = 
(n) and am

�

(F ) = 
(logn). It would be insightful to improve our

logarithmi lower bound on am

�

(F ) or, alternatively, give an upper bound.

Another related question is if am

�

(f) = O(1) implies nd(f) = O(1). We answer

it in aÆrmative only in the partiular ase of am

�

(f) � 1. Moreover, we prove that

ma

0;2=3

(f) � 1 implies nd(f) � 2. The error

2

3

is here the exat threshold, as one

an ahieve simultaneously nd(F ) = 
(n) and ma

0;�

(F ) = 1 for arbitrary � >

2

3

. We

prove that ma

0;1=3

(f) � 2 also implies nd(f) � 2, whereas in the aforementioned

example nd(F ) = 
(n) and ma

0;�

(F ) � 2 for arbitrary � >

4

9

. It would be interesting

to investigate the range

1

3

< � �

4

9

. Does there exist the theshold in this ase too?

Given a boolean funtion f and an integer d, denote err

d

(f) =

inf f� : ma

0;�

(f) � dg (for onveniene let inf ; = 1). Clearly, err

2

(f) � err

1

(f)

2

. It

is interesting to give an example when the latter inequality is strit. Is this true for

the above ode-hek funtion F ?
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