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Abstra
t

It is well known that probabilisti
 boolean de
ision trees 
annot be mu
h more powerful

than deterministi
 ones (N. Nisan, SIAM Journal on Computing, 20(6):999{1007, 1991).

Motivated by a question if randomization 
an signi�
antly speed up a nondeterministi



omputation via a boolean de
ision tree, we address stru
tural properties of Arthur-Merlin

games in this model and prove some lower bounds.

We 
onsider two 
ases of interest, the �rst when the length of 
ommuni
ation between

the players is bounded and the se
ond if it is not. While in the �rst 
ase we 
an 
arry over

the relations between the 
orresponding Turing 
omplexity 
lasses, in the se
ond 
ase we

observe in 
ontrast with Turing 
omplexity that a one round Merlin-Arthur proto
ol is as

powerful as a general intera
tive proof system and, in parti
ular, 
an simulate a one-round

Arthur-Merlin proto
ol.

Moreover, we show that sometimes a Merlin-Arthur proto
ol 
an be more eÆ
ient

than an Arthur-Merlin proto
ol, and than a Merlin-Arthur proto
ol with limited 
om-

muni
ation. This is the 
ase for a boolean fun
tion whose set of zeroes is a 
ode with

high minimum distan
e and a natural uniformity 
ondition. Su
h fun
tions provide an

example when the Merlin-Arthur 
omplexity is 1 with one-sided error � 2 (

2

3

; 1), but at

the same time the nondeterministi
 de
ision tree 
omplexity is 
(n). The latter should

be 
ontrasted with another fa
t we prove. Namely, if a fun
tion has Merlin-Arthur 
om-

plexity 1 with one-sided error probability � 2 (0;

2

3

℄, then its nondeterministi
 
omplexity

is bounded by a 
onstant.

Other results of the paper in
lude 
onne
tions with the blo
k sensitivity and related


ombinatorial properties of a boolean fun
tion.
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1 Introdu
tion

A boolean de
ision tree is an algorithm that 
omputes a boolean fun
tion

f(x

1

; : : : ; x

n

) by asking, step by step, values of the variables x

1

; : : : ; x

n

. Ea
h 
hoi
e

of a variable to ask is based on the knowledge of the variables that have been asked

before. The 
ost of 
omputation is the number of variables to be queried. By

d

(f)

we denote the minimum number of queries needed for a de
ision tree to 
ompute f

on every input.

Randomized 
omputations via de
ision trees 
an be de�ned in a standard vein.

Let us denote the 
orresponding 
omplexity measure by

r

(f). In this se
tion we

assume the error probability

1

3

unless it is spe
i�ed expli
itly. It is well known [12℄

that randomization 
annot help mu
h in boolean de
ision trees. More spe
i�
ally,

d

(f) = O(

r

(f)

3

): (1)

It is quite natural to ask if randomization 
an signi�
antly speed up a nondeter-

ministi
 
omputation. Two models 
ombining randomness and nondeterminism are

suggested in [1℄ (Arthur-Merlin games) and [5℄ (intera
tive proof systems) and both


an be dire
tly extended over boolean de
ision trees. Our work is motivated by a

question (posed in [15℄) if these models 
an be more eÆ
ient than a mere nondeter-

ministi
 de
ision tree.

First we address stru
tural properties of intera
tive proof systems and Arthur-

Merlin games in boolean de
ision trees. We 
onsider two 
ases, the �rst when

the length of 
ommuni
ation between the players is bounded and the se
ond if

it is not. The 
ase when the restri
tion on 
ommuni
ation is a polylogarithm of

input size n is of parti
ular interest, sin
e it is 
losely related to 
omputations via

polynomial time Turing ma
hines with a

ess to an ora
le (see, e.g., [16, page 294℄

and [11, Se
tion 5.3℄ for formal treatment). Bounds on the boolean de
ision trees


omplexity are useful tools in 
onstru
ting ora
les with desired relations between

Turing 
omplexity 
lasses and in proving 
onditional results [2, 7, 8℄.

Conversely, all the fa
ts proven for the 
orresponding Turing 
omplexity 
lasses

that hold true under any ora
le 
an be dire
tly 
arried over de
ision trees. We

mention three examples.

1. Arthur-Merlin games are as powerful as a general intera
tive proof system [6℄.

2. The error in an Arthur-Merlin game 
an be made one-sided [18, 4℄.

3. A one round Arthur-Merlin game 
an simulate a one round Merlin-Arthur

game [1℄.

Let us state the latter fa
t more a

urately. We use the following notation. By

am(f) and ma(f) we denote the 
omplexity measures in the boolean de
ision tree

2



model that 
orrespond to one round Arthur-Merlin and Merlin-Arthur games, re-

spe
tively. Here we assume no limitations on the length of 
ommuni
ation. When

we allow Merlin to send messages of length at most l, we supply the 
orresponding

measures with upper index l writing am

(l)

(f) and ma

(l)

(f). We impose no restri
-

tions on the number of Arthur's random bits (see Remark 2.1 below). Then a formal

statement of the above 
laim 3, that follows from [1℄, is

am

(l)

(f) = O(lma

(l)

(f)): (2)

Other 
omplexity measures we are interested in also have bounded and un-

bounded versions. ip

(l)

(f) denotes the 
omplexity measure of a boolean fun
tion

with respe
t to a many-round Arthur-Merlin game with total length of Merlin's

messages at most l, while the measure ip(f) is respe
tively to an intera
tive proof

system without any limitations in the de
ision tree model. Similarly, nd

(l)

(f) refers

to the nondeterministi
 de
ision tree 
omplexity with witness of length at most l,

while nd(f) is its powerful version.

It turns out that if we do not restri
t the length of 
ommuni
ation, the stru
tural

properties 1 and 2 
an be strengthened and proven mu
h simpler.

1. A one round Merlin-Arthur game is as powerful as a general intera
tive proof

system, i.e., ma(f) = ip(f).

2. Error probability � in a one round Merlin-Arthur game 
an be made one-sided

at 
ost of in
reasing it to

�

1��

.

As for property 3, relation (2) without any limits on l be
omes meaningless.

Instead, by item 1 we have ma(f) � am(f). Thus, we have two hierar
hies of


omplexity measures

ip

(l)

(f) � am

(l)

(f); am

(l)

(f) = O(lma

(l)

(f)); ma

(l)

(f) � nd

(l)

(f)

(parallel to in
lusions NP �MA � AM � IP in Turing 
omplexity), and

ip(f) = ma(f) � am(f) � nd(f): (3)

The problem is how dense or sparse these hierar
hies are.

The main result of this paper shows a large gap between ma(f) and nd(f), and

some gap even between ma(f) and am(f). A large gap is also shown between ma(f)

and ma

(l)

(f) for l mu
h smaller than n.

It is useful to get more broad view of the situation by pre�xing some lower

bounds on ip(f) to (3). The �rst bound of interest is

ip(f) > bs(f)=2; (4)
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where bs(f) denotes the blo
k sensitivity of a boolean fun
tion [12℄

1

, the maximum

number of zeroes of f that di�er from some one of f in disjoint blo
ks of variables.

This is a simple extension of the bound

r

(f) = 
(bs(f)) from [12℄. Note that

bound (4) together with relations

nd(f) � bs(f) bs(:f) (5)

and

d

(f) � nd(f) nd(:f) (6)

proven in [12℄ and [2, 7, 14℄, respe
tively, implies the relation

d

(f) =

O(ip(f)

2

ip(:f)

2

), whi
h is a qualitative generalization of (1) and (6).

We suggest also a bound that is in a sense tighter. Namely,

ip(f) > sep(f)=2; (7)

where sep(f) is a 
ombinatorial 
hara
teristi
 of a boolean fun
tion that we 
all

separability of f and de�ne as follows. Given w, a one of f , and D, a set of zeroes of

f , let sep(w;D) denote the minimum s su
h that w 
an be distinguished from any

element of D by looking at only s positions. sep(f) is the maximum of

sep(w;D)

log jDj

over

all w and D. It is easy to see that sep(f) �

bs(f)

log bs(f)

. The hierar
hy (3) 
an now be

updated to

bs(f)=(2 log bs(f)) � sep(f)=2 � ip(f) = ma(f) � am(f) � nd(f):

We point out a simple example when bs(f) � 3 and at the same time sep(f) >

p

n

log n

. Thus, (7) 
an be 
onsidered as a sharpening of (4). This example also shows

that bs(f) 
an be mu
h smaller than nd(f) (though both bs(f) and bs(:f) 
annot

by (5)). We will see that sep(f) also 
an sometimes be mu
h smaller than nd(f).

Therefore, (7) 
annot help if we try to show that ip(f) and nd(f) are polynomially

related. But if we are going to prove the opposite, (7) be
omes useful. This relation

suggests a domain whi
h we should inspe
t to solve the ip(f) versus nd(f) question.

The domain 
onsists of fun
tions f with small sep(f) and large nd(f).

We 
onsider the following 
lass of fun
tions that meet both of these 
onditions.

Let U be a binary 
ode with minimum distan
e Æn, where Æ 2 (0;

1

2

). Set up

F (w) = 1 i� w =2 U . We 
all F the 
he
k fun
tion of U . It is not hard to see

that sep(F ) is bounded by a 
onstant. If in addition U is densely dispersed in the

boolean 
ube, whi
h is a natural property of a 
ode, then nd(F ) is big. Taking

U random, we get F with nd(F ) = 
(n). It turns out, this 
onstru
tion provides

an example of a fun
tion with large gap not only between sep(f) and nd(f), but

1

In fa
t, our terminology and notation slightly di�er from [12℄. Our de�nition of the blo
k

sensitivity 
orresponds to notion of the blo
k sensitivity on 1-instan
es in [12℄, where notation

bs

1

(f) is used. We suppress the index for notation simpli
ity.

4



even between ma(f) and nd(f). We observe that ma(F ) = 1 with one-sided error

probability 1� Æ=2.

Making use of the property that U is dispersed in the boolean 
ube in a sense

uniformly, we prove lower bounds am(F ) = 
(logn) and ma

(l)

(F ) = 
(

n

l

). Sum-

ming up, we have got an example of boolean fun
tion F for whi
h the following

bounds are true simultaneously:

� ma(F ) = O(1);

� nd(F ) = 
(n);

� ma

(l)

(F ) = 
(

n

l

);

� am(F ) = 
(logn).

The main question we leave open is if the 
omplexity measures am(f) and nd(f)

are polynomially related. It would be insightful to improve our logarithmi
 lower

bound on am(F ) or, alternatively, give an upper bound.

A related question is if am(f) = O(1) implies nd(f) = O(1). In the last part of

the paper we prove su
h an impli
ation in a few parti
ular 
ases. We here mention

only one 
laim of su
h a kind. Namely, ma(f) � 1 implies nd(f) � 2 if the error

probability is in range (0;

2

5

℄ or the one-sided error is in (0;

2

3

℄. This should be


ontrasted with our example of fun
tion F , for whi
h nd(F ) = 
(n) and at the

same time ma(F ) = 1 with one-sided error 1� Æ=2. Noti
e that the error here 
an

be arbitrary in the interval (

3

4

; 1), as Æ 
an be taken arbitrarily 
lose to

1

2

. Moreover,

we are able to improve this range to (

2

3

; 1), thereby showing that

2

3

is the exa
t

threshold in su
h kind of examples.

In [9℄ the 
hara
teristi
 fun
tions of 
odes were used to obtain lower bounds for

some kind of bran
hing programs. It is interesting to note that both [9℄ and our

paper employ in essen
e the same properties of 
odes.

The paper is organized as follows. In Se
tion 2 we de�ne the model and 
omplex-

ity measures under 
onsideration and dis
uss their stru
tural properties. Se
tion 3

establishes relations with the blo
k sensitivity and the separability. In Se
tion 4

we introdu
e 
he
k fun
tions for 
odes and estimate their 
omplexity. We in detail

give a probabilisti
 
onstru
tion of 
odes with the desired properties, mention an

algebrai
-geometry 
onstru
tion, and dis
uss what 
an be shown for some 
lassi
al


odes. In Se
tion 5 we 
onsider properties of fun
tions with Merlin-Arthur 
om-

plexity bounded by a 
onstant. Se
tion 6 sums up our 
onsiderations and lists open

questions.

2 The model and its stru
tural properties

A deterministi
 boolean de
ision tree T over the variable set X = fx

1

; : : : ; x

n

g is

a rooted, ordered, binary tree. Ea
h internal node has two out-going edges and

5
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Figure 1. This depth-2 determin-

isti
 de
ision tree 
omputes the

boolean fun
tion (1�x

1

)x

2

+x

1

x

3

.

one in-going (ex
epting the root). Additionally, ea
h internal node is labelled by a

variable from X, and ea
h leaf is labelled by either 0 or 1.

The de
ision tree T 
omputes a boolean fun
tion f(x

1

; : : : ; x

n

) in the following

sense. Ea
h boolean assignment w to the variables x

1

; : : : ; x

n

determines a path in

T from the root to a leaf by the following rule. If an internal node is labelled by 0,

we 
hoose the left out-going edge; we 
hoose the right one otherwise. The value of

f on w must agree with the label of the leaf at the end of the path (see Figure 1).

We write T (w) = f(w).

A depth-d nondeterministi
 boolean de
ision tree S is a 
olle
tion of depth-d

deterministi
 de
ision trees. We write S(w) = 1 in the 
ase that at least one

deterministi
 member of S outputs 1 on w; otherwise we write S(w) = 0. We say

that S 
omputes f if S(w) = f(w) for any assignment w.

Denote the size of set S by jSj. We say that tree S is of nondeterminism l if l is

an integer and log jSj � l. This number means the length of a prompt suÆ
ient to

�nd a 1-path 
onsistent with an input.

Equivalently, one 
an view a nondeterministi
 tree as several deterministi


bran
hes that go out of a 
ommon unlabelled root (see Figure 2). As usually in

a nondeterministi
 model, su
h a tree outputs 1 on input w if there is a path from

the root to an 1-leaf that agrees with w. The root is a pe
uliar nondeterministi


node that has arbitrary out-degree and is disregarded when 
ounting the depth. Had

we allowed many su
h nondeterministi
 nodes, the model would not have be
ome

more powerful. The tree is of nondeterminism dlogLe, where L is the out-degree of

the nondeterministi
 node.

A depth-d probabilisti
 de
ision tree R is a probability distribution over the set

of all the depth-d deterministi
 de
ision trees. Suppose that a deterministi
 de
ision

tree T is taken randomly a

ording to R, and let p be the probability that T (w) = 1

for an assignment w. Then we say that R(w) = 1 with probability p, and R(w) = 0

with probability 1� p. R 
omputes f with error � if for any assignment w, R(w) =

f(w) with probability more than 1� �.

Remark 2.1 It is not hard to show that if a fun
tion f(x

1

; : : : ; x

n

) is 
omputable

6
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Figure 2. This depth-1 non-

deterministi
 de
ision tree 
om-

putes the disjun
tion of variables

x

1

; x

2

; x

3

.

�

�

�

�

�

�

�

�

�
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�

0 1 0 1 0

x
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x
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1

3

1

3

1

3

Figure 3. This depth-1 prob-

abilisti
 de
ision tree 
omputes

the 
onjun
tion of variables x

1

; x

2

with error � > 1=3.

via a depth-d probabilisti
 de
ision tree with error �, then it 
an be 
omputed via a

depth-d probabilisti
 de
ision tree R whi
h is the uniform distribution on set of size

O(n=Æ

2

) of depth-d deterministi
 trees, with error �+ Æ for any Æ < �(1� �). Similar

properties hold true for other probabilisti
 models below. This is the reason why we

measure nondeterminism but pay no attention to randomness in the models under


onsideration.

We 
an view a probabilisti
 tree as several deterministi
 bran
hes that go out of

a 
ommon root. The root is a probabilisti
 node of arbitrary out-degree that does not


ontribute to the tree depth. It is unlabelled, but the out-going edges are labelled

by probabilities that sum to 1. Any path from the probabilisti
 node is 
hosen with

the assigned probability (see an example in Figure 3). Had we allowed many su
h

probabilisti
 nodes, the model would not have be
ome more powerful.

A depth-d Arthur-Merlin de
ision tree Q [of nondeterminism l℄ is a probability

distribution over the set of all the depth-d nondeterministi
 de
ision trees [of non-

determinism l℄. Q 
omputes f with error � if for any assignment w, S(w) = f(w)

with probability more than 1��, where a nondeterministi
 tree S is taken randomly

a

ording to Q. In detail this 
ondition 
an be rewritten as follows.

1. If f(w) = 1, then a random S has a deterministi
 bran
h T su
h that T (w) = 1

with probability ex
eeding 1� �.

7



2. If f(w) = 0, then a random S has a deterministi
 bran
h T su
h that T (w) = 1

with probability less than �.

A depth-d Merlin-Arthur de
ision tree Q is a 
olle
tion of depth-d probabilisti


de
ision trees. Q 
omputes f with error � if for any assignment w the following is

true.

1. If f(w) = 1, then for some R 2 Q we have R(w) = 1 with probability ex
eeding

1� �.

2. If f(w) = 0, then for all R 2 Q we have R(w) = 1 with probability less than �.

If in the �rst 
ase we have a stronger 
ondition that R(w) = 1 with probability 1, we

say that Q 
omputes f with one-sided error �. We say that Merlin-Arthur de
ision

tree Q is of nondeterminism l if l is an integer not less than log jQj.

Note that the Arthur and Merlin trees admit a visual interpretation using both

probabilisti
 and nondeterministi
 nodes similarly to probabilisti
 and nondetermin-

isti
 trees.

The next model is most general. A depth-d intera
tive de
ision tree Q is a


olle
tion of deterministi
 depth-d trees fT

i

g indexed by elements of set I. Given

set I, for ea
h assignment w we 
onsider a game of two persons, the veri�er and

the prover, that pro
eeds as follows. At the beginning the veri�er pi
ks a random

string r, unknown to the prover, and initiates the message ex
hange between the

players. In j-th round of the ex
hange, the veri�er sends the prover message a

j

, after

whi
h the prover sends the veri�er message b

j

. The 
hoi
e of a

j

by the veri�er is

determined by r; b

1

; : : : ; b

j�1

. The prover's message b

j

is a fun
tion of a

1

; : : : ; a

j�1

; a

j

.

This fun
tion is 
alled a strategy of the prover. After some number k of rounds,

the veri�er terminates the game. Let i = hr; a

1

; b

1

; : : : ; a

k

; b

k

i. The prover wins if

T

i

(w) = 1.

An intera
tive tree Q 
omputes a fun
tion f with error � if the following 
ondi-

tions are met.

1. If f(w) = 1, then the prover has a strategy that wins with probability more

than 1� �, where the probability is taken over random strings r.

2. If f(w) = 0, then the prover wins with probability less than � irrespe
tively of

his strategy.

By

d

(f) [nd(f)℄ we denote the minimum depth of a deterministi
 [nondeter-

ministi
℄ de
ision tree 
omputing a boolean fun
tion f . The minimum depth of a

probabilisti
 [Arthur-Merlin, Merlin-Arthur, intera
tive℄ de
ision tree that 
omputes

f with error � is denoted by

r

�

(f) [am

�

(f), ma

�

(f), ip

�

(f)℄. We use notation ma

(l)

�

(f)

and am

(l)

�

(f) for the 
ase when nondeterminism is limited by l. ma

0;�

(f) stands for

the 
omplexity of 
omputing f by a Merlin-Arthur tree with one-sided error �.

8



Theorem 2.2 For any boolean fun
tion f and error � < 1=2 we have the following

relations:

(i) ma

�

(f) = ip

�

(f);

(ii) ma

0;

�

1��

(f) = ma

�

(f);

(iii) ma

�

(f) � am

�

(f) � am

(l)

�

(f) � 


�

lma

(l)

�

(f), where 


�

is a 
onstant depending

on �.

Proof: (i) The part \�" is trivial. We prove the part \�". Let Q be an

intera
tive tree 
omputing f . Fixing prover's strategy 
onverts Q into a probabilisti


tree. For ea
h w su
h that f(w) = 1, 
hoose an optimal strategy and denote the


orresponding probabilisti
 tree by R

w

. Compose a Merlin-Arthur tree from all R

w

rooting them at a nondeterministi
 node. As easily seen, this tree has the same

depth as Q does and 
omputes f with the same error.

(ii) The inequality \�" is a simple universal relation. Let us prove the inequality

\�". Consider a Merlin-Arthur tree Q 
omputing f with error �. We will denote

ones of f by w, and zeroes by u. For ea
h one w, tree Q 
ontains a probabilisti


bran
h R

w

su
h that R

w

(w) = 1 with probability greater than 1��, while R

w

(u) = 1

with probability smaller than � for all zeroes u. Let R

0

w

be a distribution indu
ed

by R

w

on those deterministi
 bran
hes that evaluate to 1 on input w. Clearly,

R

0

w

(w) = 1 with probability 1. For any zero u we have

P [R

0

w

(u) = 1℄ = P [R

w

(u) = 1 jR

w

(w) = 1℄ �

P [R

w

(u) = 1℄

P [R

w

(w) = 1℄

<

�

1� �

:

This means that a Merlin-Arthur tree Q

0


onsisting of probabilisti
 bran
hes R

0

w

,

for all ones w, 
omputes f with one-sided error

�

1��

.

(iii) The �rst inequality is an immediate 
onsequen
e of item (i). The se
ond is

trivial. The third is a translation of [1, Theorem 2.1℄ into our model.

We 
on
lude this se
tion with some terminology that will be used throughout

the paper. A d-
ylinder is a subset of f0; 1g

n

obtained by �xing any d � n boolean


omponents. A set W � f0; 1g

n

is 
alled d-open if it is a union of d-
ylinders.

Let W be a set of ones of a boolean fun
tion f . It is not hard to see that

nd(f) � d i� W is d-open. Indeed, if W is re
ognizable by a nondeterministi
 tree

of depth d, then ea
h 1-path in the tree determines an assignment to d variables

whose any extension w belongs to W . Thus, ea
h 1-path determines a d-
ylinder

within W . Sin
e every string w from W agrees with an 1-path in the tree, W is

the union of all these d-
ylinders. Conversely, a d-
ylinder is obviously re
ognizable

by a deterministi
 tree of depth d. Gathering su
h trees together, we obtain a

nondeterministi
 tree for a d-open set.

This observation also shows that depth-d nondeterministi
 trees are equivalent

with d-DNF boolean formulae.

A d-neighborhood of an element w 2 f0; 1g

n

is a d-
ylinder 
ontaining w.

9



3 Blo
k sensitivity and separability

Given w 2 f0; 1g

n

and a blo
k of positions P � [n℄, we de�ne w

(P )

2 f0; 1g

n

to be

a boolean ve
tor su
h that w and w

(P )

di�er exa
tly at positions from P . Given

a boolean fun
tion f : f0; 1g

n

! f0; 1g and w 2 f0; 1g

n

, by bs

w

(f) we denote the

maximum size of a family of disjoint blo
ks P

1

; : : : ; P

t

� [n℄ su
h that all the values

f(w

(P

1

)

); : : : ; f(w

(P

t

)

) di�er from f(w). The blo
k sensitivity bs(f) of fun
tion f (on

1-instan
es) is the maximum of bs

w

(f) over all w su
h that f(w) = 1.

We say that a 
ylinder C separates w 2 f0; 1g

n

from D � f0; 1g

n

if C 
ontains

w and is disjoint with D. By sep(w;D) we denote the minimum d su
h that there is

a d-
ylinder C separating w from D. We de�ne the separability sep(f) of a boolean

fun
tion f to be the maximum of

sep(w;D)

log jDj

over all ones w and sets D of zeroes of f

with jDj > 1.

Bound (ii) in the theorem below is an easy extension of the bound

r

�

(f) �

(1� 2�) bs(f) in [12℄. We in
lude the proof for 
ompleteness.

Theorem 3.1 For any boolean fun
tion f we have the following bounds:

(i) ma

0;�

(f) > (1� �) bs(f);

(ii) ip

�

(f) >

1�2�

1��

bs(f);

(iii) ma

0;�

(f) > sep(f)=(1 + (log

1

�

)

�1

);

(iv) ip

�

(f) > sep(f)=(1 + (log

1��

�

)

�1

).

Proof: (i) Let ma

0;�

(f) = d and Q be a depth-d Merlin-Arthur tree that


omputes f with one-sided error �. Consider arbitrary w su
h that f(w) = 1. There

is a probabilisti
 bran
h R of Q su
h that R(w) = 1 with probability 1 and R(u) = 1

with probability less than � for any u with f(u) = 0. Number deterministi
 bran
hes

ofR arbitrarily, say, T

1

; T

2

; : : :. For ea
hm, T

m

(w) = 1. Thus, w determines a 1-path

in T

m

. Fixing all the variables along this path a

ording to w, we get a d-
ylinder C

m

su
h that w 2 C

m

and all elements of C

m

are a

epted by T

m

. We will view R, whi
h

is a probability distribution over deterministi
 trees T

1

; T

2

; : : :, as a distribution over

their numbers. Let m be 
hosen randomly in a

ordan
e with R.

Let P

1

; : : : ; P

t

� [n℄ be the largest family of disjoint blo
ks su
h that all the

elements w

(P

1

)

; : : : ; w

(P

t

)

are zeroes of f . It suÆ
es to show that d > (1� �)t.

By I

m

we denote the set of positions, whose entries de�ne 
ylinder C

m

. De�ne

E to be the average number of j 2 [t℄ for whi
h P

j

and I

m

interse
t. Sin
e for any

�xed set I

m

this number is at most d, we have the inequality E � d.

Now we bound E from below. By linearity of the mathemati
al expe
tation we

have E =

P

t

j=1

E

j

, where E

j

is the probability of P

j

interse
ting I

m

. Note that

whereas w 2 C

m

with probability 1, w

(S

j

)

2 C

m

with probability less than �. We

10




an 
on
lude that E

j

> 1� � for all j. This implies E > (1� �)t. Putting together

the lower and upper bounds on E, we obtain the desired inequality d > (1� �)t.

(ii) immediately follows from (i) by Theorem 2.2 (i),(ii).

(iii) Consider arbitrary one w and set D of zeroes of f . We use de�nitions of

d-
ylinders C

m

, where d = ma

0;�

(f), and a random variable m introdu
ed in the

proof of 
laim (i). Re
all that w 2 C

m

with probability 1, but for any zero u of f we

have u 2 C

m

with probability less than �. Let u be a random variable distributed

over D. It follows that P [u 2 C

m

℄ < �. This implies that some C

m


ontains less

than an � fra
tion of D, measured by the distribution of u. We will use this fa
t for

uniform distributions on subsets of D.

For the uniform distribution onD, we have C

m

1


ontaining less than an � fra
tion

ofD. Considering the uniform distribution onD\C

m

1

, we obtain C

m

2


ontaining less

than an � fra
tion ofD\C

m

1

. Next we do the same forD\C

m

1

\C

m

2

, obtaining C

m

3

.

Iterating this pro
edure t �

�

log jDj

log

1

�

�

times, we get d-
ylinders C

m

1

; : : : ; C

m

t

, whose

interse
tion, whi
h is a dt-
ylinder, separates w from D. Thus, sep(w;D)= log jDj

does not ex
eed d

�

log jDj

log

1

�

�

= log jDj, whi
h is less than d((log

1

�

)

�1

+ 1). The 
laim

follows.

(iv) immediately follows from (iii) by Theorem 2.2 (i),(ii).

Theorem 3.2

(i) sep(f) �

bs(f)

log bs(f)

whenever bs(f) > 1.

(ii) There is a fun
tion f(x

1

; : : : ; x

n

) with bs(f) � 3 and sep(f) >

p

n= logn

for large n.

(iii) There is a fun
tion f(x

1

; : : : ; x

n

) with bs(f) � 3 and nd(f) = 
(n).

Proposition (i) of the theorem demonstrates that the separability is not less than

the blo
k sensitivity upto a logarithmi
 fa
tor. Moreover, proposition (ii) shows a

gap between these values. In this sense, bound (iv) in Theorem 3.1 
an be 
onsidered

as sharpening bound (ii).

Theorem 3.2 (ii) together with Theorem 3.1 (iv) implies that the blo
k sen-

sitivity and the intera
tive de
ision tree 
omplexity are polynomially unrelated.

Theorem 3.2 (iii) provides even an larger gap between the blo
k sensitivity and

the nondeterministi
 de
ision tree 
omplexity. Noti
e that su
h a gap is impossible

between nd(f) and both of bs(f) and bs(:f), as nd(f) � bs(f) bs(:f) [12℄.

Proof: (i) Given a boolean fun
tion f , let bs(f) = t. Consider a one w of f su
h

that for a family of disjoint blo
ks P

1

; : : : ; P

t

� [n℄ the set D = fw

(P

1

)

; : : : ; w

(P

t

)

g


onsists of zeroes of f . Evidently, sep(w;D) = t and sep(f) � t= log t.

(ii) De�ne a fun
tion f(x

1

; : : : ; x

n

) by des
ribing its set of zeroes U . Assuming

n = l(l � 1)=2, let jU j = l. We 
onstru
t an l by n matrix M whose rows are

11



elements of U . For every two-element set fk

1

; k

2

g � [l℄, we put into M the 
olumn

with 0 at positions k

1

and k

2

, and 1 elsewhere. All rows of the matrix obtained are

distin
t, and set U is spe
i�ed.

To show that bs(f) is at most 3, 
onsider arbitrary four zeroes u

1

; u

2

; u

3

; u

4

2 U .

By 
onstru
tion of U , there is a 
oordinate i � n in whi
h u

1

and u

2

have 0, but

u

3

and u

4

have 1. This means that there is no w from whi
h u

1

; u

2

; u

3

; u

4

di�er in

disjoint blo
ks of positions.

Finally, observe that sep(1

n

; U) � l=2, as a single position 
an separate 1

n

only

from two elements of U . The bound sep(f) >

p

n= logn follows.

(iii) Let d = b(

1

8

log

8

5

)n
 and l = b(

8

5

)

n

4


. Let the set U of zeroes of f 
onsist

of l strings 
hosen independently and randomly from f0; 1g

n

. Denote the set of

ones of f by W . Our goal is to show that events nd(f) > d and bs(f) � 3 o

ur

simultaneously with nonzero probability.

Assumption nd(f) � d implies that either 1

n

is not in
luded inW or it is in
luded

in W together with a d-neighborhood. The �rst event happens with probability no

more than l=2

n

<

1

3

. Consider the se
ond possibility.

Let C be a d-neighborhood of 1

n

. A u

i

does not fall into C with probability

1� 1=2

d

; therefore, no u

i

fall into C with probability (1� 1=2

d

)

l

. In other words, C

is in
luded in W with this probability. As 1

n

has no more than n

d

d-neighborhoods,

W 
ontains a d-neighborhood of 1

n

with probability no more than n

d

(1� 1=2

d

)

l

�

exp(d lnn� 2

�d

l) < 1=3.

Thus, nd(f) � d with probability less than

2

3

.

Similarly to the proof of part (ii), we use the observation that if bs(f) > 3, then

there are u

1

; u

2

; u

3

; u

4

2 U that 
annot have exa
tly 2 ones and 2 zeros at one and

the same position. It follows that the probability of the event bs(f) > 3 does not

ex
eed

�

l

4

�

(1�

�

4

2

�

=2

4

)

n

<

1

24

l

4

(5=8)

n

�

1

24

.

Thus, with non-zero probability, both bs(f) � 3 and nd(f) > d .

In the rest of this se
tion we give lower bounds on Merlin-Arthur and Arthur-

Merlin 
omplexities in terms of related 
omplexity measures, whose 
onsideration

sometimes 
an be more preferable. Similarly to Turing 
omplexity, one 
an 
onsider

another a

eptan
e/reje
tan
e 
riterion for a probabilisti
 de
ision tree. By pp(f)

we denote the minimum depth of a probabilisti
 de
ision tree R su
h that for any

input w, f(w) = 1 i� R(w) = 1 with probability ex
eeding

1

2

. Equivalently pp(f)


an be 
hara
terized as the minimum order of a per
eptron 
omputing f (see [10℄

for de�nitions). One 
an easy show that pp(f) � nd(f).

Lemma 3.3 pp(f) � 


�

lma

(l)

�

(f), where 


�

> 1 is a 
onstant depending on error �.

Proof: Consider a depth-dMerlin-Arthur tree Q 
omputing the fun
tion f with

nondeterminism l. We 
onvert Q into a depth-


�

ld probabilisti
 tree R that 
omputes

f in the above sense. We �rst use the standard ampli�
ation pro
edure for ea
h

probabilisti
 bran
h of Q and de
rease the error to 2

�l�1

at 
ost of in
reasing the

12



depth by a 


�

l fa
tor. Se
ond, we make the nondeterministi
 root of Q probabilisti


by assigning probability 1=L to every of L out-going edges. At this stage, we get

a probabilisti
 tree R

0

. Re
all that l = dlogLe. Now, if f(w) = 1, then R

0

(w) = 1

with probability at least

1

L

(1 � 2

�l�1

) � 2

�l

(1 � 2

�l�1

) > 2

�l�1

; while if f(u) = 0,

then R

0

(u) = 1 with probability less than 2

�l�1

.

At the �nal stage of 
onstru
tion of R we should lift the threshold 2

�l�1

to

1

2

.

For this purpose, with probability p = (2

l

�1)=(2

l+1

�1) tree R immediately outputs

1, and with probability 1� p runs tree R

0

.

The last proposition we prove in this se
tion is a lower bound on the Arthur-

Merlin 
omplexity whi
h also 
an be viewed as an alternative 
hara
terization

thereof. Denote the sets of ones and zeroes of a boolean fun
tion f by W and

U , respe
tively. We will 
onsider arbitrary independent random variables w and u

distributed on W and U . We de�ne the partial separability of a fun
tion f with gap

1�2�, where � <

1

2

, to be the minimum d su
h that for any random variables w and

u there is a depth-d nondeterministi
 tree S for whi
h E [S(w)℄�E [S(u)℄ > 1� 2�.

We denote this 
hara
teristi
 of f by ps

�

(f). The next lemma is a parti
ular 
ase of

the universal observation by Yao [17℄.

Lemma 3.4 ps

�

(f) � am

�

(f) � ps

�=2

(f).

Proof: Given a boolean fun
tion f and a natural number d, 
onsider the

following matrix. Rows are indexed by all the depth-d nondeterministi
 trees S.

Columns are indexed by all the pairs w#u, where w 2 W and u 2 U . An entry

at the interse
tion of the row and the 
olumn is S(w) � S(u). By S and w#u we

will denote arbitrary random variables distributed over the index sets of the matrix.

Applying the min-max theorem for the two person zero sum game determined by

this matrix, we obtain the equality

max

S

min

w#u

E [S(w)� S(u)℄ = min

w#u

max

S

E [S(w)� S(u)℄ ;

where the random variables w and u in the right hand side are proje
tions of w#u.

Using linearity of the mathemati
al expe
tation, we rewrite this equality in the form

max

S

min

w#u

(E [S(w)℄� E [S(u)℄) = min

w;u

max

S

(E [S(w)℄�E [S(u)℄) ;

where w and u in the right hand side 
an now be 
onsidered as arbitrary independent

random variables distributed over W and U , respe
tively.

Consider the inequality ps

�

(f) � d. It means that for any random variables w

and u there is a depth-d nondeterministi
 tree S with E [S(w)℄�E [S(u)℄ > 1� 2�.

By the above equality, this is equivalent to the following 
laim. There exists a

probability distribution S over depth-d nondeterministi
 de
ision trees su
h that for

any w 2 W and u 2 U it is true E [S(w)℄� E [S(u)℄ > 1� 2�. We 
an view S as a

depth-d Arthur-Merlin de
ision tree. Clearly, the latter 
ondition follows from the

assumption that am

�

(f) � d and implies that am

2�

(f) � d. This proves the �rst

and the se
ond inequalities of the lemma.

13



4 Complexity of the 
he
k fun
tion for a binary


ode

In this se
tion we prove the main result of the paper.

Theorem 4.1 There is a boolean fun
tion F : f0; 1g

n

! f0; 1g with the following


onditions true for any � <

1

2

, l � n, and n large enough:

(i) ma

�

(F ) = O(1);

(ii) nd(F ) = 
(n);

(iii) ma

(l)

�

(F ) = 
(

n

l

);

(iv) am

�

(F ) = 
(logn).

Thus, Theorem 4.1 shows a large gap between the Merlin-Arthur 
omplexity

and the nondeterministi
 
omplexity. By Theorem 3.1 (iv) this implies that the

separability of a boolean fun
tion and its nondeterministi
 
omplexity are unre-

lated, improving Theorem 3.2 (iii). A large gap is proven also between the Merlin-

Arthur 
omplexity without any restri
tions on nondeterminism and that with su
h

restri
tions. Finally, a 
onstant versus logarithm gap is established between the

Merlin-Arthur and Arthur-Merlin 
omplexity measures.

When seeking for an appropriate fun
tion F to meet the 
laims of Theorem 4.1,

we �nd insightful Theorem 3.1. It suggests to examine fun
tions with low separa-

bility. We address one 
lass of su
h fun
tions, namely, those whose set of zeroes is a

binary 
ode with some natural properties. More exa
tly, we need the following two

properties for a 
ode U � f0; 1g

n

.

Linear minimum distan
e. Any two 
odewords of U di�er in at least Æn positions

for some 0 < Æ <

1

2

.

Uniformity. We 
all a 
ode U s-uniform if for any t-
ylinder C, where t � s, a

fra
tion of 
odewords in U that belong to C is equal to 2

�t

, i.e.,

jU\Cj

jU j

= 2

�t

.

As easily seen, it is enough to require this 
ondition only for t = bs
. We will

need s = �n for some � 2 (0;

1

2

).

We postpone 
onstru
tion of a 
ode with both properties to the end of this

se
tion. Note that a linear 
ode is s-uniform i� the minimum distan
e of its dual

ex
eeds s (see Lemma 4.8 below).

Given a binary 
ode U , we 
all a boolean fun
tion with zeroes exa
tly in U the


he
k fun
tion of the 
ode. All of four 
laims of Theorem 4.1 are true for F being

the 
he
k fun
tion of an �n-uniform 
ode with minimum distan
e Æn, where � and Æ

are any 
onstants in (0;

1

2

). Ea
h 
laim dire
tly follows from one of four forth
oming

lemmas.
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Lemma 4.2 Let F be the 
he
k fun
tion of a 
ode U � f0; 1g

n

with minimum

distan
e more than Æn. Then ma

0;1�Æ=2

(F ) = 1.

Noti
e that one-sided error � 
an be ampli�ed to �

k

at 
ost of in
reasing the

depth by a k fa
tor.

Proof: A Merlin-Arthur tree R we suggest for F 
onsists of probabilisti


bran
hes R

w

for ea
h w outside U . Denote (one of) the nearest to w 
odewords

by u

0

, and suppose that Hamming distan
e between w and u

0

is �n.

First 
onsider the 
ase that � < Æ=2. Noti
e that then u

0

is unique. Let P �

fx

1

; : : : ; x

n

g be the set of �n variables to whi
h w and u

0

assign di�erent values. We


onstru
t R

w

as follows. With probability p to be spe
i�ed below this probabilisti


bran
h asks a random variable from fx

1

; : : : ; x

n

g, and with probability q = 1 � p

it asks a random variable from P . R

w

a

epts i� the answer is 
onsistent with w.

Clearly, R

w

(w) = 1 with probability 1. Also, R

w

(u

0

) = 1 with probability p(1� �).

Noti
e that any other 
odeword u lies at distan
e at least (Æ� �)n from w, where Æn

is the minimun distan
e of U . So, R

w

(u) = 1 with probability at most q+p(1�Æ+�).

Thus, R

w

errs with probability at most maxfp(1� �); 1+ p(� � Æ)g. To minimize it,

we set p = 1=(1 + Æ � 2�) and obtain R

w

a

epting any 
odeword with probability

at most

1��

1+Æ�2�

, whi
h is less than 1� Æ=2 for all � < Æ=2.

Consider the se
ond 
ase that � � Æ=2. Now let R

w

ask just a random variable in

fx

1

; : : : ; x

n

g and a

ept i� its value is 
onsistent with w. Obviously, R

w

a

epts an

arbitrary 
odeword u 2 U with probability at most 1� � � 1� Æ=2. This 
ompletes

the 
onstru
tion of R and proves the lemma.

Lemma 4.3 Let F be the 
he
k fun
tion of an s-uniform 
ode U . Then nd(F ) > s.

Proof: s-uniformity of U means that every s-
ylinder 
ontains a zero of F .

Therefore, the set of ones of F 
annot be s-open. The lemma follows from the

dis
ussion 
on
luding Se
tion 2.

Lemma 4.4 Let F be the 
he
k fun
tion of an s-uniform 
ode U . Then

(i) pp(F ) > s;

(ii) ma

(l)

�

(F ) > s=(


�

l), where 


�

> 1 is a 
onstant depending on the error �.

Proof: (i) Assume, to the 
ontrary, that pp(F ) � s. This means that some

depth-s probabilisti
 tree R a

epts any 
odeword in U with probability at most

1=2, while any word outside U with probability stri
tly more than 1=2. It follows

that E [R(w)℄ � E [R(u)℄ > 0, where w and u are uniformly distributed on W =

f0; 1g

n

n U and U , respe
tively, and expe
tation is over distributions w, u, and R.
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This inequality implies that E [T (w)℄� E [T (u)℄ > 0 for at least one deterministi


bran
h T of R. Contradi
tory with this, we show that

E [T (w)℄� E [T (u)℄ = 0 (8)

for any depth-s deterministi
 de
ision tree T .

Let �

C

denote the 
hara
teristi
 fun
tion of set C. We 
an write T (w) =

P

C

�

C

(w), where the sum is over all 
ylinders C 
orresponding to 1-paths in T .

By linearity of mathemati
al expe
tation,

E [T (w)℄� E [T (u)℄ =

X

C

(E [�

C

(w)℄� E [�

C

(u)℄):

But if C is a t-
ylinder, where t � s, then by s-uniformity of U we have E [�

C

(w)℄ =

E [�

C

(u)℄ = 2

�t

. Equation (8) follows.

(ii) follows from item (i) by Lemma 3.3.

In the next lemma we use the notion of partial separability introdu
ed at the

end of Se
tion 3.

Lemma 4.5 Let F be the 
he
k fun
tion of an s-uniform 
ode U with minimum

distan
e at least 3 and s �

n ln log n

log n

. Then

ps

�

(F ) > logn� 2 log logn

for any � 2 (0; 1) and suÆ
iently large n.

Together with Lemma 3.4 this immediately provides a lower bound on am

�

(F ).

Proof: We present two probability distributions on ones and zeroes of F that

are undistinguishable by a depth-d nondeterministi
 de
ision tree for d = logn �

2 log logn. More spe
i�
ally, let a random variable u be uniformly distributed on the

entire set U and w be uniformly distributed on setW =

n

u

(i)

: u 2 U; i � n

o

, where

u

(i)

is de�ned to be a string that di�ers from u exa
tly at i-th position. As the 
ode

distan
e of U is at least 3, all the u

(i)

are distin
t ones of F . Consider an arbitrary

depth-d nondeterministi
 tree S and denote p

1

= E [S(w)℄ and p

0

= E [S(u)℄. Our

goal is to show that

p

1

� p

0

= O(

log logn

logn

); (9)

whi
h will imply ps

�

(F ) > d for any 
onstant �.

We split U into two parts U

1

and U

0

putting an element u into the �rst part

if S(u) = 1 and into the se
ond otherwise. Correspondingly, W is divided into

two parts W

1

=

n

u

(i)

: u 2 U

1

; i � n

o

and W

0

=

n

u

(i)

: u 2 U

0

; i � n

o

. Clearly,

p

0

= jU

1

j=jU j. From this and from

p

1

=

jU

1

j

jU j

E [S(w) jw 2 W

1

℄ +

jU

0

j

jU j

E [S(w) jw 2 W

0

℄
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we infer

p

1

� p

0

�

jU

0

j

jU j

E [S(w) jw 2 W

0

℄ : (10)

Given u, let us denote the number of i su
h that S(u

(i)

) = 1 by m(u). Let

m = E [m(u) ju 2 U

0

℄. In this notation, E [S(w) jw 2 W

0

℄ =

m

n

and (10) 
an be

rewritten as

p

1

� p

0

�

jU

0

j

jU j

m

n

: (11)

In parti
ular,

p

1

� p

0

�

m

n

: (12)

We will also use one more 
onsequen
e of (11). De�ne U

0

= fu 2 U

0

: m(u) > m=2g.

One 
an easily 
he
k that

jU

0

j

jU

0

j

>

m

2n

. Together with (11) this gives

p

1

� p

0

< 2

jU

0

j

jU j

: (13)

We will show that either (12) or (13) provides the desired bound on p

1

� p

0

.

Next what we do is upper bounding of jU

0

j=jU j. Let r = minfm=2; sg and

t = br=d
. We now des
ribe a pro
edure 
onsisting of t steps. In j-th step we build

a 
overing of U

0

by at most (2

d

�1)

j

disjoint dj-
ylinders. The initial 
overing is the

entire boolean 
ube, that is, it 
onsists of one 0-
ylinder. Suppose that before j-th

step we have a 
overing of U

0

by at most (2

d

� 1)

j�1

disjoint d(j � 1)-
ylinders. In

j-th step, every d(j�1)-
ylinder C from the 
overing should be split into 2

d

disjoint

dj-
ylinders so that at least one of those 
an be deleted. To do so, we 
hoose an

element u in C that belongs to U

0

. Let P be the set of positions spe
ifying C. We

next 
hoose a position i =2 P so that S(u

(i)

) = 1. This 
an be done as u 2 U

0

and jP j = d(j � 1) < m=2. We split C into sub
ylinders by assigning all the

possible values to the variables that are outside P and are queried by S along a

path a

epting u

(i)

. If the number of su
h variables is less than d, we assign also

arbitrary additional variables. At least one sub
ylinder from the splitting of C does

not interse
t U

0

and even U

0

, namely, one that 
ontains u

(i)

. The reason is that ea
h

element of this sub
ylinder �ts the same 1-path of S as u

(i)

does.

After t steps of the above pro
edure, we obtain a 
overing of jU

0

j by at most

(2

d

�1)

t

disjoint dt-
ylinders. Sin
e dt � s, we 
an employ s-uniformity of U . Below

the summation goes over all the 
ylinders C from the 
overing.

jU

0

j

jU j

=

X

C

jU

0

\ Cj

jU j

�

X

C

jU \ Cj

jU j

� (2

d

� 1)

t

2

�dt

:

By (13), we have p

1

� p

0

< 2(1 � 2

�d

)

t

� 2 expf�t2

�d

g. Substituting d = logn �

2 log logn and t = br=d
, we obtain

p

1

� p

0

= O

 

exp

(

�

r logn

n

)!

: (14)
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To 
omplete our analysis, we have to 
onsider two 
ases. In the �rst 
ase r = s

and (9) follows by (14) from the 
ondition imposed on s. In the se
ond 
ase that

r = m=2, (14) gives

p

1

� p

0

= O

 

exp

(

�

m logn

2n

)!

: (15)

Finally, we 
onsider two sub
ases. If

m

n

�

2 ln log n

log n

, we obtain (9) by (12). If

m

n

>

2 ln log n

log n

, (9) follows by (15).

To 
omplete the proof of Theorem 4.1, it remains to 
onstru
t an �n-uniform


ode with minimum distan
e Æn for some 
onstants � and Æ in interval (0; 1). It

is 
onvenient to �x our attention on linear 
odes, i.e., suppose that U is a linear

subspa
e of GF(2)

n

(see Remark 4.10, though). We �rst prove that the desired

linear 
ode exists by the probabilisti
 method, then refer to an algebrai
-geometry


onstru
tion, and �nally dis
uss what 
an be done with use of some 
lassi
al 
odes.

Probabilisti
 
onstru
tion

We use the Cherno� bound [3℄ stated in the following form.

Lemma 4.6 Let �

1

; �

2

; : : : ; �

n

be independent identi
ally distributed random vari-

ables taking two values 0 and 1, either with probability 1=2. Then for any Æ 2 (0; 1=2℄

P

"

n

X

i=1

�

i

� Æn

#

� 2

(H(Æ)�1)n

;

where H(Æ) = �Æ log

2

Æ � (1� Æ) log

2

(1� Æ).

Lemma 4.7 If 0 < Æ < 1=2 and � < 1 � H(Æ), then a random b�n
-dimensional


ode has minimum distan
e at least Æn with overwhelming probability (i.e., with

probability 1� o(1) for n!1).

Proof: Denote k = b�n
 Suppose that ve
tors X

1

; : : : ; X

k

are 
hosen in GF(2)

n

randomly and independently (they may happen to be linearly dependent). Denote

the subspa
e spanned by X

1

; : : : ; X

k

by U . Let us estimate the probability that


ode U has minimum distan
e less than Æn. Re
all that the minimum distan
e of

a linear 
ode is equal to the minimum weight of a non-zero 
odeword. Consider a

linear 
ombination X = �

1

X

1

� : : : � �

k

X

k

with 
oeÆ
ients �

1

; : : : ; �

k

2 GF(2).

If at least one of the 
oeÆ
ients is non-zero, then X is uniformly distributed over

GF(2)

n

. If X = �

1

: : : �

n

, its weight is equal to �

1

+ : : :+ �

n

. By Lemma 4.6 this is

less than Æn with probability at most 2

(H(Æ)�1)n

. Therefore, U 
ontains a non-zero

ve
tor of weight less than Æn with probability at most 2

k

2

(H(Æ)�1)n

� 2

(�+H(Æ)�1)n

.
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Estimate now the probability of the same event under the 
ondition that

X

1

; : : : ; X

k

are linearly independent. Note that then U is uniformly distributed over

all k-dimensional subspa
es. Observe that random and independent X

1

; : : : ; X

k

are

linearly independent with probability

(2

n

� 1)(2

n

� 2) � � � (2

n

� 2

k�1

)

2

nk

= (1�

1

2

n

)(1�

1

2

n�1

) � � � (1�

1

2

n�k+1

) >

4

�

1

2

n

�

1

2

n�1

�:::�

1

2

n�k+1

>

1

4

:

It follows that a random k-dimensional U has has minimum distan
e less than Æn

with probability at most 4 � 2

(�+H(Æ)�1)n

, whi
h approa
hes 0 with n in
reasing.

Lemma 4.7 shows that there is no problem with a
hieving high minimum dis-

tan
e. It suÆ
es to take at random a 
ode of appropriate dimension. To pro
eed

with the uniformity property, we need some preliminaries from linear algebra.

Given X = x

1

: : : x

n

and Y = y

1

: : : y

n

in GF(2)

n

, let hX; Y i = x

1

y

1

� : : :� x

n

y

n

be their inner produ
t. X and Y are 
alled orthogonal if hX; Y i = 0. The dual 
ode

of U is denoted by U

?

. It 
onsists of all those strings that are orthogonal with ea
h


odeword of U . It is well known that dimU

?

= n � dimU and that (U

?

)

?

= U .

We refer to the following fa
t (see e.g. [9℄).

Lemma 4.8 A linear 
ode U is s-uniform i� the minimum distan
e of U

?

ex
eeds s.

Proof: Denote t = bs
. Given a set T � [n℄ of t 
oordinates, 
onsider a

linear transformation P

T

: U ! GF(2)

t

whi
h is the proje
tion onto T . For ea
h

v 2 GF(2)

t

, the set P

�1

T

(v) is exa
tly the interse
tion of U and the t-
ylinder C

v

spe
i�ed by assigning v to T .

First observe that U is s-uniform i� P

T

(U) = GF(2)

t

for any T . Indeed, if P

T

(U)

is a proper subspa
e of GF(2)

t

, then the uniformity 
ondition is violated be
ause

C

v

with v =2 P

T

(U) does not interse
t U . Conversely, P

T

(U) = GF(2)

t

implies that

all interse
tions C

v

\ U = P

�1

T

(v) are non-empty and, therefore, 
ontain the same

number of elements. As they 
over U , the uniformity 
ondition follows.

Now show that the inequality P

T

(U) 6= GF(2)

t

is true for some T i� the minimum

distan
e of U

?

does not ex
eed t, that is, U

?


ontains a ve
tor of weight at most t.

Indeed, P

T

(U) 6= GF(2)

t

i� all x in U satisfy relation hx; yi = 0 for some non-zero y

whose non-zero 
oordinates all are in T . It remains to noti
e that su
h a y belongs

to U

?

and its weight does not ex
eed t. The lemma follows.

Thus, we need a linear 
ode U � GF(2)

n

su
h that both U and U

?

have minimum

distan
es linear in n.

Lemma 4.9 Let 0 < �; Æ <

1

2

and H(�) < 1�H(Æ). Then for n suÆ
iently large,

there exists an �n-uniform 
ode with minimum distan
e at least Æn.
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Proof: Set up �

0

= � +

1

n

and pi
k � between H(�

0

) and 1 � H(Æ). Denote

k = b�n
. Take at random a k-dimensional linear 
ode U . By Lemma 4.7 its

minimum distan
e is at least Æn with overwhelming probability.

Noti
e that U

?

is a random (n � k)-dimensional 
ode. Let n � k = 
n. For n

suÆ
iently large, 
 is arbitrarily 
lose to 1��, so 
 < 1�H(�

0

). On
e again referring

to Lemma 4.7, we have that the minimum distan
e of U

?

is at least �

0

m = �n+ 1

with overwhelming probability. By Lemma 4.8, U is �n-uniform with the same

probability.

As with non-zero probability U is simultaneously �n-uniform and has minimum

distan
e at least Æn, we 
on
lude that there exists a 
ode with both these proper-

ties.

Remark 4.10 If we take randomly and independently 2

�n

words in f0; 1g

n

, with

high probability we obtain a 
ode with minimum distan
e at least Æn, provided Æ <

1

2

and � < (

1

2

� Æ)

2

. One 
annot expe
t that su
h a 
ode is �n-uniform for a 
onstant

�, but with high probability it is almost �n-uniform in the following sense: for any

t-
ylinder C with t � �n, a fra
tion of 
odewords in U that belong to C deviates

from 2

�t

in at most 2

�2(�n�1)

.

The 
he
k fun
tion of an almost �n-uniform 
ode with minimum distan
e Æn

satis�es all the 
onditions of Theorem 4.1. Though almost uniformity does not

suÆ
e to prove item (i) of Lemma 4.4, it suÆ
es to keep item (ii) of this lemma

true.

Algebrai
-geometry 
onstru
tion

Another way to obtain an �n-uniform 
ode with minimum distan
e Æn is to use

the self-dual 
odes 
onstru
ted in [13℄ from algebrai
 
urves. In parti
ular, the


onstru
tion in [13℄ gives us a self-dual 
ode over alphabet GF(64) with minimum

distan
e 0:3n. Repla
ing elements of GF(64) by strings from GF(2)

6

we get a binary


ode that is 0:05n-uniform and has minimum distan
e 0:05n (the 
ode length has

in
reased by 6). Both properties hold true for an arbitrary one-to-one repla
ement,

even if the binary 
ode obtained is not linear.

Classi
al 
onstru
tions

Somewhat weaker versions of bounds (i){(iii) (ex
ept (iv)) of Theorem 4.1 
an be

obtained for the 
he
k fun
tions of some 
lassi
al 
odes. In this subse
tion we do

this for two well-known 
odes. One of them, namely, the dual of BCH-
ode, was

used in [9℄, where lower bounds where proven for some kind of bran
hing programs


omputing 
hara
teristi
 fun
tions of 
odes. It is interesting to note that both [9℄

and our paper employ in essen
e the same properties of 
odes.
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The �rst 
ode U

1

we 
onsider is the simplest version of the Reed-Solomon 
ode.

Let n = p2

p

and interpret the boolean 
ube f0; 1g

n

as the set of fun
tions from

GF (2

p

) into itself (represented by their graphs). Then U

1


onsists of graphs of

univariate polynomials over GF (2

p

) of degree at most r. It is not hard to 
he
k that

U

1

is r-uniform and its minimum distan
e is at least 2

p

� r. We set r = 2

p�1

. Let

F

1

be the 
he
k fun
tion of U

1

. Then by Lemmas 4.2, 4.3, and 4.4 we have

� ma

�

(F

1

) = O(logn);

� nd(F

1

) = 
(

n

log n

);

� pp(F

1

) = 
(

n

log n

) and ma

(l)

�

(F

1

) = 
(

n

l log n

).

For the next example, let U

2

� f0; 1g

n

be the dual of the Bose-Chaudhuri-

Ho
quenghem 
ode of designed distan
e 2t + 1. Following [9℄, we take t = d

p

n=4e

to ensure 
(

p

n)-uniformity and minimum distan
e 
(n). For F

2

the 
he
k fun
tion

of U

2

, we obtain

� ma

�

(F

2

) = O(1);

� nd(F

2

) = 
(

p

n);

� pp(F

2

) = 
(

p

n) and ma

(l)

�

(F

2

) = 
(

p

n

l

).

5 Bounded Merlin-Arthur vs. bounded nondeter-

ministi
 
omplexity

Theorem 4.1 leaves open an intriguing question if Arthur-Merlin and nondetermin-

isti
 
omplexities are polynomially related. A weak version of this question is if

am

�

(f) = O(1) implies nd(f) = O(1). We 
an answer it in aÆrmative only in the

�rst parti
ular 
ase that am

�

(f) = 1, for all � 2 (0; 1).

Theorem 5.1 am

�

(f) � 1 implies nd(f) <

1

1�2�

.

Proof: By Lemma 3.4, it suÆ
es to show that ps

�

(f) � 1 implies nd(f) <

1

1�2�

.

Consider an arbitrary boolean fun
tion f : f0; 1g

n

! f0; 1g with ps

�

(f) � 1.

Denote by W and U the sets of ones and zeroes of f , respe
tively. Let d = nd(f).

So, set W is d-open and is not (d� 1)-open. Therefore, there must be a d-
ylinder

C � W that is not in
luded into any (d � 1)-
ylinder inside W . Without loss of

generality, assume that C is spe
i�ed by assigning the �rst d variables to a 2 f0; 1g

d

.

By a

(i)

2 f0; 1g

d

, i � d, we denote a string that di�ers from a exa
tly at i-th

position. For any i � d, there exists a b

i

2 f0; 1g

n�i

su
h that a

(i)

b

i

2 U . Let
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random variables w and u be uniformly distributed on sets fab

1

; : : : ; ab

d

g � W and

fa

(1)

b

1

; : : : ; a

(d)

b

d

g � U , respe
tively.

Take an arbitrary depth-1 nondeterministi
 de
ision tree S. Denote p

1

=

E [S(w)℄ and p

0

= E [S(u)℄. Let us show that p

1

� p

0

�

1

d

. The �rst 
ase we


onsider is that some deterministi
 bran
h of S asks one of the �rst d variables and

a

epts if it has the same value as in a. Then p

1

= 1 and p

0

� 1�

1

d

. In the se
ond,

opposite 
ase, we observe that S(a

(i)

b

i

) = 1 whenever S(ab

i

) = 1 and , therefore,

p

0

� p

1

.

The 
ondition ps

�

(f) � 1 means that p

1

� p

0

> 1� 2� for some depth-1 nonde-

terministi
 tree S. The estimate d <

1

1�2�

follows.

Theorem 5.2

(i) ma

0;1=2

(f) � 1 (or, equivalently, ma

1=3

(f) � 1) implies nd(f) � 1;

(ii) ma

0;2=3

(f) � 1 (or, equivalently, ma

2=5

(f) � 1) implies nd(f) � 2;

(iii) ma

0;1=3

(f) � 2 (or, equivalently, ma

1=4

(f) � 2) implies nd(f) � 2.

The proof is deferred to the end of this se
tion. In 
omparison with Theorem 5.1,

Theorem 5.2 relaxes the premise am

�

(f) � 1 to ma

�

(f) � 1 and even to ma

�

(f) � 2

but only for a restri
ted range of the error �. Su
h an improvement 
annot be done

for all � 2 (0; 1), be
ause this will 
ontradi
t the example given in Se
tion 4. Noti
e

that parameter Æ in Lemma 4.9 
an be 
hosen arbitrarily 
lose to

1

2

. Thus, for any

� >

3

4

this lemma provides a fun
tion F for whi
h ma

0;�

(F ) = 1 by Lemma 4.2 but

nd(F ) = 
(n) by Lemma 4.3. In fa
t, we are able to improve this example attaining

the error � as small as it is possible in view of Theorem 5.2 (ii).

Theorem 5.3 For any � > 0 there is a boolean fun
tion F : f0; 1g

n

! f0; 1g su
h

that ma

0;2=3+�

(F ) = 1 and nd(F ) = 
(n).

Thus, the value � =

2

3

is the exa
t theshold: if � �

2

3

, then ma

0;�

(f) � 1 implies

nd(f) = O(1), while if � >

2

3

, then ma

0;�

(F ) = 1 may o

ur simultaneously with

nd(F ) = 
(n).

For the same example of F , we have simultaneously nd(F ) = 
(n) and

ma

0;�

(F ) � 2 for any � >

4

9

, whereas by item (iii) of Theorem 5.2 the 
ondition

ma

0;�

(f) � 2 with � �

1

3

implies nd(f) � 2. It would be interesting to 
lose the gap

1

3

< � �

4

9

.

Proof of Theorem 5.3: The fun
tion F will be spe
i�ed by its set of zeroes,

that will be denoted by U . Asso
iate with � a 
onstant k = d2=�

3

e. We need a set

U with two properties true for suÆ
iently large n.

1. The 
omplement f0; 1g

n

n U is not b�n
-open for some 
onstant � 2 (0; 1).
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2. Let u

1

; : : : ; u

k

be arbitrary pairwise distin
t strings from U , and v be an arbi-

trary string from f0; 1g

k

. De�ne I � [n℄ to be the set of positions i su
h that

u

1

j

i

u

2

j

i

: : : u

k

j

i

= v, where uj

i

stands for i-th 
omponent of u. Then any two

strings u

0

and u

00

from U nfu

1

; : : : ; u

k

g agree in at most (1+�

2

)jIj=2 positions

from I.

The se
ond 
ondition is a strengthening of the fa
t that U is a 
ode with minimum

distan
e at least (1� �

2

)n=2.

Su
h U exists for any � > 0. It suÆ
es to take d2

�n

e strings independently

at random for a 
onstant � 2 (0; 1). Property 1 holds true with high probability,

provided � < �. Indeed, U does not interse
t an b�n
-
ylinder with probability

(1�2

�b�n


)

d2

�n

e

. So, the probability that the 
omplement of U 
ontains at least one

b�n
-
ylinder does not ex
eed 2

�n

�

n

b�n


�

(1 � 2

��n

)

2

�n

. The last value is small for

� < � and large n.

Property 2 is ful�lled also with high probability. This 
an be easily dedu
ed

from the Cherno� bound (see Lemma 4.6), provided � = �(�) is small enough.

(Note that the proje
tion of U onto I 
onsists of random strings whose length with

overwhelming probability ex
eeds n=2

k+1

.)

From property 1, it follows immediately that nd(F ) > �n. Based on property 2,

we prove the se
ond needed 
ondition that ma

0;2=3+�

(F ) � 1. We 
an restate it as

follows: for any w =2 U there is a distribution i on [n℄ su
h that for all u 2 U bits

uj

i

and wj

i


oin
ide with probability less than

2

3

+ �. By the min-max theorem, it

is equivalent to show that, given any w =2 U and an arbitrary distribution u on U ,

there is an index i with

P [uj

i

= wj

i

℄ <

2

3

+ �: (16)

When referring to the weight of a u 2 U , we mean the probability that u = u. If

there is a spe
i�
 u of weight at least

1

3

, then (16) is true for a position i where u and

w di�er. So we will suppose that u takes every its value with probability stri
tly

less than

1

3

. Let us rank strings in U in des
ending order of their weights. Denote

the weiths of the �rst k + 1 strings u

1

; : : : ; u

k

; u

k+1

by !

1

; : : : ; !

k

; !

k+1

respe
tively.

Observe that

!

k+1

<

1

k

: (17)

Set ! =

P

k

j=1

!

j

. As we assume that !

j

<

1

3

for all j, there is t � k su
h that

!

2

�

1

6

<

t

X

j=1

!

j

<

!

2

+

1

6

: (18)

Let I � [n℄ be the set of all those positions i that

u

j

j

i

=

�

0 for j � t,

1 for t < j � k.

(19)
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Now let i denote a random index from I. Our goal is to show that uj

i

= wj

i

with

probability less than

2

3

+ �. This will imply (16) for some spe
i�
 i 2 I.

By the total probability formula

P

�

uj

i

= wj

i

�

=

k

X

j=1

P

�

u

j

j

i

= wj

i

�

!

j

+P

�

uj

i

= wj

i

�

�

�

�

u 6= u

j

for all j � k

�

(1�!) (20)

We will now bound both terms in the right hand side from above. The �rst term is

less than

!

2

+

1

6

(21)

by (18) and (19).

Let m = jIj and p

i

= P [uj

i

= wj

i

ju 6= u

j

for all j � k ℄. Without the fa
tor of

1� !, the se
ond term in (20) 
an be rewritten as

1

m

X

i2I

p

i

=

1

2

+

1

m

X

i2I

(p

i

�

1

2

) �

1

2

+

 

1

m

X

i2I

(p

i

�

1

2

)

2

!

1=2

=

1

2

+

 

1

2

 

1

m

X

i2I

�

p

2

i

+ (1� p

i

)

2

�

�

1

2

!!

1=2

:

Consider two independent random strings u

0

and u

00

, both having the distrubution

of u 
onditioned on u 6= u

j

for all j � k. Noti
e that the sum

P

i2I

(p

2

i

+ (1� p

i

)

2

)

is equal to the everage number of positions where u

0

and u

00

agree. If u

0

6= u

00

, the

number of su
h positions does not ex
eed (1 + �

2

)m=2 by 
ondition 2 imposed on

U at the very beginning. Therefore, the se
ond term in (20) 
an be bounded by

0

�

1

2

+

 

�

2

2

+P [u

0

= u

00

℄

!

1=2

1

A

(1� !):

Suppose that P [u

0

= u

00

℄ � �

2

=2. This provides us an upper bound (1=2+�)(1�

!) on the se
ond term in (20). Using also bound (21) on the �rst term, we obtain

P [uj

i

= wj

i

℄ <

2

3

+ �, whi
h implies (16).

If P [u

0

= u

00

℄ > �

2

=2, the set U n fu

1

; : : : ; u

k

g must 
ontain an element whose

weight ex
eeds �

2

(1 � !)=2. Re
all that the largest weight in this set is assigned

to u

k+1

. So, !

k+1

> �

2

(1 � !)=2. By (17) and the 
hoi
e of k, we get 1 � ! <

2=(k�

2

) � �. This gives us an upper bound � on the se
ond term in (20). Together

with bound (21) on the �rst term, this again implies (16).

The proof is 
omplete.
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Proof of Theorem 5.2

We will use items (i) and (ii) of the following lemma. Item (iii) is in
luded there,

as it 
omplements the pre
eding two and shows that the same method 
annot be

applied to derive the 
on
lusion nd(f) = O(1) from the assumption ma

0;�

(f) � 3.

We employ the notion of separability de�ned in Se
tion 3.

Lemma 5.4 Let f be a boolean fun
tion, w denote an arbitrary one of f , and

u

1

; u

2

; u

3

; : : : ; u

y

denote arbitrary zeroes of f .

(i) if sep(w; fu

1

; u

2

g) � 1 for all w; u

1

; u

2

, then nd(f) � 1;

(ii) if sep(w; fu

1

; u

2

; u

3

g) � 2 for all w; u

1

; u

2

; u

3

, then nd(f) � 2;

(iii) for any y and suÆ
iently large n, there exists a boolean fun
tion f :

f0; 1g

n

! f0; 1g su
h that sep(w; fu

1

; : : : ; u

y

g) � 3 for all w; u

1

; : : : ; u

y

but

nd(f) �

n

y2

y+1

ln lnn

.

We are now able to prove Theorem 5.2. By Theorem 2.2 (ii) it suÆ
es to prove

the 
laims only for one-sided error. Note that the proof Theorem 3.1 (iii) gives us

bound sep(w; fu

1

; : : : ; u

k

g) � ma

0;�

(f)dlog k= log(1=�)e. In parti
ular, ma

0;1=2

(f) �

1 implies sep(w; fu

1

; u

2

g) � 1, and ma

0;1=3

(f) � 2 implies sep(w; fu

1

; u

2

; u

3

g) � 2.

A more 
areful inspe
tion of the arguments shows that sep(w; fu

1

; u

2

; u

3

g) � 2

follows also from the assumption ma

0;2=3

(f) � 1. Applying 
laims (i) and (ii) of

Lemma 5.4, we get the needed impli
ations.

Proof of Lemma 5.4: First we introdu
e some unary operations over subsets

of f0; 1g

n

that resemble 
losure operators in Cantor dis
ontinuum. Let U � f0; 1g

n

.

Given x � n, we de�ne

C

x

(U) = fw 2 f0; 1g

n

: ea
h x-neighborhood of w interse
ts Ug :

Furthermore, we set up

C

y

x

(U) =

[

u

1

;:::;u

y

2U

C

x

(u

1

; : : : ; u

y

):

Thus, C

x

(U) 
onsists of all strings ex
epting those that 
an be separated from U by

an x-neighborhood. C

y

x

(U) is more restri
ted. It 
ontains all strings ex
epting those

that 
an be separated by an x-neighborhood from any y (not ne
essarily distin
t)

elements of U .

Further on U denotes the set of zeroes of a fun
tion f : f0; 1g

n

! f0; 1g. Re
all

that nd(f) � z i� the set of ones of f is z-open. As easily seen, the latter 
ondition

is equivalent to the equality C

z

(U) = U . It is also not hard to see that the 
ondition

sep(w; fu

1

; : : : ; u

y

g) � x true for any one w and zeroes u

1

; : : : ; u

y

of f is equivalent

to C

y

x

(U) = U . Thus, the 
laims of the lemma 
an be rewritten as follows.
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(i) for any U � f0; 1g

n

, C

2

1

(U) = U implies C

1

(U) = U ;

(ii) for any U � f0; 1g

n

, C

3

2

(U) = U implies C

2

(U) = U ;

(iii) for any y and suÆ
iently large n, there exists a set U � f0; 1g

n

su
h that

C

y

3

(U) = U but C

z

(U) 6= U for z = b

n

y2

y+1

ln lnn


.

Let us prove the �rst item.

Proof of (i): Suppose C

2

1

(U) = U . We have to dedu
e that C

1

(U) = U . This will

be done if we show that U is a 
ylinder.

Let V be a maximum (respe
tively to in
lusion) 
ylinder 
ontained in U . We

wish to show that U = V . Assume, to the 
ontrary, that there is an element

u 2 U nV . Let J � [n℄ be the set of positions, whose entries de�ne V . Let I � J be

the subset of positions, where u has the same entries. We 
hoose v 2 V so that v

and u di�er at all positions outside J . Thus, v and u 
oin
ide only at positions from

I. Noti
e that C

1

(u; v) is a 
ylinder de�nable by setting the 
oordinates from I as

in u (or v). As this 
ylinder properly 
ontains the 
ylinder V and is itself 
ontained

in C

2

1

(U) = U , we get a 
ontradi
tion. This 
ompletes the proof of item (i).

Proof of (ii): We will use the following simple fa
t. Given three boolean ve
tors

u

1

; u

2

; u

3

2 f0; 1g

n

, let MAJ(u

1

; u

2

; u

3

) be a ve
tor, whose i-th entry o

urs at least

twi
e among i-th entries of u

1

; u

2

; u

3

.

Claim 1: If u

1

; u

2

; u

3

2 V , then MAJ(u

1

; u

2

; u

3

) 2 C

3

2

(V ).

Proof: As easily seen, MAJ(u

1

; u

2

; u

3

) 2 C

2

(u

1

; u

2

; u

3

). 2

Let us turn to 
laim (ii). Consider U � f0; 1g

n

su
h that C

3

2

(U) = U . We have to

prove C

2

(U) = U . Suppose u 2 C

2

(U) and dedu
e u 2 U . It is not hard to see that

the bounded 
losure operators 
ommutate with shifting by any element of f0; 1g

n

.

So, without loss of generality we may assume u = 1

n

(= 11 : : : 1).

We say that V � f0; 1g

n

has a 
omplete i-shadow if for any I � [n℄, jIj = i, some

v 2 V has 1 at all positions from I.

Claim 2: Let 0 � i � n� 2. Then U has a 
omplete (i + 2)-shadow.

Proof: We pro
eed by indu
tion on i. In the 
ase i = 0 the 
laim is a reformu-

lation of the fa
t that 1

n

2 C

2

(U). Suppose the 
laim is true in the 
ase of i � 1.

Look at the 
ase of i, where i � 1. Choose an arbitrary set of positions I � [n℄

with jIj = i + 2. We have to show that U 
ontains some v with 1's on I. Pi
k

three distin
t positions i

1

; i

2

; i

3

2 I. Let I

s

= I n fi

s

g, s = 1; 2; 3. By the indu
tion

hypothesis, U 
ontains some ve
tors u

1

; u

2

; u

3

with 1's on I

1

; I

2

; I

3

, respe
tively. By

Claim 1, MAJ(u

1

; u

2

; u

3

) is in C

3

2

(U) and, therefore, in U by our assumption. It is

easy to see that MAJ(u

1

; u

2

; u

3

) has 1's at all positions in I. 2

When i = n� 2, Claim 2 means that 1

n

2 U , 
ompleting the proof of 
laim (ii).

26



Note that 
laim (i) 
an be proven similarly to 
laim (ii). It suÆ
es to repla
e

MAJ(u

1

; u

2

; u

3

) with OR(u

1

; u

2

).

Proof of (iii): Given V � f0; 1g

n

whose elements v

1

; : : : ; v

y

are arbitrarily or-

dered, we denote a matrix of size y by n with rows v

1

; : : : ; v

y

by M(V ). By N we

denote the matrix of size y by y � 1

0 0 : : : 0

1 0 : : : 0

1 1 : : : 0

.

.

.

.

.

.

.

.

.

.

.

.

1 1 : : : 1

Claim 3: Let V � f0; 1g

n

. If the matrix M(V ) 
ontains all the 
olumns of the

matrix N , then C

3

(V ) = V .

Proof: Without loss of generality, suppose that the �rst (y�1) 
olumns ofM(V )

make up the matrix N . Consider a ve
tor v in C

3

(V ). We have to show that v must

be in V . Let m be the �rst position, where v has 0 (let m = n + 1 if v = 1

n

). The


ondition v 2 C

3

(V ) means that for any I � [n℄ with jIj = 3, some v

j


oin
ides with

v on I. For this reason, v = v

y

if m � y, and v = v

m

otherwise. 2

Given y and n, we set l = bz2

z+1

lnn
 for z = b

n

y2

y+1

ln lnn


. Choose u

1

; : : : ; u

l

from f0; 1g

n

randomly and independently from ea
h other, and put U = fu

1

; : : : ; u

l

g.

We are going to show for n large enough that three events 1

n

2 C

z

(U), 1

n

=2 U , and

C

y

3

(U) = U simultaneously take pla
e with non-zero probability. This will imply

what we need. Let us show that every one of the three events above does not o

ur

with small probability.

1

n

=2 C

z

(U) means that for some I � [n℄ with jIj = z none of the u

1

; : : : ; u

l

has all

1's on I. This happens with probability at most

�

n

z

�

(1� 2

�z

)

l

� n

z

exp f�l2

�z

g �

n

�z

, whi
h is less than

1

3

for z large enough. It follows P [1

n

=2 C

z

(U)℄ <

1

3

for z large

enough.

P [1

n

2 U ℄ � l2

�n

<

1

3

for n large enough.

C

y

3

(U) 6= U implies that for some V � U with jV j = y, V is properly 
ontained in

C

3

(V ). So, P [C

y

3

(U) 6= U ℄ �

�

l

y

�

P [C

3

(V ) 6= V ℄, where V = fv

1

; : : : ; v

y

g 
onsists of

random elements of f0; 1g

n

. By Claim 3, C

3

(V ) 6= V implies that the matrix M(V )

does not have at least one of the 
olumns of the matrix N . Hen
e,

P [C

y

3

(U) 6= U ℄ �

 

l

y

!

y(1� 2

�y

)

n

� l

y

y exp

n

�n2

�y

o

<

1

3

for n large enough.

This proves 
laim (iii).

The proof of Lemma 5.4 is 
omplete.
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6 Con
lusion and open problems

The main question we leave open is if am

�

(f) and nd(f) are polynomially related.

A variation of this question 
an be if am

(polylog n)

�

(f) = polylogn or ma

(polylog n)

�

(f) =

polylogn implies nd(f) = polylogn. For F , the 
he
k fun
tion of an �n-uniform


ode with minimum distan
e Æn, we have shown that ma

0;1�Æ=2

(F ) = 1, while

nd(F ) = 
(n) and am

�

(F ) = 
(logn). It would be insightful to improve our

logarithmi
 lower bound on am

�

(F ) or, alternatively, give an upper bound.

Another related question is if am

�

(f) = O(1) implies nd(f) = O(1). We answer

it in aÆrmative only in the parti
ular 
ase of am

�

(f) � 1. Moreover, we prove that

ma

0;2=3

(f) � 1 implies nd(f) � 2. The error

2

3

is here the exa
t threshold, as one


an a
hieve simultaneously nd(F ) = 
(n) and ma

0;�

(F ) = 1 for arbitrary � >

2

3

. We

prove that ma

0;1=3

(f) � 2 also implies nd(f) � 2, whereas in the aforementioned

example nd(F ) = 
(n) and ma

0;�

(F ) � 2 for arbitrary � >

4

9

. It would be interesting

to investigate the range

1

3

< � �

4

9

. Does there exist the theshold in this 
ase too?

Given a boolean fun
tion f and an integer d, denote err

d

(f) =

inf f� : ma

0;�

(f) � dg (for 
onvenien
e let inf ; = 1). Clearly, err

2

(f) � err

1

(f)

2

. It

is interesting to give an example when the latter inequality is stri
t. Is this true for

the above 
ode-
he
k fun
tion F ?

A
knowledgments

We thank Alexander Barg and Alexander Razborov for useful dis
ussions.

Referen
es

[1℄ L. Babai. Trading group theory for randomness. In Pro
. of the 17th ACM

Ann. Symp. on the Theory of Computing (STOC), pages 421{429, 1985.

[2℄ M. Blum and R. Impagliazzo. Generi
 ora
les and ora
le 
lasses. In Pro
. of the

28th IEEE Ann. Symp. on Foundations of Computer S
ien
e (FOCS), pages

118{126, 1987.

[3℄ H. Cherno�. A measure of asymptoti
 eÆ
ien
y for tests of a hypothesis based

on the sum of observations. Annals of Math. Stat., 23:493{509, 1952.

[4℄ O. Goldrei
h, Y. Mansour, and M. Sipser. Intera
tive proof systems: provers

that never fail and random sele
tion. In Pro
. of the 28th IEEE Ann. Symp.

on Foundations of Computer S
ien
e (FOCS), pages 449{461, 1987.

[5℄ S. Goldwasser, S. Mi
ali, and C. Ra
ko�. The knowledge 
omplexity of inter-

a
tive proof systems. SIAM Journal on Computing, 18(1):186{208, 1989.

28



[6℄ S. Goldwasser and M. Sipser. Private 
oins versus publi
 
oins in intera
tive

proof systems. In Pro
. of the 18th ACM Ann. Symp. on the Theory of Com-

puting (STOC), pages 59{68, 1986.

[7℄ J. Hartmanis and L. Hema
handra. Robust ma
hines a

ept easy sets. Theo-

reti
al Computer S
ien
e, 74(2):217{226, 1990.

[8℄ R. Impagliazzo and M. Naor. De
ision trees and downward 
losures. In Pro
.

of the 3rd ACM Ann. Conf. on Stru
ture in Complexity Theory, 1988.

[9℄ S. Jukna and A. Razborov. Neither reading few bits twi
e nor reading illegally

helps mu
h. Ele
troni
 Colloquium on Computational Complexity, TR96-037,

1996.

[10℄ M. L. Minsky and S. A. Papert. Per
eptrons. MIT Press, Cambridge, MA,

se
ond edition, 1988.

[11℄ A. A. Mu
hnik and N. K. Veresh
hagin. A general method to 
onstru
t ora
les

realizing given relationships between 
omplexity 
lasses. Theoreti
al Computer

S
ien
e, 157:227{258, 1996.

[12℄ N. Nisan. CREW PRAMs and de
ision trees. SIAM Journal on Computing,

20(6):999{1007, 1991.

[13℄ W. S
harlau. Selbstduale Goppa-
odes. Mathematis
he Na
hri
hten, 143:119{

122, 1989.

[14℄ G. Tardos. Query 
omplexity, or why it is diÆ
ult to separate NP

A

\ 
oNP

A

from P

A

by a random ora
le. Combinatori
a, 9:385{392, 1989.

[15℄ N. Veresh
hagin. Complexity of 
omputation on fun
tions and relativized 
om-

plexity of 
omputation on words. Manus
ript, 1989.

[16℄ N. Veresh
hagin. Relativizable and nonrelativizable theorems in the polynomial

theory of algorithms. Russian A
ad. S
i. Izv. Math., 42(2):261{298, 1994.

[17℄ A. Yao. Probabilisti
 
omputations: towards a uni�ed measure of 
omplexity.

In Pro
. of the 18th IEEE Ann. Symp. on Foundations of Computer S
ien
e

(FOCS), pages 222{227, 1977.

[18℄ S. Za
hos and M. F�urer. Probabilisti
 quanti�ers vs. distrustful adversaries. In

Pro
. Foundations of Software Te
hnology and Theoreti
al Computer S
ien
e,

pages 443{455. Springer-Verlag, 1987. LNCS v. 287.

29


