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Abstrat

Consider the set H of all linear (or aÆne) transformations between two vetor spaes over a

�nite �eld F . We study how good H is as a lass of hash funtions, namely we onsider hashing

a set S of size n into a range having the same ardinality n by a randomly hosen funtion

from H and look at the expeted size of the largest hash buket. H is a universal lass of hash

funtions for any �nite �eld, but with respet to our measure di�erent �elds behave di�erently.

If the �nite �eld F has n elements then there is a bad set S � F

2

of size n with expeted

maximal buket size 
(n

1=3

). If n is a perfet square then there is even a bad set with largest

buket size always at least

p

n. (This is worst possible, sine with respet to a universal lass

of hash funtions every set of size n has expeted largest buket size below

p

n+ 1=2.)

If, however, we onsider the �eld of two elements then we get muh better bounds. The

best previously known upper bound on the expeted size of the largest buket for this lass was

O(2

p

logn

). We redue this upper bound to O(log n log logn). Note that this is not far from the

guarantee for a random funtion. There, the average largest buket would be �(logn= log logn).

In the ourse of our proof we develop a tool whih may be of independent interest. Suppose

we have a subset S of a vetor spae D over Z

2

, and onsider a random linear mapping of D to

a smaller vetor spae R. If the ardinality of S is larger than 

�

jRj log jRj then with probability

1� �, the image of S will over all elements in the range.

1 Introdution

Consider distributing n balls in s bukets, randomly and independently. The resulting distribution

of the balls in the bukets is the objet of oupany theory.
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In the theory of algorithms and in omplexity theory, it is often neessary and useful to onsider

putting balls in bukets without omplete independene. More preisely, the following setting is

studied: A lass H of hash funtions, eah mapping a universe U to f1; 2; : : : ; sg, is �xed. A set

S � U to be hashed is given by an adversary, a member h 2 H is hosen uniformly at random, S is

hashed using h, and the distribution of the multi-set fh(x)jx 2 Sg is studied. If the lass H is the

lass of all funtions between U and f1; 2; : : : ; sg, we get the lassial oupany problems. Carter

and Wegman de�ned a lass H to be universal if

8x 6= y 2 U : Prob(h(x) = h(y)) � 1=s:

We remark that a striter de�nition is often used in the omplexity theory literature.

For universal families, the following properties are well known; variations of them have been

used extensively in various settings:

1. If S of size n is hashed to n

2

bukets, with probability more than 1=2, no ollision ours.

2. If S of size 2n

2

is hashed to n bukets, with probability more than 1=2, every buket reeives

an element.

3. If S of size n is hashed to n bukets, the expeted size of the largest buket is less than

p

n+

1

2

.

The intuition behind universal hashing is that we often lose relatively little ompared to using a

ompletely random map. Note that for the property 1, this is true in a very strong sense; even with

omplete randomness, we do not expet o(n

2

) bukets to suÆe (the birthday paradox), so nothing

is lost by using a universal family instead. The bounds in the seond and third properties, however,

are rather oarse ompared to what one would get with omplete randomness. For property 2, with

omplete randomness, �(n logn) balls would suÆe to over the bukets with good probability

(the oupon olletor's theorem), i.e. a polynomial improvement over n

2

, and for property 3,

with omplete randomness, we expet the largest buket to have size �(log n= log logn), i.e. an

exponential improvement over

p

n. In these last ases we do seem to lose quite a lot ompared to

using a ompletely random map and better bounds would seem desirable. However, it is rather

easy to onstrut (unnatural) examples of universal families and sets to be hashed showing that

size �(n

2

) is neessary to over n bukets with non-zero probability, and that bukets of size

p

n

are in general unavoidable, when a set of size n is hashed to n bukets. This shows that the abstrat

property of universality does not allow for stronger statements. Now �x a onrete universal family

of hash funtions. We ask the following question: To whih extent are the �ner oupany properties

of ompletely random maps preserved?

We provide answers to these questions for the ase of linear maps between two vetor spaes

over a �nite �eld, a natural and well known lass of universal (in the sense of Carter and Wegmen)

hash funtions. The general avor of our results is that \large �elds are bad", in the sense that the

bounds beome the worst possible for universal families, while \small �elds are good" in the sense

that the bounds beome as good or almost as good as the ones for independently distributed balls.

More preisely, for the overing problem, we show the following (easy) theorem.

Theorem 1 Let F be a �eld of size n and let H be the lass of linear maps between F

2

and F .

There is a subset S of F

2

of size �(jF j

2

), so that for no h 2 H, h(S) = F .

On the other hand, we prove the following harder theorem.

Theorem 2 Let S be a subset of a vetor spae over Z

2

and hoose a random linear map to a

smaller vetor spae R. If jSj � 

�

jRj log jRj then with probability at least 1 � � the image of S

overs the entire range R.
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For the \largest buket problem", let us �rst introdue some notation: Let U be the universe

from whih the keys are hosen. We �x a lass H of funtions mapping U to f1; : : : ; sg. Then, a

set S � U of size n is hosen by an adversary, and we uniformly at random pik a hash funtion

h 2 H, hash S using h and look at the size of the largest resulting hash buket. We denote the

expetation of this size by L

s

n

. Formally,

L

s

n

(H) = max

S�U;jSj=n

E

h2H

[ max

y2f1;:::;sg

jfx 2 S j h(x) = ygj℄:

Usually we think of s being of size lose to n. Note that if s = 
(n

2

), any universal lass yields

L

s

n

= O(1).

The lass H we will onsider is the set of linear maps between F

m

! F

k

for m > k. Here F is

a �nite �eld and s = jF j

k

. This lass is universal for all values of the parameters.

When k = 1 and thus jF j = s the expeted largest buket an be large.

Theorem 3 Let F be a �nite �eld with jF j = s. For the lass H of all linear transformations

F

2

! F we have

L

s

s

(H) = 
(s

1=3

):

Furthermore if jF j is a perfet square we have

L

s

s

(H) >

p

s:

Note how lose our lower bound for quadrati �elds is to the upper bound of

p

s+ 1=2 that holds

for every universal lass. We also mention that for the bad set we onstrut in Theorem 8 for a

quadrati �eld there is no good linear hash funtion, sine there always exists a buket of size at

least

p

s.

When the �eld is the �eld of two elements, the situation is ompletely di�erent. Markowsky,

Carter and Wegman [MCW78℄ showed that for this ase L

s

s

(H) = O(s

1=4

). Mehlhorn and Vishkin

[MV84℄ improved on this result (although this is impliit in their paper) and showed that L

s

s

(H) =

O(2

p

log s

). We further improve the bound and show that:

Theorem 4 For the lass H of all linear transformations between two vetor spaes over Z

2

,

L

s

s

(H) = O(log s log log s):

Furthermore, we also show that even if the range is smaller than jSj by a logarithmi fator, the

same still holds:

Theorem 5 For the lass H of all linear transformations between two vetor spaes over Z

2

,

L

s

s log s

(H) = O(log s log log s):

Note that even if one uses the lass R of all funtions one obtains only a slightly better result:

the expeted size of the largest buket in this ase is L

s

s

(R) = �(log s= log log s) and L

s

s log s

(R) =

�(log s), whih is the best possible bound for any lass. Interestingly, our upper bound is based on

our upper bound for the overing property.

We do not have any non-trivial lower bounds on L

s

s

for the lass of linear maps over Z

2

, i.e., it

might be as good as O(log s= log log s). We leave this as an open question.
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1.1 Motivation

There is no doubt that the method of implementing a ditionary by hashing with haining, reom-

mended in textbooks [CLR90, GBY90℄ espeially for situations with many update operations, is a

pratially important sheme.

In situations in whih a good bound on the ost of single operations is important, e. g., in

real-time appliations, the expeted maximal buket size as formed by all keys ever present in the

ditionary during a time interval plays a ruial role. Our results show that, at least as long as the

size of the hash table an be determined right at the start, using a hash family of linear funtions

over Z

2

will perform very well in this respet. For other simple hash lasses suh bounds on the

worst ase buket size are not available, or even fail to hold (see example in Setion 4); other, more

sophistiated hash families [S89, DM90, DGMP92℄ that do guarantee small maximal buket sizes

onsist of funtions with higher evaluation time. Of ourse, if worst ase onstant time for ertain

operations is absolutely neessary, the known two-level hashing shemes an be used, e. g., the FKS

sheme [FKS84℄ for stati ditionaries; dynami perfet hashing [DKMHRT94℄ for the dynami ase

with onstant time lookups and expeted time O(n) for n update operations; and the \real-time

ditionaries" from [DM90℄ that perform eah operation in onstant time, with high probability. It

should be noted, however, that a prie is to be paid for the guaranteed onstant lookup time in

the dynami shemes: the (average) ost of insertions is signi�antly higher than in simple shemes

like hained hashing; the overall storage requirements are higher as well.

1.2 Related work

Another diretion in trying to show that a spei� lass has a good bound on the expeted size of

the largest buket is to build a lass spei�ally designed to have suh good property.

One immediate suh result is obtained by looking at the lass H of d-degree polynomials over

�nite �elds, where d =  log n= log log n (see, e.g., [ABI86℄.) It is easy to see that this lass maps

eah d elements of the domain independently to the range, and thus, the bound that applies to the

lass of all funtions also applies to this lass. We an ombine this with the following well known

onstrution, found in, e.g., [FKS84℄, and sometimes alled \ollapsing the universe": There is a

lass C of size 2

�(log n+log log jU j)

ontaining funtions mapping U to f1; : : : ; n

k+2

g, so that, for any

set S of size n, a randomly hosen map from C will be one-to-one with probability 1�O(1=n

k

).

The lass onsisting of funtions obtained by �rst applying a member of C, then a member of H

is then a lass with L

n

n

= �(logn= log logn) and size 2

O(log log jU j+log

2

n= log logn)

and with evaluation

time O(logn= log log n) in a reasonable model of omputation, say, a RAM with unit ost operations

on members of the universe to be hashed.

More eÆient (but muh larger) families were given by Siegel [S89℄ and by Dietzfelbinger and

Meyer auf der Heide [DM90℄. Both provide families of size jU j

n

�

suh that the funtions an be

evaluated in O(1) time on a RAM and with L

n

n

= �(logn= log log n). The families from [S89℄ and

[DM90℄ are somewhat omplex to implement while the lass of linear maps requires only very basi

bit operations (as disussed already in [CW79℄). It is therefore desirable to study this lass, and

this is the main purpose of the present paper.

1.3 Notation

If S is a subset of the domain D of a funtion h we use h(S) to denote fh(s) j s 2 Sg. If x is

an element of the range we use h

�1

(x) to denote fs 2 D j h(s) = xg. If A and B are subsets

of a vetor spae V and x 2 V we use the notations A + B = fa + b j a 2 A ^ b 2 Bg and

4



x + A = fx + a j a 2 Ag. We use Z

2

to denote the �eld with 2 elements. All logarithms in this

paper are base two.

2 The overing property

2.1 Lower bounds for overing with a large �eld

We prove Theorem 1. Take any set A � F of size jAj = bjF j=2 and onsider S = f(x; y) j y 6=

0 ^ x=y 2 A ^ (x � 1)=y 62 Ag. S has density around one quarter. To see this, note that if x

and y are piked randomly and independently in F

�

, (x=y; (x� 1)=y) has the same distribution as

(x; x � y). Also, no linear map g : F

2

! F satis�es g(S) = F . To see this take a nonzero linear

map g : (x; y) 7! ax + by and note that if 0 2 g(S) then a 6= 0 and �b=a 2 A but in this ase

a 62 g(S).

2.2 Upper bounds for overing with a small �eld - the existential ase

We start by showing that if we have a subset A of a vetor spae over Z

2

and jAj is suÆiently

larger than another spae W then there exists a linear transformation T mapping A to the entire

range T (A) =W . The onstant e below is the base of the natural logarithm.

Theorem 6 Let A be a �nite set of vetors in a vetor spae V of an arbitrary dimension over Z

2

and let t > 0 be an integer. If jAj > t2

t

= log e then there exists a linear map T : V ! Z

t

2

, so that

T maps A onto Z

t

2

.

For the proof of this theorem we need the following simple lemma. Note that although we state

the lemma for vetor spaes, it holds for any �nite group.

Lemma 2.1 Let V be a �nite vetor spae, A � V , � = 1� jAj=jV j. Then for a random v 2 V ,

E

v

(1� jA [ (v +A)j=jV j) = �

2

:

Proof. If v and u are both hosen uniformly independently at random from V then both events

u 62 A and u 62 v +A have probability � and they are independent. 2

Proof of Theorem 6. Let m be the dimension of V , N = jAj and � = 1� jAj=jV j = 1�N=2

m

.

Starting with A

0

= A, we hoose a vetor v

1

2 V so that for A

1

= A

0

[ (v

1

+A

0

)

1�

jA

1

j

jV j

� �

2

:

Suh a hoie for v

1

exists by Lemma 2.1. Then, by the same proedure, we hoose a v

2

so that for

A

2

= A

1

[ (v

2

+A

1

) = A+ Spanfv

1

; v

2

g;

1�

jA

2

j

jV j

� �

4

;

and so on up to A

s

= A+ Spanfv

1

; : : : ; v

s

g with s = m� t for whih

1�

jA

s

j

jV j

� �

2

s

:

5



Note that one an assume that the vetors v

1

; : : : ; v

s

are linearly independent sine hoosing a

vetor v

i

whih linearly depends on the vetors formerly hosen makes A

i

= A

i�1

.

Let W = Spanfv

1

; : : : ; v

s

g. We have A +W = V sine for x 2 V n (A +W ) the sets x +W

and A + W = A

s

were disjoint, a ontradition as jx + W j = jW j and jA

s

j � 2

m

� 2

m

�

2

s

�

2

m

� 2

m

e

�N2

�t

> jV j � jW j.

We hoose an onto linear map T : V ! Z

t

2

suh that its kernel T

�1

(0) equalsW . As T (W ) = f0g

we have T (A) = T (A+W ) = T (V ) = Z

t

2

as laimed. 2

The bound in Theorem 6 is asymptotially tight as shown by the following proposition.

Proposition 2.2 For every large enough integer t there is a set A of at least (t � 3 log t)2

t

= log e

vetors in a vetor spae V over Z

2

so that for any linear map T : V ! Z

t

2

, T does not map A

onto Z

t

2

.

Proof: Let V = Z

t+s

2

with s = bt=10 and let A be hosen at random by piking eah element

of V independently and with probability p = 1 � 2

�x

into the set with x = (t � 2 log t)2

�s

.

From Chebyshev's inequality we know that with probability at least 3=4, A has ardinality at

least pN � 2

p

pN for N = 2

s+t

. Using p > x= log e � x

2

=(2 log

2

e) one an show that this is as

many as laimed in the proposition. Let us ompute the probability that there exists a linear map

T : V ! Z

t

2

suh that T maps A onto Z

t

2

. There are 2

t(t+s)

possible maps T and eah of them

satis�es T (A) = Z

t

2

with probability at most

�

1� (1� p)

2

s

�

2

t

=

�

1� 2

�2

s

x

�

2

t

= (1�t

2

=2

t

)

2

t

< e

�t

2

.

So with probability almost 3=4, A is not small and still no T maps A onto Z

t

2

. 2

2.3 Choosing the linear map at random

In this subsetion we strengthen Theorem 6 and prove that if A is bigger than what is required

there by only a onstant fator, then almost all hoies of the linear transformation T work. This

may seem immediate at �rst glane sine Lemma 2.1 tells us that a random hoie for the next

vetor is good on average. In partiular, it might seem that for a random hoie of v

1

and v

2

in the

proof of Theorem 6, E

v

1

;v

2

(1 � jA + Spanfv

1

; v

2

gj=jV j) � �

4

. Unfortunately this is not the ase:

For example, think of A being a linear subspae ontaining half of V . In this ase, the ratio � of

points that are not overed is 1=2. As random vetors v

i

are hosen to be added to A, vetors in

A are hosen with probability 1=2. Thus, after i steps, � remains 1=2 with probability 1=2

i

and

beomes 0 otherwise. Thus, the expeted value of �

i

is 2

�i�1

whih is muh bigger than 2

�2

i

.

Our �rst lemma is tehnial in nature.

Lemma 2.3 Let �

i

for 1 � i � k be random variables and let 0 < �

0

< 1 be a onstant. Suppose

that for 0 � i < k we have 0 � �

i+1

� �

i

and onditioned on any set of values for �

1

; : : : ; �

i

we

have E[�

i+1

j�

1

; : : : ; �

i

℄ = �

2

i

. Then for any threshold 0 < t < 1 we have

Prob[�

k

� t℄ � �

k�log log(1=t)+log log(1=�

0

)

0

:

Proof: The proof is by indution on k. The k = 0 base ase is trivial.

We assume the statement of the lemma for k and prove it for k + 1. Let  = k � log log(1=t).

We may suppose + 1 + log log(1=�

0

) � 0 sine otherwise the bound in the lemma is greater than

1.

After the hoie of �

1

, the rest of the random variables form a random proess of length k

satisfying the onditions of the lemma (unless �

1

= 0); thus we an apply the indutive hypothesis

to get

Prob[�

k+1

� t℄ = E

�

1

[Prob[�

k+1

� t j �

1

℄℄ � E[f(�

1

)℄;

6



where we de�ne f

0

(x) = x

+log log(1=x)

for 0 < x < 1 and take f(x) = min(1; f

0

(x)) in the same

interval and f(0) = 0. The value f(�

1

) is learly an upper bound on Prob[�

k+1

� t j �

1

℄.

We laim that in the interval 0 � x � �

0

we have f(x) � f

0

(�

0

)x=�

0

. To prove this simply

observe that f

0

(x)=x is �rst inreasing then dereasing on (0; 1). To see this ompute the derivative

(f

0

(x)=x)

0

= (+log e�1+log log(1=x))f

0

(x)=x

2

. If �

0

is still in the inreasing phase then we have

f(x)=x � f

0

(x)=x � f

0

(�

0

)=�

0

for 0 < x � �

0

. Suppose now that �

0

is already in the dereasing

phase and de�ne x

0

= 2

�2

��1

. Notie that we assumed �

0

� x

0

in the beginning of the proof, so

we have f

0

(�

0

)=�

0

� f

0

(x

0

)=x

0

. Let us de�ne x

00

= x

02

= 2

�2

�

and notie that we have f(x) = 1 if

and only if x � x

00

. It is easy to hek that x

00

must still be in the inreasing phase of f

0

(x)=x thus

we have f(x)=x = f

0

(x)=x � f

0

(x

00

)=x

00

= 1=x

00

for 0 < x � x

00

. For x

00

� x < 1 we simply have

f(x)=x = 1=x � 1=x

00

. Thus we must have f(x)=x � 1=x

00

= f

0

(x

0

)=x

0

� f

0

(�

0

)=�

0

for 0 < x < 1.

We have thus proved the laim in all ases for 0 < x � �

0

. The laim is trivial for x = 0.

Using the laim we an �nish the proof writing:

Prob[�

k+1

� t℄ � E[f(�

1

)℄ � E[f

0

(�

0

)�

1

=�

0

℄ = f

0

(�

0

)E[�

1

℄=�

0

=

f

0

(�

0

)�

0

= �

+1+log log(1=�

0

)

0

:

2

We remark that the bound in the lemma is ahievable for t = �

2

j

0

with an integer 0 � j � k.

The optimal proess has �

i

= �

i�1

or �

i

= 0 for 1 � i � k � j, while �

i

= �

2

i�1

for k � j < i � k.

Theorem 7 a) For every � > 0 there is a onstant 

�

> 0 suh that the following holds. Let A be a

�nite set of vetors in a vetor spae V of an arbitrary dimension over Z

2

, let t > 0 be an integer.

If jAj � 

�

t2

t

then for a uniform random linear transformation T : V ! Z

t

2

Prob(T (A) = Z

t

2

) � 1� �:

b) If A is a subset of the vetor spae Z

u

2

of density jAj=2

u

= 1�� < 1 and 0 � t < u is an integer

then for a uniform random onto linear transformation T : Z

u

2

! Z

t

2

Prob(T (A) 6= Z

t

2

) � �

u�t�log t+log log(1=�)

:

Proof: We start with proving part b) of the theorem. In order to pik the onto map T we use

the following proess (similar to the one in the proof of Theorem 6). Pik s = u � t vetors

v

1

; : : : ; v

s

uniformly at random from the vetors in Z

u

2

and hoose T to be a random onto linear

transformation T : Z

u

2

! Z

t

2

with the onstraints T (v

i

) = 0 (i = 1; : : : ; s), i.e. the vetors v

1

; : : : ; v

s

are in the kernel of T . Note that the v

i

's are not neessarily linearly independent and that they

do not neessarily span the kernel. Still, the transformation T is indeed distributed uniformly at

random amongst all onto linear maps of Z

u

2

onto Z

t

2

.

Using notations similar to the ones used in the proof of Theorem 6, let A

0

= A, A

i

= A

0

+

Spanfv

1

; : : : ; v

i

g and �

i

= 1 � jA

i

j=2

u

for i = 0; : : : ; s. Clearly �

i

is nonnegative and monotone

dereasing in i with �

0

= �. The equation E[�

i+1

j �

1

; : : : ; �

i

℄ = �

2

i

is guaranteed by Lemma 2.1

sine A

i+1

= A

i

[ (A

i

+ v

i+1

) and v

i+1

is independent of �

j

for j � i. Thus all the onditions of

Lemma 2.3 are satis�ed and we have

Prob[�

s

� 2

�t

℄ � �

s�log t+log log(1=�)

:

By the de�nition of s the right hand side here is equal to the estimate in the theorem. Finally note

that (as in the proof of Theorem 6) when �

s

< 2

�t

then T (A) = Z

t

2

sine for x 2 Z

t

2

nT (A) the sets
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T

�1

(x) and A

s

were disjoint with sizes 2

u�t

and (1 � �

s

)2

u

> 2

u

� 2u� t, a ontradition. Thus

we have the laimed upper bound for the probability that T (A) 6= Z

t

2

.

Now we turn to part a) of the theorem and prove it using part b). Part a) is about a random

linear transformation, not neessarily onto, but this di�erene from the laim just proved poses

less of a problem, the diÆulty is that we do not have an a priori bound on 1 � jAj=jV j. In fat,

this ratio an be arbitrarily small. To solve this, we hoose the transformation T in two steps, the

�rst step ensuring that the density of the overed set is substantial, then applying part b) for the

seond step.

Let W = Z

u

2

, with u = dlog(2jAj=�)e. We fator T through W . First, we pik uniformly at

random a linear transformation T

0

: V ! W . Then, we pik a random onto linear map T

1

: W !

Z

t

2

, and set T = T

0

Æ T

1

. This results in a uniformly hosen linear map T : V ! Z

t

2

. This is

true even for a �xed onto T

1

and a random T

0

, sine the values T

0

(e

i

) for a basis e

1

; e

2

; : : : of V

are independent and uniformly distributed in W , thus the values T (e

i

) are also independent and

uniformly distributed in Z

t

2

.

Any pair of vetors v 6= w 2 A ollide (due to T

0

) with probability Prob[T

0

(v) = T

0

(w)℄ = 1=jW j.

Thus the expeted number of ollisions is

�

jAj

2

�

=jW j. Sine jT

0

(A)j � jAj=2 implies at least jAj=2

suh ollisions, Markov's inequality gives Prob[jT

0

(A)j � jAj=2℄ � 2

�

jAj

2

�

=(jAjjW j) < jAj=jW j � �=2.

For any �xed T

0

, part b) of the theorem gives

Prob[T (A) 6= Z

t

2

℄ � �

u�t�log t+log log(1=�)

;

where � = 1 � jT

0

(A)j=jW j. In ase jT

0

(A)j > jAj=2 we have � < 1 � jAj=(2jW j) < e

��=8

, thus

using the monotoniity of the bound above we get

Prob[T (A) 6= Z

t

2

℄ � e

��(u�t�log t+log(log e

�=8

))=8

: (1)

Choosing 

�

= 4(2=�)

8=�

we have that jAj � 

�

t2

t

implies u = dlog(2jAj=�)e > t+ log t+ log(4=�) +

(4=�) log(2=�). This implies that the bound in Equation 1 is less than �=2, thus we get Prob[T (A) 6=

Z

t

2

℄ � Prob[jT

0

(A)j � jAj=2℄ + �=2 < � as laimed. 2

We remark that a more areful analysis gives 

�

that is a small polynomial of 1=�.

3 The largest buket

3.1 Lower bound for the largest buket with a large �eld

We start by showing why linear hashing over a large �nite �eld is bad with respet to the expeted

largest buket size measure. This natural example shows that universality of the lass is not enough

to assure small bukets. For a �nite �eld F we prove the existene of a bad set S � F

2

of size

jSj = jF j suh that the expeted largest buket in S with respet to a random linear map F

2

! F

is big. We prove the results in Theorem 3 separately for quadrati and non-quadrati �elds.

We start with an intuitive desription of the onstrutions. Linear hashing of the plane ollapses

all straight lines of a random diretion. Thus, a bad set in the plane must ontain many points on

at least one line in many di�erent diretions. It is not hard to ome up with bad sets that ontain

many points of many di�erent lines, however the obvious onstrutions (subplane or grid) yield sets

where many of the \popular lines" tend to be parallel and thus they only over a few diretions.

This problem an be solved by a projetive transformation: the transformed set has many popular

lines, but they are no longer parallel.

For the non-quadrati ase, it is onvenient to expliitly use the onept of the projetive

plane over a �eld F . Reall that the projetive plane P over F is de�ned as (F

3

� f(0; 0; 0)g)=� ,
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where � is the equivalene relation (x; y; z) � (x; y; z) for all  6= 0. The aÆne plane F

2

is

embedded in P by the one-to-one map (x; y) 7! (x; y; 1). A line in P is given by an equation

f(x; y; z)jax+by+z = 0g, i.e., a projetive line orresponds to a plane in F

3

ontaining the origin.

All projetive lines are extensions (by one new point) of lines in the aÆne plane F

2

, exept for

the ideal line, given by f(x; y; z)jz = 0g. A projetive transformation mapping the ideal line to

another projetive line L is a map

~

f : P ! P obtained as the �-quotient of a nonsingular linear

map f : F

3

! F

3

mapping the plane orresponding to the ideal line into the plane orresponding

to L.

Projetive geometry is useful for understanding the behavior of linear hash funtions due to the

following fat whih is easily veri�ed: Piking a random non-trivial linear map F

2

! F as a hash

funtion and partitioning a subset S � F

2

into hash bukets aordingly, orresponds exatly to

piking a random point p on the ideal line and partitioning the points of S aording to whih line

through p they are on. This observation will be used expliitly in the proof of Theorem 9.

Theorem 8 Let F be a �nite �eld with jF j being a perfet square. There exists a set S � F

2

of

size jSj = jF j suh that for every linear map h : F

2

! F , S has a large buket, i.e. there exists a

value y 2 F with jh

�1

(y)j �

p

jF j.

Proof. We have a �nite �eld F

0

of whih F is a quadrati extension. Let jF

0

j = m and

jF j = m

2

= n. Let a be an arbitrary element in F n F

0

and de�ne S = f(

1

x+a

;

y

x+a

) j x; y 2 F

0

g.

Note that jSj = m

2

= jF j. Notie also, that S is the image of the subplane F

2

0

under the projetive

transformation (x; y) 7! (

1

x+a

;

y

x+a

).

Fix A;B 2 F and onsider the funtion h : F

2

! F de�ned by h(x; y) = Ax + By. We must

show that there is some C 2 F suh that jh

�1

(C) \ Sj � m. If B = 0 then h maps all the m

elements of S

0

= f(1=a; y=a) j y 2 F

0

g to C = A=a, as needed. Otherwise, we laim that there

is a C 2 F suh that both

C

B

and

aC�A

B

are in F

0

. To see this observe that if g

1

and g

2

are two

distint members of F

0

, then ag

1

and ag

2

lie in distint additive osets of F

0

in F , sine otherwise

their di�erene, a(g

1

� g

2

) would have to be in F

0

, ontraditing the fat that a 62 F

0

. Thus, as

g ranges over all members of F

0

, ag intersets distint additive osets of F

0

in F , and hene aF

0

intersets all those osets. In partiular, there is some g 2 F

0

so that ag 2 F

0

+

A

B

, implying that

C = gB satis�es the assertion of the laim. For the above C, de�ne y(x) = (C=B)x+(aC �A)=B;

it follows that y(x) 2 F

0

for every x 2 F

0

. We have now A

1

a+x

+B

y(x)

a+x

= C, showing that h maps

all the m elements of S

0

= f(

1

a+x

;

y(x)

a+x

) j x 2 F

0

g � S to C. 2

Theorem 9 Let F be a �nite �eld. There exists a set S � F

2

of size jSj = jF j suh that for more

than half of the linear maps h : F

2

! F , S has a large buket, i.e. there exists a value y 2 F with

jh

�1

(y)j � jF j

1=3

=3� 1.

Proof. First we onstrut a set S

0

� F

2

suh that jS

0

j � jF j = n and there are n distint lines

in the plane F

2

eah ontaining at least m � n

1=3

=3 points of S

0

.

Let us �rst onsider the ase when n is a prime, so F onsists of the integers modulo n. We

let A = fi j 1 � i <

p

ng and onsider the square grid S

0

= A � A. Clearly jS

0

j < n. It is well

known that eah of the n most popular lines ontains at least m � n

1=3

=3 points of S

0

. This is

usually proved for the same grid in the Eulidean plane (see e.g. [PA95℄, pp. 178{179) but that

result implies the same for our grid in F

2

.

Now let n = p

k

and let F

0

be the sub�eld in F of p elements. Let x 2 F be a primitive element,

then every element of F an be uniquely expressed as a polynomial of x of degree below k with
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oeÆients from F

0

. Let k

1

=

j

k+1

3

k

, k

2

= k � k

1

=

j

2k+1

3

k

and let A

1

= ff(x) j deg(f) < k

1

g,

A

2

= ff(x) j deg(f) < k

2

g where the polynomials f have oeÆients from F

0

. Finally we take

S

0

= A

1

� A

2

. Clearly jS

0

j = n. For a 2 A

1

and b 2 A

2

we onsider the line L

a;b

= f(y; ay + b) j

y 2 Fg in F

2

. Notie that there are n suh lines and we have ay+ b 2 A

2

whenever y 2 A

1

. Thus,

we have n distint lines eah ontaining m = jA

1

j = p

k

1

points of S

0

. We have m � n

1=3

as laimed

unless k � 1 (mod 3). Notie that for k � 2 (mod 3) our m is muh higher than n

1=3

. For the

bad ase k � 1 (mod 3) we apply the onstrution below instead.

Finally suppose n = p

k

, p is a prime and k � 1 (mod 3). To get our set S

0

in this ase we

have to merge the two onstrutions above. Let F

0

be the p element sub�eld of F , then F

0

onsists

of the integers modulo p. We set A = fi j 1 � i <

p

pg. Let k

1

= (k + 2)=3 and k

2

= (2k + 1)=3

and let x 2 F be a primitive element, so we an express any element of F uniquely as a polynomial

of x of degree less then k with oeÆients from F

0

. We set A

1

= ff(x) j deg(f) < k

1

^ f(0) 2 Ag,

A

2

= ff(x) j deg(f) < k

2

^ f(0) 2 Ag where the polynomials f have oeÆients from F

0

. Finally

we set S

0

= A

1

� A

2

. Clearly jS

0

j < n. For j; j

0

2 F

0

let L

j;j

0

= f(i; ji + j

0

) j i 2 F

0

g. Let

a and b be polynomials with oeÆients from F

0

with deg(a) < k

1

and deg(b) < k

2

. Consider

the line L

a;b

= f(y; a(x)y + b(x)) j y 2 Fg. We now ompute the value of jL

a;b

\ S

0

j. Note that

a point (y; a(x)y + b(x)) of L

a;b

is in S

0

if and only if y = f(x) for some polynomial f so that

deg(f) < k

1

, f(0) 2 A and a(0)f(0) + b(0) 2 A. The number of suh polynomials f is exatly

p

k

1

�1

jL

a(0);b(0)

\(A�A)j. Thus, jL

a;b

\S

0

j is exatly p

k

1

�1

jL

a(0);b(0)

\(A�A)j. Thus, from knowing

that the p most popular lines in F

2

0

ontain at least m

0

� p

1=3

=3 points from A � A we onlude

that there exist n distint lines eah ontaining at leastm = m

0

p

k

1

�1

� n

1=3

=3 points of S

0

; namely,

the lines L

a;b

for those hoies of a and b for whih L

a(0);b(0)

is a popular line in F

2

0

.

In all ases we have onstruted our set S

0

� F

2

of size jS

0

j � n with n distint popular lines

eah ontaining at least m > n

1=3

=3 points of S

0

. Let P be the projetive plane ontaining F

2

.

Out of the n

2

+n+1 points in P every popular line overs n+1. The ith popular line (1 � i � n)

an only have i� 1 intersetions with earlier lines, thus it overs at least n+2� i points previously

unovered. Therefore a total of at least

�

n+2

2

�

� 1 points are overed by popular lines. Simple

ounting gives the existene of a line L in P not among the popular lines, suh that more than

half of the points on L are overed by popular lines. Let f be a projetive transformation taking

the ideal line L

0

= P n F

2

to L. We de�ne S = fx 2 F

2

j f(x) 2 S

0

g = f

�1

(S

0

) \ F

2

. Clearly

jSj � jS

0

j � n.

One linear hash funtion h : F

2

! F is onstant zero (and thus all of S is a single buket), for

the rest there is a point x

h

2 L

0

suh that h ollapses the points of F

2

of eah single line going

through x

h

, as we observed at the beginning of the setion. Furthermore, if the linear non-zero

map is piked at random, all suh points x

h

are equally likely. Thus, the statement of the theorem

follows, if we show that for at least half the points x

h

on the ideal line, it holds that some line

through x

h

intersets S in at least n

1=3

=3 � 1 points. But some line through x

h

intersets S in at

least n

1=3

=3� 1 points if and only if some line through f(x

h

) intersets f(S) in at least n

1=3

=3� 1

(projetive) points. For this, it is suÆient that some line through f(x

h

) intersets S

0

in at least

(n

1=3

=3� 1) + 1 = n

1=3

=3 points (the +1 omes from the possibility of f(x

h

) 2 S

0

), i.e., that some

line through f(x

h

) is popular, in the sense we used above. But by de�nition of f , this is true for

at least half of the points x

h

on the ideal line, and we are done. 2

3.2 Upper bound for the largest buket with a small �eld

Let us now reall and prove our main result.

For onveniene here we speak about hashing n log n keys to n values. Also, we assume that n
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is a power of 2.

Theorem 5: Let H be the lass of linear transformations between two vetor spaes over Z

2

, then

L

n

n logn

(H) = O(log n log log n):

This theorem implies Theorem 4.

We have to bound the probability of the event that many elements in the set S are mapped to

a single element in the range. Denote this bad event by E

1

. The overall idea is to present another

(less natural) event E

2

and show that the probability of E

2

is small, yet the probability of E

2

given

E

1

is big. Thus, the probability of E

1

must be small. We remark here that a somewhat similar line

of reasoning was used in the seminal paper of Vapnik and Chervonenkis [VC71℄.

For the proof we �x the domain to be D = Z

m

2

, the range (the bukets) to be B = Z

log n

2

, and

S � D of size jSj = n logn.

Let us hoose arbitrary ` � log n and onsider the spae A = Z

`

2

. We onstrut the linear

transformation h : D ! B through the intermediate range A in the following way. We hoose

uniformly at random a linear transformation h

1

: D ! A and uniformly at random an onto linear

transformation h

2

: A! B. Now we de�ne h

def

= h

1

Æh

2

. Note that as mentioned in the proof of part

a) of Theorem 7 this yields an h whih is uniformly hosen from among all linear transformations

from D to B.

Let us �x a threshold t. We de�ne two events. E

1

is the existene of a buket of size at least t:

Event E

1

: There exists an element � 2 B suh that

�

�

�

h

�1

(�) \ S

�

�

�

> t:

We are going to limit the probability of E

1

through the seemingly unrelated event E

2

:

Event E

2

: There exists an element � 2 B suh that

h

�1

2

(�) � h

1

(S):

Consider the distribution spae in whih h

1

and h

2

are uniformly hosen as above. We shall

show that

Proposition 3.1 If d = 2

`

=(n log n) > 1 we have

Prob[E

2

℄ � d

� log d�log log d

:

Proposition 3.2 If t > 

1=2

(2

`

=n) log(2

`

=n) (with 

1=2

from Theorem 7a)) then

Prob[E

2

jE

1

℄ �

1

2

:

From Propositions 3.1 and 3.2 we dedue that the probability of E

1

must be small:

Corollary 3.3 There is a onstant C, so that for all r > 4 and every power of two n, the following

holds: If a subset S of size jSj = n log n of a vetor spae over Z

2

is hashed by a random linear

transformation to Z

log n

2

, we have

Prob[maximum buket size > rC logn log logn℄ � 2(r= log r)

� log(r= log r)�log log(r= log r)

:

11



Proof: Given r > 4, let l = blog n+log log n+log r� log log r+1 and let t = 4

1=2

r logn log logn:

Letting d = 2

l

=(n log n), we have d = 2

l

=(n log n) � 2

log n+log logn+log r�log log r

=(n log n) = r= log r >

1 and 2

l

=n � 2

log n+log log n+log r�log log r+1

=n = 2 log n(r= log r), so



1=2

(2

l

=n) log(2

l

=n) < 

1=2

(2 log n(r= log r))(1 + log log n+ log r)

< 

1=2

2 log n(r= log r)(2 log logn log r)

= 4

1=2

r logn log log n

= t;

so the onditions of Proposition 3.1 and 3.2 are satis�ed, and, ombining their onlusions, we get

Pr[E

1

℄ � 2Pr[E

2

℄ � 2d

� log d�log log d

:

But the event E

1

is the event that the biggest buket is bigger than t = 4

1=2

r logn log logn and

sine d � r= log r, the statement of the orollary follows, by putting C = 4

1=2

. 2

Let us now prove the propositions above.

Proof of Proposition 3.1: Note �rst that an alternative way to desribe E

2

is

h

2

(A n h

1

(S)) 6= B:

We will prove that Proposition 3.1 holds for any spei� h

1

, and thus it also holds for a randomly

hosen h

1

. So �x h

1

and onsider the distribution in whih h

2

is hosen uniformly amongst all full

rank linear transformation from A to B.

We use part b) of Theorem 7 for the set A n h

1

(S) � A. Its density is learly 1 � � for

� = jh

1

(S)j=jAj � jSj=jAj = 1=d. Thus the theorem gives Prob[E

2

℄ � �

`�log n�log log n+log log(1=�)

�

d

� log d�log log d

as laimed. 2

Proof of Proposition 3.2: Fix h for whih E

1

holds, and �x any full rank h

2

. We will show that

the probability of event E

2

is at least 1=2 even when these two are �xed and thus the onditional

probability is also at least 1=2.

Now sine E

1

holds there is a subset S

0

� S of ardinality at least t mapped by h to a single

element � 2 Z

log n

2

. Fix this � and de�ne D

0

def

= h

�1

(�) and A

0

def

= h

�1

2

(�). Consider the distribution

of h

1

satisfying h = h

1

Æ h

2

. When we restrit h

1

to D

0

, we get that the distribution implied by

suh h

1

is a uniform hoie of an aÆne or linear map from D

0

into A

0

(we show this in Proposition

3.4 below). For event E

2

to hold it is enough to have A

0

� h

1

(S). We will show that h

1

(S

0

) overs

all the points in A

0

with probability at least 1=2 and thus we get that event E

2

happens with

probability 1=2. Sine h

2

is onto we have jA

0

j = 2

`

=n. On the other hand, D

0

\S has ardinality at

least t = d

1=2

(2

`

=n) log(2

`

=n)e. By part a) of Theorem 7, the probability that a set of ardinality

t mapped by a random linear transformation will over a range of ardinality 2

`

=n is at least 1=2.

(Note that Theorem 7, part a) learly applies to a random aÆne transformation too.) 2

At this point, we have proven Corollary 3.3. This limits the probability of large bukets with

linear hashing. It is straightforward to dedue Theorem 5 from that orollary:

Proof of Theorem 5: L

n

n log n

is the expetation of the distribution of the largest buket size.

Corollary 3.3 limits the probability of the tail of this distribution, thus yielding the desired bound

on the expetation. The onstant C is from Corollary 3.3 and we set K = C log n log log n.

E[maxS-buket size℄ =

1

Z

0

Prob[maxS-buket size > t℄dt
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� 4K +

1

Z

4K

Prob[maxS-buket size > t℄dt

= 4K +K

1

Z

4

Prob[maxS-buket size > rK℄dr

� 4K +K

1

Z

4

2(r= log r)

� log(r= log r)�log log(r= log r)

dr

= O(K) = O(log n log log n):

2

In order for the paper to be self-ontained we inlude a proof of the simple statement about

random linear transformations used above.

Proposition 3.4 Let D, A and B be vetor spaes over Z

2

. Let h : D ! B be an arbitrary linear

map, and let h

2

: A ! B be an arbitrary onto linear map. Let � be any point in B and denote

D

0

def

= h

�1

(�) and A

0

def

= h

�1

2

(�). Then, hoosing a uniform linear map h

1

: D ! A suh that

h = h

1

Æ h

2

and restriting the domain to D

0

we get a uniformly hosen linear map from D

0

to A

0

if � = 0 or uniformly hosen aÆne map from D

0

to A

0

otherwise.

Proof: Consider D

0

def

= h

�1

(0) and A

0

def

= h

�1

2

(0). Let us hoose a omplement spae D

1

to

D

0

in D, i.e. D

0

\ D

1

= f0g and D

0

+ D

1

= D. Let us all x the unique vetor in D

0

\ D

1

.

We have D

0

= D

0

+ x. A linear transformation h

1

: D ! A is determined by its two restritions

h

0

: D

0

! A and h

00

: D

1

! A. Clearly the uniform random hoie of h

1

orresponds to uniform

and independent hoies for h

0

and h

00

. The restrition h = h

1

Æ h

2

means that h

0

(D

0

) � A

0

and

h

00

Æ h

2

is the restrition of h to D

1

. Thus, after the restrition the random hoies of h

0

and h

00

are still independent. Note now that if � = 0 then the restrition of h

1

in question is exatly

h

0

: D

0

! A

0

. If � 6= 0 then use h

1

(u + x) = h

0

(u) + h

00

(x) for u 2 D

0

to note that the restrition

in question is again h

0

, this time translated by the random value h

00

(x) 2 A

0

. 2

4 Remarks and open questions

We have disussed the ase of a very small �eld (size 2) and a very large �eld (size n). What

happens with intermediate sized �elds? Some immediate rough generalizations of our bounds are

the following: If we hash an adversely hosen subset of F

m

of size n = jF j

k

to F

k

by a randomly

hosen linear map, the expeted size of the largest buket is at most O((log n log logn)

log jF j

) and

at least 
(jF j

1=3

). Tighter bounds should be possible.

Another question is whih properties other well known hash families have. Examples of

the families we have in mind inlude: Arithmeti over Z

p

[CW79, FKS84℄ (with h

a;b

(x) = (ax +

b mod p) mod n), integer multipliation [DHKP97, AHNR95℄ (with h

a

(x) = (ax mod 2

k

) div 2

k�l

),

Boolean onvolution [MNT93℄ (with h

a

(x) = a Æ x projeted to some subspae).

An example of a natural non-linear sheme for whih the assertion of Theorem 6 fails is the

sheme that maps integers between 1 and p, for some large prime p, to integers between 0 and n�1

for n = dp=me, by mapping x 2 Z

p

to (ax + b mod p) div m, where a; b are two randomly hosen

elements of Z

p

. For this sheme, there are primes p and hoies of n and a subset S of ardinality


(n logn log log log n) of Z

p

, whih is not mapped by the above mapping onto [0; n� 1℄ under any

hoie of a and b.
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To see this, let p be a prime satisfying p � 3 (mod 4) and onsider the set

S = fj

2

mod p j j 2 Z

p

n f0gg;

of all quadrati residues modulo p. Note that for every nonzero element a 2 Z

p

, the set aS ( mod p)

is either the set of all quadrati residues or the set of all quadrati non-residues modulo p. The

main result of Graham and Ringrose [GR90℄ asserts that for in�nitely many primes p, the smallest

quadrati nonresidue modulo p is at least 
(log p log log log p) (this result holds for primes p �

3 ( mod 4) as well, as follows from the remark at the end of [GR90℄). Sine for suh primes p,

�1 is a quadrati nonresidue, it follows that for the above S and for any hoie of a; b 2 Z

p

,

the set aS + b (omputed in Z

p

) avoids intervals of length at least 
(log p log log log p). Choosing

m =  log p log log log p for an appropriate (small) onstant , and de�ning n = dp=me, it follows

that jSj = (p � 1)=2 = 
(n logn log log log n) is not mapped onto [0; n � 1℄ under any hoie of a

and b.

A �nal question is whether there exists a lassH of size only 2

O(log log jU j+logn)

and with L

n

n

(H) =

O(log n= log logn). Note that linear maps over Z

2

, even ombined with ollapsing the universe, use

O(log log jU j+ (logn)

2

) random bits while the simple sheme using higher degree polynomials uses

O(log log jU j+ (log n)

2

= log log n).
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