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Abstra
t

Consider the set H of all linear (or aÆne) transformations between two ve
tor spa
es over a

�nite �eld F . We study how good H is as a 
lass of hash fun
tions, namely we 
onsider hashing

a set S of size n into a range having the same 
ardinality n by a randomly 
hosen fun
tion

from H and look at the expe
ted size of the largest hash bu
ket. H is a universal 
lass of hash

fun
tions for any �nite �eld, but with respe
t to our measure di�erent �elds behave di�erently.

If the �nite �eld F has n elements then there is a bad set S � F

2

of size n with expe
ted

maximal bu
ket size 
(n

1=3

). If n is a perfe
t square then there is even a bad set with largest

bu
ket size always at least

p

n. (This is worst possible, sin
e with respe
t to a universal 
lass

of hash fun
tions every set of size n has expe
ted largest bu
ket size below

p

n+ 1=2.)

If, however, we 
onsider the �eld of two elements then we get mu
h better bounds. The

best previously known upper bound on the expe
ted size of the largest bu
ket for this 
lass was

O(2

p

logn

). We redu
e this upper bound to O(log n log logn). Note that this is not far from the

guarantee for a random fun
tion. There, the average largest bu
ket would be �(logn= log logn).

In the 
ourse of our proof we develop a tool whi
h may be of independent interest. Suppose

we have a subset S of a ve
tor spa
e D over Z

2

, and 
onsider a random linear mapping of D to

a smaller ve
tor spa
e R. If the 
ardinality of S is larger than 


�

jRj log jRj then with probability

1� �, the image of S will 
over all elements in the range.

1 Introdu
tion

Consider distributing n balls in s bu
kets, randomly and independently. The resulting distribution

of the balls in the bu
kets is the obje
t of o

upan
y theory.
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In the theory of algorithms and in 
omplexity theory, it is often ne
essary and useful to 
onsider

putting balls in bu
kets without 
omplete independen
e. More pre
isely, the following setting is

studied: A 
lass H of hash fun
tions, ea
h mapping a universe U to f1; 2; : : : ; sg, is �xed. A set

S � U to be hashed is given by an adversary, a member h 2 H is 
hosen uniformly at random, S is

hashed using h, and the distribution of the multi-set fh(x)jx 2 Sg is studied. If the 
lass H is the


lass of all fun
tions between U and f1; 2; : : : ; sg, we get the 
lassi
al o

upan
y problems. Carter

and Wegman de�ned a 
lass H to be universal if

8x 6= y 2 U : Prob(h(x) = h(y)) � 1=s:

We remark that a stri
ter de�nition is often used in the 
omplexity theory literature.

For universal families, the following properties are well known; variations of them have been

used extensively in various settings:

1. If S of size n is hashed to n

2

bu
kets, with probability more than 1=2, no 
ollision o

urs.

2. If S of size 2n

2

is hashed to n bu
kets, with probability more than 1=2, every bu
ket re
eives

an element.

3. If S of size n is hashed to n bu
kets, the expe
ted size of the largest bu
ket is less than

p

n+

1

2

.

The intuition behind universal hashing is that we often lose relatively little 
ompared to using a


ompletely random map. Note that for the property 1, this is true in a very strong sense; even with


omplete randomness, we do not expe
t o(n

2

) bu
kets to suÆ
e (the birthday paradox), so nothing

is lost by using a universal family instead. The bounds in the se
ond and third properties, however,

are rather 
oarse 
ompared to what one would get with 
omplete randomness. For property 2, with


omplete randomness, �(n logn) balls would suÆ
e to 
over the bu
kets with good probability

(the 
oupon 
olle
tor's theorem), i.e. a polynomial improvement over n

2

, and for property 3,

with 
omplete randomness, we expe
t the largest bu
ket to have size �(log n= log logn), i.e. an

exponential improvement over

p

n. In these last 
ases we do seem to lose quite a lot 
ompared to

using a 
ompletely random map and better bounds would seem desirable. However, it is rather

easy to 
onstru
t (unnatural) examples of universal families and sets to be hashed showing that

size �(n

2

) is ne
essary to 
over n bu
kets with non-zero probability, and that bu
kets of size

p

n

are in general unavoidable, when a set of size n is hashed to n bu
kets. This shows that the abstra
t

property of universality does not allow for stronger statements. Now �x a 
on
rete universal family

of hash fun
tions. We ask the following question: To whi
h extent are the �ner o

upan
y properties

of 
ompletely random maps preserved?

We provide answers to these questions for the 
ase of linear maps between two ve
tor spa
es

over a �nite �eld, a natural and well known 
lass of universal (in the sense of Carter and Wegmen)

hash fun
tions. The general 
avor of our results is that \large �elds are bad", in the sense that the

bounds be
ome the worst possible for universal families, while \small �elds are good" in the sense

that the bounds be
ome as good or almost as good as the ones for independently distributed balls.

More pre
isely, for the 
overing problem, we show the following (easy) theorem.

Theorem 1 Let F be a �eld of size n and let H be the 
lass of linear maps between F

2

and F .

There is a subset S of F

2

of size �(jF j

2

), so that for no h 2 H, h(S) = F .

On the other hand, we prove the following harder theorem.

Theorem 2 Let S be a subset of a ve
tor spa
e over Z

2

and 
hoose a random linear map to a

smaller ve
tor spa
e R. If jSj � 


�

jRj log jRj then with probability at least 1 � � the image of S


overs the entire range R.
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For the \largest bu
ket problem", let us �rst introdu
e some notation: Let U be the universe

from whi
h the keys are 
hosen. We �x a 
lass H of fun
tions mapping U to f1; : : : ; sg. Then, a

set S � U of size n is 
hosen by an adversary, and we uniformly at random pi
k a hash fun
tion

h 2 H, hash S using h and look at the size of the largest resulting hash bu
ket. We denote the

expe
tation of this size by L

s

n

. Formally,

L

s

n

(H) = max

S�U;jSj=n

E

h2H

[ max

y2f1;:::;sg

jfx 2 S j h(x) = ygj℄:

Usually we think of s being of size 
lose to n. Note that if s = 
(n

2

), any universal 
lass yields

L

s

n

= O(1).

The 
lass H we will 
onsider is the set of linear maps between F

m

! F

k

for m > k. Here F is

a �nite �eld and s = jF j

k

. This 
lass is universal for all values of the parameters.

When k = 1 and thus jF j = s the expe
ted largest bu
ket 
an be large.

Theorem 3 Let F be a �nite �eld with jF j = s. For the 
lass H of all linear transformations

F

2

! F we have

L

s

s

(H) = 
(s

1=3

):

Furthermore if jF j is a perfe
t square we have

L

s

s

(H) >

p

s:

Note how 
lose our lower bound for quadrati
 �elds is to the upper bound of

p

s+ 1=2 that holds

for every universal 
lass. We also mention that for the bad set we 
onstru
t in Theorem 8 for a

quadrati
 �eld there is no good linear hash fun
tion, sin
e there always exists a bu
ket of size at

least

p

s.

When the �eld is the �eld of two elements, the situation is 
ompletely di�erent. Markowsky,

Carter and Wegman [MCW78℄ showed that for this 
ase L

s

s

(H) = O(s

1=4

). Mehlhorn and Vishkin

[MV84℄ improved on this result (although this is impli
it in their paper) and showed that L

s

s

(H) =

O(2

p

log s

). We further improve the bound and show that:

Theorem 4 For the 
lass H of all linear transformations between two ve
tor spa
es over Z

2

,

L

s

s

(H) = O(log s log log s):

Furthermore, we also show that even if the range is smaller than jSj by a logarithmi
 fa
tor, the

same still holds:

Theorem 5 For the 
lass H of all linear transformations between two ve
tor spa
es over Z

2

,

L

s

s log s

(H) = O(log s log log s):

Note that even if one uses the 
lass R of all fun
tions one obtains only a slightly better result:

the expe
ted size of the largest bu
ket in this 
ase is L

s

s

(R) = �(log s= log log s) and L

s

s log s

(R) =

�(log s), whi
h is the best possible bound for any 
lass. Interestingly, our upper bound is based on

our upper bound for the 
overing property.

We do not have any non-trivial lower bounds on L

s

s

for the 
lass of linear maps over Z

2

, i.e., it

might be as good as O(log s= log log s). We leave this as an open question.
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1.1 Motivation

There is no doubt that the method of implementing a di
tionary by hashing with 
haining, re
om-

mended in textbooks [CLR90, GBY90℄ espe
ially for situations with many update operations, is a

pra
ti
ally important s
heme.

In situations in whi
h a good bound on the 
ost of single operations is important, e. g., in

real-time appli
ations, the expe
ted maximal bu
ket size as formed by all keys ever present in the

di
tionary during a time interval plays a 
ru
ial role. Our results show that, at least as long as the

size of the hash table 
an be determined right at the start, using a hash family of linear fun
tions

over Z

2

will perform very well in this respe
t. For other simple hash 
lasses su
h bounds on the

worst 
ase bu
ket size are not available, or even fail to hold (see example in Se
tion 4); other, more

sophisti
ated hash families [S89, DM90, DGMP92℄ that do guarantee small maximal bu
ket sizes


onsist of fun
tions with higher evaluation time. Of 
ourse, if worst 
ase 
onstant time for 
ertain

operations is absolutely ne
essary, the known two-level hashing s
hemes 
an be used, e. g., the FKS

s
heme [FKS84℄ for stati
 di
tionaries; dynami
 perfe
t hashing [DKMHRT94℄ for the dynami
 
ase

with 
onstant time lookups and expe
ted time O(n) for n update operations; and the \real-time

di
tionaries" from [DM90℄ that perform ea
h operation in 
onstant time, with high probability. It

should be noted, however, that a pri
e is to be paid for the guaranteed 
onstant lookup time in

the dynami
 s
hemes: the (average) 
ost of insertions is signi�
antly higher than in simple s
hemes

like 
hained hashing; the overall storage requirements are higher as well.

1.2 Related work

Another dire
tion in trying to show that a spe
i�
 
lass has a good bound on the expe
ted size of

the largest bu
ket is to build a 
lass spe
i�
ally designed to have su
h good property.

One immediate su
h result is obtained by looking at the 
lass H of d-degree polynomials over

�nite �elds, where d = 
 log n= log log n (see, e.g., [ABI86℄.) It is easy to see that this 
lass maps

ea
h d elements of the domain independently to the range, and thus, the bound that applies to the


lass of all fun
tions also applies to this 
lass. We 
an 
ombine this with the following well known


onstru
tion, found in, e.g., [FKS84℄, and sometimes 
alled \
ollapsing the universe": There is a


lass C of size 2

�(log n+log log jU j)


ontaining fun
tions mapping U to f1; : : : ; n

k+2

g, so that, for any

set S of size n, a randomly 
hosen map from C will be one-to-one with probability 1�O(1=n

k

).

The 
lass 
onsisting of fun
tions obtained by �rst applying a member of C, then a member of H

is then a 
lass with L

n

n

= �(logn= log logn) and size 2

O(log log jU j+log

2

n= log logn)

and with evaluation

time O(logn= log log n) in a reasonable model of 
omputation, say, a RAM with unit 
ost operations

on members of the universe to be hashed.

More eÆ
ient (but mu
h larger) families were given by Siegel [S89℄ and by Dietzfelbinger and

Meyer auf der Heide [DM90℄. Both provide families of size jU j

n

�

su
h that the fun
tions 
an be

evaluated in O(1) time on a RAM and with L

n

n

= �(logn= log log n). The families from [S89℄ and

[DM90℄ are somewhat 
omplex to implement while the 
lass of linear maps requires only very basi


bit operations (as dis
ussed already in [CW79℄). It is therefore desirable to study this 
lass, and

this is the main purpose of the present paper.

1.3 Notation

If S is a subset of the domain D of a fun
tion h we use h(S) to denote fh(s) j s 2 Sg. If x is

an element of the range we use h

�1

(x) to denote fs 2 D j h(s) = xg. If A and B are subsets

of a ve
tor spa
e V and x 2 V we use the notations A + B = fa + b j a 2 A ^ b 2 Bg and
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x + A = fx + a j a 2 Ag. We use Z

2

to denote the �eld with 2 elements. All logarithms in this

paper are base two.

2 The 
overing property

2.1 Lower bounds for 
overing with a large �eld

We prove Theorem 1. Take any set A � F of size jAj = bjF j=2
 and 
onsider S = f(x; y) j y 6=

0 ^ x=y 2 A ^ (x � 1)=y 62 Ag. S has density around one quarter. To see this, note that if x

and y are pi
ked randomly and independently in F

�

, (x=y; (x� 1)=y) has the same distribution as

(x; x � y). Also, no linear map g : F

2

! F satis�es g(S) = F . To see this take a nonzero linear

map g : (x; y) 7! ax + by and note that if 0 2 g(S) then a 6= 0 and �b=a 2 A but in this 
ase

a 62 g(S).

2.2 Upper bounds for 
overing with a small �eld - the existential 
ase

We start by showing that if we have a subset A of a ve
tor spa
e over Z

2

and jAj is suÆ
iently

larger than another spa
e W then there exists a linear transformation T mapping A to the entire

range T (A) =W . The 
onstant e below is the base of the natural logarithm.

Theorem 6 Let A be a �nite set of ve
tors in a ve
tor spa
e V of an arbitrary dimension over Z

2

and let t > 0 be an integer. If jAj > t2

t

= log e then there exists a linear map T : V ! Z

t

2

, so that

T maps A onto Z

t

2

.

For the proof of this theorem we need the following simple lemma. Note that although we state

the lemma for ve
tor spa
es, it holds for any �nite group.

Lemma 2.1 Let V be a �nite ve
tor spa
e, A � V , � = 1� jAj=jV j. Then for a random v 2 V ,

E

v

(1� jA [ (v +A)j=jV j) = �

2

:

Proof. If v and u are both 
hosen uniformly independently at random from V then both events

u 62 A and u 62 v +A have probability � and they are independent. 2

Proof of Theorem 6. Let m be the dimension of V , N = jAj and � = 1� jAj=jV j = 1�N=2

m

.

Starting with A

0

= A, we 
hoose a ve
tor v

1

2 V so that for A

1

= A

0

[ (v

1

+A

0

)

1�

jA

1

j

jV j

� �

2

:

Su
h a 
hoi
e for v

1

exists by Lemma 2.1. Then, by the same pro
edure, we 
hoose a v

2

so that for

A

2

= A

1

[ (v

2

+A

1

) = A+ Spanfv

1

; v

2

g;

1�

jA

2

j

jV j

� �

4

;

and so on up to A

s

= A+ Spanfv

1

; : : : ; v

s

g with s = m� t for whi
h

1�

jA

s

j

jV j

� �

2

s

:

5



Note that one 
an assume that the ve
tors v

1

; : : : ; v

s

are linearly independent sin
e 
hoosing a

ve
tor v

i

whi
h linearly depends on the ve
tors formerly 
hosen makes A

i

= A

i�1

.

Let W = Spanfv

1

; : : : ; v

s

g. We have A +W = V sin
e for x 2 V n (A +W ) the sets x +W

and A + W = A

s

were disjoint, a 
ontradi
tion as jx + W j = jW j and jA

s

j � 2

m

� 2

m

�

2

s

�

2

m

� 2

m

e

�N2

�t

> jV j � jW j.

We 
hoose an onto linear map T : V ! Z

t

2

su
h that its kernel T

�1

(0) equalsW . As T (W ) = f0g

we have T (A) = T (A+W ) = T (V ) = Z

t

2

as 
laimed. 2

The bound in Theorem 6 is asymptoti
ally tight as shown by the following proposition.

Proposition 2.2 For every large enough integer t there is a set A of at least (t � 3 log t)2

t

= log e

ve
tors in a ve
tor spa
e V over Z

2

so that for any linear map T : V ! Z

t

2

, T does not map A

onto Z

t

2

.

Proof: Let V = Z

t+s

2

with s = bt=10
 and let A be 
hosen at random by pi
king ea
h element

of V independently and with probability p = 1 � 2

�x

into the set with x = (t � 2 log t)2

�s

.

From Chebyshev's inequality we know that with probability at least 3=4, A has 
ardinality at

least pN � 2

p

pN for N = 2

s+t

. Using p > x= log e � x

2

=(2 log

2

e) one 
an show that this is as

many as 
laimed in the proposition. Let us 
ompute the probability that there exists a linear map

T : V ! Z

t

2

su
h that T maps A onto Z

t

2

. There are 2

t(t+s)

possible maps T and ea
h of them

satis�es T (A) = Z

t

2

with probability at most

�

1� (1� p)

2

s

�

2

t

=

�

1� 2

�2

s

x

�

2

t

= (1�t

2

=2

t

)

2

t

< e

�t

2

.

So with probability almost 3=4, A is not small and still no T maps A onto Z

t

2

. 2

2.3 Choosing the linear map at random

In this subse
tion we strengthen Theorem 6 and prove that if A is bigger than what is required

there by only a 
onstant fa
tor, then almost all 
hoi
es of the linear transformation T work. This

may seem immediate at �rst glan
e sin
e Lemma 2.1 tells us that a random 
hoi
e for the next

ve
tor is good on average. In parti
ular, it might seem that for a random 
hoi
e of v

1

and v

2

in the

proof of Theorem 6, E

v

1

;v

2

(1 � jA + Spanfv

1

; v

2

gj=jV j) � �

4

. Unfortunately this is not the 
ase:

For example, think of A being a linear subspa
e 
ontaining half of V . In this 
ase, the ratio � of

points that are not 
overed is 1=2. As random ve
tors v

i

are 
hosen to be added to A, ve
tors in

A are 
hosen with probability 1=2. Thus, after i steps, � remains 1=2 with probability 1=2

i

and

be
omes 0 otherwise. Thus, the expe
ted value of �

i

is 2

�i�1

whi
h is mu
h bigger than 2

�2

i

.

Our �rst lemma is te
hni
al in nature.

Lemma 2.3 Let �

i

for 1 � i � k be random variables and let 0 < �

0

< 1 be a 
onstant. Suppose

that for 0 � i < k we have 0 � �

i+1

� �

i

and 
onditioned on any set of values for �

1

; : : : ; �

i

we

have E[�

i+1

j�

1

; : : : ; �

i

℄ = �

2

i

. Then for any threshold 0 < t < 1 we have

Prob[�

k

� t℄ � �

k�log log(1=t)+log log(1=�

0

)

0

:

Proof: The proof is by indu
tion on k. The k = 0 base 
ase is trivial.

We assume the statement of the lemma for k and prove it for k + 1. Let 
 = k � log log(1=t).

We may suppose 
+ 1 + log log(1=�

0

) � 0 sin
e otherwise the bound in the lemma is greater than

1.

After the 
hoi
e of �

1

, the rest of the random variables form a random pro
ess of length k

satisfying the 
onditions of the lemma (unless �

1

= 0); thus we 
an apply the indu
tive hypothesis

to get

Prob[�

k+1

� t℄ = E

�

1

[Prob[�

k+1

� t j �

1

℄℄ � E[f(�

1

)℄;

6



where we de�ne f

0

(x) = x


+log log(1=x)

for 0 < x < 1 and take f(x) = min(1; f

0

(x)) in the same

interval and f(0) = 0. The value f(�

1

) is 
learly an upper bound on Prob[�

k+1

� t j �

1

℄.

We 
laim that in the interval 0 � x � �

0

we have f(x) � f

0

(�

0

)x=�

0

. To prove this simply

observe that f

0

(x)=x is �rst in
reasing then de
reasing on (0; 1). To see this 
ompute the derivative

(f

0

(x)=x)

0

= (
+log e�1+log log(1=x))f

0

(x)=x

2

. If �

0

is still in the in
reasing phase then we have

f(x)=x � f

0

(x)=x � f

0

(�

0

)=�

0

for 0 < x � �

0

. Suppose now that �

0

is already in the de
reasing

phase and de�ne x

0

= 2

�2

�
�1

. Noti
e that we assumed �

0

� x

0

in the beginning of the proof, so

we have f

0

(�

0

)=�

0

� f

0

(x

0

)=x

0

. Let us de�ne x

00

= x

02

= 2

�2

�


and noti
e that we have f(x) = 1 if

and only if x � x

00

. It is easy to 
he
k that x

00

must still be in the in
reasing phase of f

0

(x)=x thus

we have f(x)=x = f

0

(x)=x � f

0

(x

00

)=x

00

= 1=x

00

for 0 < x � x

00

. For x

00

� x < 1 we simply have

f(x)=x = 1=x � 1=x

00

. Thus we must have f(x)=x � 1=x

00

= f

0

(x

0

)=x

0

� f

0

(�

0

)=�

0

for 0 < x < 1.

We have thus proved the 
laim in all 
ases for 0 < x � �

0

. The 
laim is trivial for x = 0.

Using the 
laim we 
an �nish the proof writing:

Prob[�

k+1

� t℄ � E[f(�

1

)℄ � E[f

0

(�

0

)�

1

=�

0

℄ = f

0

(�

0

)E[�

1

℄=�

0

=

f

0

(�

0

)�

0

= �


+1+log log(1=�

0

)

0

:

2

We remark that the bound in the lemma is a
hievable for t = �

2

j

0

with an integer 0 � j � k.

The optimal pro
ess has �

i

= �

i�1

or �

i

= 0 for 1 � i � k � j, while �

i

= �

2

i�1

for k � j < i � k.

Theorem 7 a) For every � > 0 there is a 
onstant 


�

> 0 su
h that the following holds. Let A be a

�nite set of ve
tors in a ve
tor spa
e V of an arbitrary dimension over Z

2

, let t > 0 be an integer.

If jAj � 


�

t2

t

then for a uniform random linear transformation T : V ! Z

t

2

Prob(T (A) = Z

t

2

) � 1� �:

b) If A is a subset of the ve
tor spa
e Z

u

2

of density jAj=2

u

= 1�� < 1 and 0 � t < u is an integer

then for a uniform random onto linear transformation T : Z

u

2

! Z

t

2

Prob(T (A) 6= Z

t

2

) � �

u�t�log t+log log(1=�)

:

Proof: We start with proving part b) of the theorem. In order to pi
k the onto map T we use

the following pro
ess (similar to the one in the proof of Theorem 6). Pi
k s = u � t ve
tors

v

1

; : : : ; v

s

uniformly at random from the ve
tors in Z

u

2

and 
hoose T to be a random onto linear

transformation T : Z

u

2

! Z

t

2

with the 
onstraints T (v

i

) = 0 (i = 1; : : : ; s), i.e. the ve
tors v

1

; : : : ; v

s

are in the kernel of T . Note that the v

i

's are not ne
essarily linearly independent and that they

do not ne
essarily span the kernel. Still, the transformation T is indeed distributed uniformly at

random amongst all onto linear maps of Z

u

2

onto Z

t

2

.

Using notations similar to the ones used in the proof of Theorem 6, let A

0

= A, A

i

= A

0

+

Spanfv

1

; : : : ; v

i

g and �

i

= 1 � jA

i

j=2

u

for i = 0; : : : ; s. Clearly �

i

is nonnegative and monotone

de
reasing in i with �

0

= �. The equation E[�

i+1

j �

1

; : : : ; �

i

℄ = �

2

i

is guaranteed by Lemma 2.1

sin
e A

i+1

= A

i

[ (A

i

+ v

i+1

) and v

i+1

is independent of �

j

for j � i. Thus all the 
onditions of

Lemma 2.3 are satis�ed and we have

Prob[�

s

� 2

�t

℄ � �

s�log t+log log(1=�)

:

By the de�nition of s the right hand side here is equal to the estimate in the theorem. Finally note

that (as in the proof of Theorem 6) when �

s

< 2

�t

then T (A) = Z

t

2

sin
e for x 2 Z

t

2

nT (A) the sets

7



T

�1

(x) and A

s

were disjoint with sizes 2

u�t

and (1 � �

s

)2

u

> 2

u

� 2u� t, a 
ontradi
tion. Thus

we have the 
laimed upper bound for the probability that T (A) 6= Z

t

2

.

Now we turn to part a) of the theorem and prove it using part b). Part a) is about a random

linear transformation, not ne
essarily onto, but this di�eren
e from the 
laim just proved poses

less of a problem, the diÆ
ulty is that we do not have an a priori bound on 1 � jAj=jV j. In fa
t,

this ratio 
an be arbitrarily small. To solve this, we 
hoose the transformation T in two steps, the

�rst step ensuring that the density of the 
overed set is substantial, then applying part b) for the

se
ond step.

Let W = Z

u

2

, with u = dlog(2jAj=�)e. We fa
tor T through W . First, we pi
k uniformly at

random a linear transformation T

0

: V ! W . Then, we pi
k a random onto linear map T

1

: W !

Z

t

2

, and set T = T

0

Æ T

1

. This results in a uniformly 
hosen linear map T : V ! Z

t

2

. This is

true even for a �xed onto T

1

and a random T

0

, sin
e the values T

0

(e

i

) for a basis e

1

; e

2

; : : : of V

are independent and uniformly distributed in W , thus the values T (e

i

) are also independent and

uniformly distributed in Z

t

2

.

Any pair of ve
tors v 6= w 2 A 
ollide (due to T

0

) with probability Prob[T

0

(v) = T

0

(w)℄ = 1=jW j.

Thus the expe
ted number of 
ollisions is

�

jAj

2

�

=jW j. Sin
e jT

0

(A)j � jAj=2 implies at least jAj=2

su
h 
ollisions, Markov's inequality gives Prob[jT

0

(A)j � jAj=2℄ � 2

�

jAj

2

�

=(jAjjW j) < jAj=jW j � �=2.

For any �xed T

0

, part b) of the theorem gives

Prob[T (A) 6= Z

t

2

℄ � �

u�t�log t+log log(1=�)

;

where � = 1 � jT

0

(A)j=jW j. In 
ase jT

0

(A)j > jAj=2 we have � < 1 � jAj=(2jW j) < e

��=8

, thus

using the monotoni
ity of the bound above we get

Prob[T (A) 6= Z

t

2

℄ � e

��(u�t�log t+log(log e

�=8

))=8

: (1)

Choosing 


�

= 4(2=�)

8=�

we have that jAj � 


�

t2

t

implies u = dlog(2jAj=�)e > t+ log t+ log(4=�) +

(4=�) log(2=�). This implies that the bound in Equation 1 is less than �=2, thus we get Prob[T (A) 6=

Z

t

2

℄ � Prob[jT

0

(A)j � jAj=2℄ + �=2 < � as 
laimed. 2

We remark that a more 
areful analysis gives 


�

that is a small polynomial of 1=�.

3 The largest bu
ket

3.1 Lower bound for the largest bu
ket with a large �eld

We start by showing why linear hashing over a large �nite �eld is bad with respe
t to the expe
ted

largest bu
ket size measure. This natural example shows that universality of the 
lass is not enough

to assure small bu
kets. For a �nite �eld F we prove the existen
e of a bad set S � F

2

of size

jSj = jF j su
h that the expe
ted largest bu
ket in S with respe
t to a random linear map F

2

! F

is big. We prove the results in Theorem 3 separately for quadrati
 and non-quadrati
 �elds.

We start with an intuitive des
ription of the 
onstru
tions. Linear hashing of the plane 
ollapses

all straight lines of a random dire
tion. Thus, a bad set in the plane must 
ontain many points on

at least one line in many di�erent dire
tions. It is not hard to 
ome up with bad sets that 
ontain

many points of many di�erent lines, however the obvious 
onstru
tions (subplane or grid) yield sets

where many of the \popular lines" tend to be parallel and thus they only 
over a few dire
tions.

This problem 
an be solved by a proje
tive transformation: the transformed set has many popular

lines, but they are no longer parallel.

For the non-quadrati
 
ase, it is 
onvenient to expli
itly use the 
on
ept of the proje
tive

plane over a �eld F . Re
all that the proje
tive plane P over F is de�ned as (F

3

� f(0; 0; 0)g)=� ,

8



where � is the equivalen
e relation (x; y; z) � (
x; 
y; 
z) for all 
 6= 0. The aÆne plane F

2

is

embedded in P by the one-to-one map (x; y) 7! (x; y; 1). A line in P is given by an equation

f(x; y; z)jax+by+
z = 0g, i.e., a proje
tive line 
orresponds to a plane in F

3


ontaining the origin.

All proje
tive lines are extensions (by one new point) of lines in the aÆne plane F

2

, ex
ept for

the ideal line, given by f(x; y; z)jz = 0g. A proje
tive transformation mapping the ideal line to

another proje
tive line L is a map

~

f : P ! P obtained as the �-quotient of a nonsingular linear

map f : F

3

! F

3

mapping the plane 
orresponding to the ideal line into the plane 
orresponding

to L.

Proje
tive geometry is useful for understanding the behavior of linear hash fun
tions due to the

following fa
t whi
h is easily veri�ed: Pi
king a random non-trivial linear map F

2

! F as a hash

fun
tion and partitioning a subset S � F

2

into hash bu
kets a

ordingly, 
orresponds exa
tly to

pi
king a random point p on the ideal line and partitioning the points of S a

ording to whi
h line

through p they are on. This observation will be used expli
itly in the proof of Theorem 9.

Theorem 8 Let F be a �nite �eld with jF j being a perfe
t square. There exists a set S � F

2

of

size jSj = jF j su
h that for every linear map h : F

2

! F , S has a large bu
ket, i.e. there exists a

value y 2 F with jh

�1

(y)j �

p

jF j.

Proof. We have a �nite �eld F

0

of whi
h F is a quadrati
 extension. Let jF

0

j = m and

jF j = m

2

= n. Let a be an arbitrary element in F n F

0

and de�ne S = f(

1

x+a

;

y

x+a

) j x; y 2 F

0

g.

Note that jSj = m

2

= jF j. Noti
e also, that S is the image of the subplane F

2

0

under the proje
tive

transformation (x; y) 7! (

1

x+a

;

y

x+a

).

Fix A;B 2 F and 
onsider the fun
tion h : F

2

! F de�ned by h(x; y) = Ax + By. We must

show that there is some C 2 F su
h that jh

�1

(C) \ Sj � m. If B = 0 then h maps all the m

elements of S

0

= f(1=a; y=a) j y 2 F

0

g to C = A=a, as needed. Otherwise, we 
laim that there

is a C 2 F su
h that both

C

B

and

aC�A

B

are in F

0

. To see this observe that if g

1

and g

2

are two

distin
t members of F

0

, then ag

1

and ag

2

lie in distin
t additive 
osets of F

0

in F , sin
e otherwise

their di�eren
e, a(g

1

� g

2

) would have to be in F

0

, 
ontradi
ting the fa
t that a 62 F

0

. Thus, as

g ranges over all members of F

0

, ag interse
ts distin
t additive 
osets of F

0

in F , and hen
e aF

0

interse
ts all those 
osets. In parti
ular, there is some g 2 F

0

so that ag 2 F

0

+

A

B

, implying that

C = gB satis�es the assertion of the 
laim. For the above C, de�ne y(x) = (C=B)x+(aC �A)=B;

it follows that y(x) 2 F

0

for every x 2 F

0

. We have now A

1

a+x

+B

y(x)

a+x

= C, showing that h maps

all the m elements of S

0

= f(

1

a+x

;

y(x)

a+x

) j x 2 F

0

g � S to C. 2

Theorem 9 Let F be a �nite �eld. There exists a set S � F

2

of size jSj = jF j su
h that for more

than half of the linear maps h : F

2

! F , S has a large bu
ket, i.e. there exists a value y 2 F with

jh

�1

(y)j � jF j

1=3

=3� 1.

Proof. First we 
onstru
t a set S

0

� F

2

su
h that jS

0

j � jF j = n and there are n distin
t lines

in the plane F

2

ea
h 
ontaining at least m � n

1=3

=3 points of S

0

.

Let us �rst 
onsider the 
ase when n is a prime, so F 
onsists of the integers modulo n. We

let A = fi j 1 � i <

p

ng and 
onsider the square grid S

0

= A � A. Clearly jS

0

j < n. It is well

known that ea
h of the n most popular lines 
ontains at least m � n

1=3

=3 points of S

0

. This is

usually proved for the same grid in the Eu
lidean plane (see e.g. [PA95℄, pp. 178{179) but that

result implies the same for our grid in F

2

.

Now let n = p

k

and let F

0

be the sub�eld in F of p elements. Let x 2 F be a primitive element,

then every element of F 
an be uniquely expressed as a polynomial of x of degree below k with
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oeÆ
ients from F

0

. Let k

1

=

j

k+1

3

k

, k

2

= k � k

1

=

j

2k+1

3

k

and let A

1

= ff(x) j deg(f) < k

1

g,

A

2

= ff(x) j deg(f) < k

2

g where the polynomials f have 
oeÆ
ients from F

0

. Finally we take

S

0

= A

1

� A

2

. Clearly jS

0

j = n. For a 2 A

1

and b 2 A

2

we 
onsider the line L

a;b

= f(y; ay + b) j

y 2 Fg in F

2

. Noti
e that there are n su
h lines and we have ay+ b 2 A

2

whenever y 2 A

1

. Thus,

we have n distin
t lines ea
h 
ontaining m = jA

1

j = p

k

1

points of S

0

. We have m � n

1=3

as 
laimed

unless k � 1 (mod 3). Noti
e that for k � 2 (mod 3) our m is mu
h higher than n

1=3

. For the

bad 
ase k � 1 (mod 3) we apply the 
onstru
tion below instead.

Finally suppose n = p

k

, p is a prime and k � 1 (mod 3). To get our set S

0

in this 
ase we

have to merge the two 
onstru
tions above. Let F

0

be the p element sub�eld of F , then F

0


onsists

of the integers modulo p. We set A = fi j 1 � i <

p

pg. Let k

1

= (k + 2)=3 and k

2

= (2k + 1)=3

and let x 2 F be a primitive element, so we 
an express any element of F uniquely as a polynomial

of x of degree less then k with 
oeÆ
ients from F

0

. We set A

1

= ff(x) j deg(f) < k

1

^ f(0) 2 Ag,

A

2

= ff(x) j deg(f) < k

2

^ f(0) 2 Ag where the polynomials f have 
oeÆ
ients from F

0

. Finally

we set S

0

= A

1

� A

2

. Clearly jS

0

j < n. For j; j

0

2 F

0

let L

j;j

0

= f(i; ji + j

0

) j i 2 F

0

g. Let

a and b be polynomials with 
oeÆ
ients from F

0

with deg(a) < k

1

and deg(b) < k

2

. Consider

the line L

a;b

= f(y; a(x)y + b(x)) j y 2 Fg. We now 
ompute the value of jL

a;b

\ S

0

j. Note that

a point (y; a(x)y + b(x)) of L

a;b

is in S

0

if and only if y = f(x) for some polynomial f so that

deg(f) < k

1

, f(0) 2 A and a(0)f(0) + b(0) 2 A. The number of su
h polynomials f is exa
tly

p

k

1

�1

jL

a(0);b(0)

\(A�A)j. Thus, jL

a;b

\S

0

j is exa
tly p

k

1

�1

jL

a(0);b(0)

\(A�A)j. Thus, from knowing

that the p most popular lines in F

2

0


ontain at least m

0

� p

1=3

=3 points from A � A we 
on
lude

that there exist n distin
t lines ea
h 
ontaining at leastm = m

0

p

k

1

�1

� n

1=3

=3 points of S

0

; namely,

the lines L

a;b

for those 
hoi
es of a and b for whi
h L

a(0);b(0)

is a popular line in F

2

0

.

In all 
ases we have 
onstru
ted our set S

0

� F

2

of size jS

0

j � n with n distin
t popular lines

ea
h 
ontaining at least m > n

1=3

=3 points of S

0

. Let P be the proje
tive plane 
ontaining F

2

.

Out of the n

2

+n+1 points in P every popular line 
overs n+1. The ith popular line (1 � i � n)


an only have i� 1 interse
tions with earlier lines, thus it 
overs at least n+2� i points previously

un
overed. Therefore a total of at least

�

n+2

2

�

� 1 points are 
overed by popular lines. Simple


ounting gives the existen
e of a line L in P not among the popular lines, su
h that more than

half of the points on L are 
overed by popular lines. Let f be a proje
tive transformation taking

the ideal line L

0

= P n F

2

to L. We de�ne S = fx 2 F

2

j f(x) 2 S

0

g = f

�1

(S

0

) \ F

2

. Clearly

jSj � jS

0

j � n.

One linear hash fun
tion h : F

2

! F is 
onstant zero (and thus all of S is a single bu
ket), for

the rest there is a point x

h

2 L

0

su
h that h 
ollapses the points of F

2

of ea
h single line going

through x

h

, as we observed at the beginning of the se
tion. Furthermore, if the linear non-zero

map is pi
ked at random, all su
h points x

h

are equally likely. Thus, the statement of the theorem

follows, if we show that for at least half the points x

h

on the ideal line, it holds that some line

through x

h

interse
ts S in at least n

1=3

=3 � 1 points. But some line through x

h

interse
ts S in at

least n

1=3

=3� 1 points if and only if some line through f(x

h

) interse
ts f(S) in at least n

1=3

=3� 1

(proje
tive) points. For this, it is suÆ
ient that some line through f(x

h

) interse
ts S

0

in at least

(n

1=3

=3� 1) + 1 = n

1=3

=3 points (the +1 
omes from the possibility of f(x

h

) 2 S

0

), i.e., that some

line through f(x

h

) is popular, in the sense we used above. But by de�nition of f , this is true for

at least half of the points x

h

on the ideal line, and we are done. 2

3.2 Upper bound for the largest bu
ket with a small �eld

Let us now re
all and prove our main result.

For 
onvenien
e here we speak about hashing n log n keys to n values. Also, we assume that n
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is a power of 2.

Theorem 5: Let H be the 
lass of linear transformations between two ve
tor spa
es over Z

2

, then

L

n

n logn

(H) = O(log n log log n):

This theorem implies Theorem 4.

We have to bound the probability of the event that many elements in the set S are mapped to

a single element in the range. Denote this bad event by E

1

. The overall idea is to present another

(less natural) event E

2

and show that the probability of E

2

is small, yet the probability of E

2

given

E

1

is big. Thus, the probability of E

1

must be small. We remark here that a somewhat similar line

of reasoning was used in the seminal paper of Vapnik and Chervonenkis [VC71℄.

For the proof we �x the domain to be D = Z

m

2

, the range (the bu
kets) to be B = Z

log n

2

, and

S � D of size jSj = n logn.

Let us 
hoose arbitrary ` � log n and 
onsider the spa
e A = Z

`

2

. We 
onstru
t the linear

transformation h : D ! B through the intermediate range A in the following way. We 
hoose

uniformly at random a linear transformation h

1

: D ! A and uniformly at random an onto linear

transformation h

2

: A! B. Now we de�ne h

def

= h

1

Æh

2

. Note that as mentioned in the proof of part

a) of Theorem 7 this yields an h whi
h is uniformly 
hosen from among all linear transformations

from D to B.

Let us �x a threshold t. We de�ne two events. E

1

is the existen
e of a bu
ket of size at least t:

Event E

1

: There exists an element � 2 B su
h that

�

�

�

h

�1

(�) \ S

�

�

�

> t:

We are going to limit the probability of E

1

through the seemingly unrelated event E

2

:

Event E

2

: There exists an element � 2 B su
h that

h

�1

2

(�) � h

1

(S):

Consider the distribution spa
e in whi
h h

1

and h

2

are uniformly 
hosen as above. We shall

show that

Proposition 3.1 If d = 2

`

=(n log n) > 1 we have

Prob[E

2

℄ � d

� log d�log log d

:

Proposition 3.2 If t > 


1=2

(2

`

=n) log(2

`

=n) (with 


1=2

from Theorem 7a)) then

Prob[E

2

jE

1

℄ �

1

2

:

From Propositions 3.1 and 3.2 we dedu
e that the probability of E

1

must be small:

Corollary 3.3 There is a 
onstant C, so that for all r > 4 and every power of two n, the following

holds: If a subset S of size jSj = n log n of a ve
tor spa
e over Z

2

is hashed by a random linear

transformation to Z

log n

2

, we have

Prob[maximum bu
ket size > rC logn log logn℄ � 2(r= log r)

� log(r= log r)�log log(r= log r)

:
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Proof: Given r > 4, let l = blog n+log log n+log r� log log r+1
 and let t = 4


1=2

r logn log logn:

Letting d = 2

l

=(n log n), we have d = 2

l

=(n log n) � 2

log n+log logn+log r�log log r

=(n log n) = r= log r >

1 and 2

l

=n � 2

log n+log log n+log r�log log r+1

=n = 2 log n(r= log r), so




1=2

(2

l

=n) log(2

l

=n) < 


1=2

(2 log n(r= log r))(1 + log log n+ log r)

< 


1=2

2 log n(r= log r)(2 log logn log r)

= 4


1=2

r logn log log n

= t;

so the 
onditions of Proposition 3.1 and 3.2 are satis�ed, and, 
ombining their 
on
lusions, we get

Pr[E

1

℄ � 2Pr[E

2

℄ � 2d

� log d�log log d

:

But the event E

1

is the event that the biggest bu
ket is bigger than t = 4


1=2

r logn log logn and

sin
e d � r= log r, the statement of the 
orollary follows, by putting C = 4


1=2

. 2

Let us now prove the propositions above.

Proof of Proposition 3.1: Note �rst that an alternative way to des
ribe E

2

is

h

2

(A n h

1

(S)) 6= B:

We will prove that Proposition 3.1 holds for any spe
i�
 h

1

, and thus it also holds for a randomly


hosen h

1

. So �x h

1

and 
onsider the distribution in whi
h h

2

is 
hosen uniformly amongst all full

rank linear transformation from A to B.

We use part b) of Theorem 7 for the set A n h

1

(S) � A. Its density is 
learly 1 � � for

� = jh

1

(S)j=jAj � jSj=jAj = 1=d. Thus the theorem gives Prob[E

2

℄ � �

`�log n�log log n+log log(1=�)

�

d

� log d�log log d

as 
laimed. 2

Proof of Proposition 3.2: Fix h for whi
h E

1

holds, and �x any full rank h

2

. We will show that

the probability of event E

2

is at least 1=2 even when these two are �xed and thus the 
onditional

probability is also at least 1=2.

Now sin
e E

1

holds there is a subset S

0

� S of 
ardinality at least t mapped by h to a single

element � 2 Z

log n

2

. Fix this � and de�ne D

0

def

= h

�1

(�) and A

0

def

= h

�1

2

(�). Consider the distribution

of h

1

satisfying h = h

1

Æ h

2

. When we restri
t h

1

to D

0

, we get that the distribution implied by

su
h h

1

is a uniform 
hoi
e of an aÆne or linear map from D

0

into A

0

(we show this in Proposition

3.4 below). For event E

2

to hold it is enough to have A

0

� h

1

(S). We will show that h

1

(S

0

) 
overs

all the points in A

0

with probability at least 1=2 and thus we get that event E

2

happens with

probability 1=2. Sin
e h

2

is onto we have jA

0

j = 2

`

=n. On the other hand, D

0

\S has 
ardinality at

least t = d


1=2

(2

`

=n) log(2

`

=n)e. By part a) of Theorem 7, the probability that a set of 
ardinality

t mapped by a random linear transformation will 
over a range of 
ardinality 2

`

=n is at least 1=2.

(Note that Theorem 7, part a) 
learly applies to a random aÆne transformation too.) 2

At this point, we have proven Corollary 3.3. This limits the probability of large bu
kets with

linear hashing. It is straightforward to dedu
e Theorem 5 from that 
orollary:

Proof of Theorem 5: L

n

n log n

is the expe
tation of the distribution of the largest bu
ket size.

Corollary 3.3 limits the probability of the tail of this distribution, thus yielding the desired bound

on the expe
tation. The 
onstant C is from Corollary 3.3 and we set K = C log n log log n.

E[maxS-bu
ket size℄ =

1

Z

0

Prob[maxS-bu
ket size > t℄dt
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� 4K +

1

Z

4K

Prob[maxS-bu
ket size > t℄dt

= 4K +K

1

Z

4

Prob[maxS-bu
ket size > rK℄dr

� 4K +K

1

Z

4

2(r= log r)

� log(r= log r)�log log(r= log r)

dr

= O(K) = O(log n log log n):

2

In order for the paper to be self-
ontained we in
lude a proof of the simple statement about

random linear transformations used above.

Proposition 3.4 Let D, A and B be ve
tor spa
es over Z

2

. Let h : D ! B be an arbitrary linear

map, and let h

2

: A ! B be an arbitrary onto linear map. Let � be any point in B and denote

D

0

def

= h

�1

(�) and A

0

def

= h

�1

2

(�). Then, 
hoosing a uniform linear map h

1

: D ! A su
h that

h = h

1

Æ h

2

and restri
ting the domain to D

0

we get a uniformly 
hosen linear map from D

0

to A

0

if � = 0 or uniformly 
hosen aÆne map from D

0

to A

0

otherwise.

Proof: Consider D

0

def

= h

�1

(0) and A

0

def

= h

�1

2

(0). Let us 
hoose a 
omplement spa
e D

1

to

D

0

in D, i.e. D

0

\ D

1

= f0g and D

0

+ D

1

= D. Let us 
all x the unique ve
tor in D

0

\ D

1

.

We have D

0

= D

0

+ x. A linear transformation h

1

: D ! A is determined by its two restri
tions

h

0

: D

0

! A and h

00

: D

1

! A. Clearly the uniform random 
hoi
e of h

1


orresponds to uniform

and independent 
hoi
es for h

0

and h

00

. The restri
tion h = h

1

Æ h

2

means that h

0

(D

0

) � A

0

and

h

00

Æ h

2

is the restri
tion of h to D

1

. Thus, after the restri
tion the random 
hoi
es of h

0

and h

00

are still independent. Note now that if � = 0 then the restri
tion of h

1

in question is exa
tly

h

0

: D

0

! A

0

. If � 6= 0 then use h

1

(u + x) = h

0

(u) + h

00

(x) for u 2 D

0

to note that the restri
tion

in question is again h

0

, this time translated by the random value h

00

(x) 2 A

0

. 2

4 Remarks and open questions

We have dis
ussed the 
ase of a very small �eld (size 2) and a very large �eld (size n). What

happens with intermediate sized �elds? Some immediate rough generalizations of our bounds are

the following: If we hash an adversely 
hosen subset of F

m

of size n = jF j

k

to F

k

by a randomly


hosen linear map, the expe
ted size of the largest bu
ket is at most O((log n log logn)

log jF j

) and

at least 
(jF j

1=3

). Tighter bounds should be possible.

Another question is whi
h properties other well known hash families have. Examples of

the families we have in mind in
lude: Arithmeti
 over Z

p

[CW79, FKS84℄ (with h

a;b

(x) = (ax +

b mod p) mod n), integer multipli
ation [DHKP97, AHNR95℄ (with h

a

(x) = (ax mod 2

k

) div 2

k�l

),

Boolean 
onvolution [MNT93℄ (with h

a

(x) = a Æ x proje
ted to some subspa
e).

An example of a natural non-linear s
heme for whi
h the assertion of Theorem 6 fails is the

s
heme that maps integers between 1 and p, for some large prime p, to integers between 0 and n�1

for n = dp=me, by mapping x 2 Z

p

to (ax + b mod p) div m, where a; b are two randomly 
hosen

elements of Z

p

. For this s
heme, there are primes p and 
hoi
es of n and a subset S of 
ardinality


(n logn log log log n) of Z

p

, whi
h is not mapped by the above mapping onto [0; n� 1℄ under any


hoi
e of a and b.
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To see this, let p be a prime satisfying p � 3 (mod 4) and 
onsider the set

S = fj

2

mod p j j 2 Z

p

n f0gg;

of all quadrati
 residues modulo p. Note that for every nonzero element a 2 Z

p

, the set aS ( mod p)

is either the set of all quadrati
 residues or the set of all quadrati
 non-residues modulo p. The

main result of Graham and Ringrose [GR90℄ asserts that for in�nitely many primes p, the smallest

quadrati
 nonresidue modulo p is at least 
(log p log log log p) (this result holds for primes p �

3 ( mod 4) as well, as follows from the remark at the end of [GR90℄). Sin
e for su
h primes p,

�1 is a quadrati
 nonresidue, it follows that for the above S and for any 
hoi
e of a; b 2 Z

p

,

the set aS + b (
omputed in Z

p

) avoids intervals of length at least 
(log p log log log p). Choosing

m = 
 log p log log log p for an appropriate (small) 
onstant 
, and de�ning n = dp=me, it follows

that jSj = (p � 1)=2 = 
(n logn log log log n) is not mapped onto [0; n � 1℄ under any 
hoi
e of a

and b.

A �nal question is whether there exists a 
lassH of size only 2

O(log log jU j+logn)

and with L

n

n

(H) =

O(log n= log logn). Note that linear maps over Z

2

, even 
ombined with 
ollapsing the universe, use

O(log log jU j+ (logn)

2

) random bits while the simple s
heme using higher degree polynomials uses

O(log log jU j+ (log n)

2

= log log n).
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