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ABSTRACT

A sear
h problem of G. O. H. Katona was solved in [3℄ where an unknown

point x in a 2-dimensional grid has to be lo
ated using queries of type \is

x = (x

1

; x

2

) � a = (a

1

; a

2

)?". Here a is an arbitrary latti
e point and

x � a means that a

i

� b

i

(i = 1; 2). In the re
ent paper we 
onsider the

generalization of this problem for arbitrary dimension d.

1. Introdu
tion

The following model of the 
ombinatorial sear
h was initiated by A. R�enyi. A �nite set X

and a family A of its subsets are given. We need to �nd an unknown element x in X by

asking questions of type \is x in A?", for any member A of A. Our goal is to minimize

the number of questions to identify x in the worst or in the average 
ase.

There are two di�erent approa
hes of the des
ribed model. In the �rst we have to ask

all queries in advan
e and from the answers we have to identify x. This is 
alled parallel

sear
h. In the se
ond 
ase the queries are asked sequentially, all questions may depend on

the previous answers. This is 
alled adaptive sear
h. In this paper we give a worst 
ase

analysis in the adaptive model for a spe
ial sear
h problem.
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Consider the well known fa
t, that in the adaptive 
ase it is suÆ
ient and ne
essary to

ask dlogne questions of type \is x � b ?" for some b 2 X to �nd an unknown element

x in an n-element ordered set X. But what 
an we say if X is partially ordered rather

than ordered? G. O. H. Katona [1℄ asked this problem for partial orders that are dire
t

produ
ts of 
hains i. e. when X is the set of bounded integer ve
tors of a �xed dimension

and we must �nd an unknown ve
tor x 2 X by asking queries of the form \is x � b?".

(See next se
tion for formal de�nition.)

In [3℄ M. Ruszink�o 
onsidered this problem in dimension two and solved it in most 
ases.

In this paper we 
onsider the same problem in arbitrary dimension d. So now we want to

�nd an unknown integer ve
tor x = (x

1

; : : : ; x

d

) bounded by 1 � x

i

� a

i

for i = 1; : : : ; d.

The queries allowed are of the form \is x � b?" for an integer ve
tor b = (b

1

; : : : ; b

d

)

where answer \yes" means x

i

� b

i

for all i = 1; : : : ; d. It is easy to see that it is ne
essary to

ask d

P

d

i=1

log a

i

e questions and it is suÆ
ient to ask

P

d

i=1

dlog a

i

e queries (see Proposition

2.1). Thus the gap between these two trivial bounds is at most d� 1. But whi
h bound is


loser to the 
orre
t value?

Chapter 2 
ontains the notations, de�nitions and trivial 
ases. In Chapter 3 we improve

on the trivial upper bound and prove that in \most" latti
es the lower bound is tight.

On the other hand we show, that for a 
ertain sequen
e of latti
es 
(d) more queries are

needed than the trivial lower bound. In Chapter 4 we prove a theorem for the spe
ial

2-dimensional 
ase generalizing Theorem 3.3 of [3℄ giving lots of examples where the lower

bound is not tight. In Chapter 5 some open problems are posed.

2. Notations, De�nitions, Trivial Cases

For 
 2 R we denote by d
e the smallest integer � 
, and by b

 the largest integer � 
,

f
g = 
� b

. We denote by log the logarithm of base 2.

Let d � 1 be a �xed integer and let us 
onsider d-dimensional ve
tors a = (a

1

; : : : ; a

d

). All

ve
tors 
onsidered in this paper are integer ve
tors. We say that a � b if a

i

� b

i

for every

i = 1; : : : ; d. Let us denote the 
oordinate-wise produ
t of two ve
tors a and b by ab. Let

1 = (1; : : : ; 1). We 
onsider the following sear
h problem for a ve
tor a � 1.

Problem. An unknown integer ve
tor 1 � x � a has to be found by asking

questions of the form \is x � b?" for an arbitrary integer ve
tor b. The

questions 
an be asked adaptively, i. e. later questions 
an depend on the

answers for earlier questions. What is the minimum number of questions

needed to �nd the unknown ve
tor x in the worst 
ase?

Let us denote this minimum by f(a), i. e. it is the minimum for all sear
h strategies of

the maximum for all ve
tors 1 � x � a of the number of queries used to �nd x.
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Proposition 2.1. For any a = (a

1

; : : : ; a

d

) the following inequalities hold

&

d

X

i=1

log a

i

'

� f(a) �

d

X

i=1

dlog a

i

e:

Proof. The lower bound follows from the observation that the number of queries has to

be at least the logarithm of size of the set we are sear
hing in and in this 
ase it is

Q

d

i=1

a

i

.

A binary sear
h for ea
h 
oordinate of x yields the upper bound.

Let us denote the lower bound d

P

d

i=1

log a

i

e by t(a). We 
all a ve
tor a loose if this bound

is not tight, i. e. if f(a) > t(a).

In the following se
tion we prove stronger bounds on the fun
tion f(a).

3. Tighter upper and lower bounds

The following theorem says that the gap between f and the trivial lower bound 
an be

large. Let us denote the d-dimensional ve
tor with all 
oordinates 3 by 3

d

.

Theorem 3.1. f(3

d

) = 2d:

The main idea of the proof is that in the middle of the sear
h, instead of dealing with the

set of ve
tors x 
onsistent with the answers so far we deal with a \ni
e" subset of it.

De�nition. We 
all a set S of d dimensional integer ve
tors ni
e if it is a dire
t produ
t

of fa
tors of the following type:

(0) A single point f2g or f3g in a 
oordinate,

(1) Two points f1; 2g or f2; 3g in a 
oordinate,

(2) The set f1; 2; 3g in a 
oordinate,

(3) The �ve element set f(1; 3); (2; 3); (3; 1); (3; 2); (3; 3)g in two 
oordinates.

We de�ne the value of a fa
tor of type (i) to be i for i = 0; 1; 2; 3 and the value v(S) of

a ni
e set S to be the sum of the values of its fa
tors. The proof will be easy after the

following lemma.

Lemma 3.2. Let S be a ni
e set of latti
e points. For any query of the form \is x � b?"

there is a ni
e subset T of S su
h that for every element x 2 T the question is answered

in the same way and v(T ) � v(S)� 1.

Proof. We 
all a fa
tor of the ni
e set S trivial if b's proje
tion to it is� than all elements

of the fa
tor. The proof is a 
ase analysis. We de�ne T separately for the following seven
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ases. While some of these 
ases overlap (then either de�nition of T satis�es the 
onditions

of the lemma) it is easy to see that together they 
over all possibilities.

(a) In 
ase all the fa
tors are trivial we de�ne T = S.

(b) If a fa
tor of type (0) is nontrivial we also de�ne T = S.

(
) If a fa
tor of type (1) is nontrivial we de�ne T by repla
ing this fa
tor in S by the

one element set f2g if it was f1; 2g or by f3g if it was f2; 3g.

(d) In 
ase a fa
tor of type (3) is nontrivial we de�ne T by repla
ing this fa
tor of S

by a fa
tor f3g (of type (0)) in the 
oordinate b's proje
tion is less than 3 and by

a fa
tor of type (2) in the other 
oordinate.

(e) If at least two di�erent fa
tors of type (2) are nontrivial then we de�ne T by repla
ing

two su
h fa
tors of S by a fa
tor of type (3).

(f) If b's proje
tion to a fa
tor of type (2) is � 1 then we de�ne T by repla
ing this

fa
tor of S by f2; 3g.

(g) Finally, if all the fa
tors are trivial ex
ept for one type (2) fa
tor to whi
h b's

proje
tion is 2 we de�ne T by repla
ing this fa
tor of S by f1; 2g, a fa
tor of type

(1).

In the �rst two 
ases T = S, therefore v(T ) = v(S), while in the last �ve 
ases we have

v(T ) = v(S) � 1. In the �rst and last 
ases the answer to the question \is x � b?" is

positive for any x 2 T while in the other �ve 
ases the answer is negative for all x 2 T .

Proof of Theorem 3.1. Proposition 2.1 gives f(3

d

) � 2d. For the lower bound we

give an adversary argument. We start with the set of all possible ve
tors x. This is a ni
e

set of value 2d. After any question and answer we 
onsider a ni
e subset of this that is


onsistent with every answer so far. By Lemma 3.2. we 
an answer the queries su
h that

the value of the ni
e set 
onsidered de
reases by at most 1. This means that after less than

2d queries the value is positive so we have more than one possible ve
tors x 
onsistent

with all the answers, so more queries are needed. Therefore f(3

d

) � 2d.

Theorem 3.1. gives an example where the value of the fun
tion f is large, it is t + b(2 �

log 3)d
. Here 2� log 3 = 0:415 : : : Theorem 3.4 states that the di�eren
e 
annot be mu
h

larger. We are going to use the following lemma from [3℄.

Lemma 3.3. [3, Theorem 3.2.℄ If flog a

1

g + flog a

2

g � 0:8 then f(a

1

; a

2

) = dlog a

1

+

log a

2

e.

Theorem 3.4. For any d-dimensional ve
tor a � 1 we have f(a) < t(a) + 0:6d.

Proof. Let a = (a

1

; : : : ; a

d

). We prove the statement by indu
tion on d using Lemma
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3.3.

For d = 1; 2 the inequality obviously holds.

In 
ase d > 2 let us �rst suppose, that flog a

1

g+ flog a

2

g � 0:8. Then

f(a = a

1

; : : : ; a

d

) � f(a

1

; a

2

) + f(a

3

; : : : ; a

d

)

� dlog a

1

+ log a

2

e+

&

d

X

i=3

log a

i

'

+ 0:6(d� 2) <

&

d

X

i=1

log a

i

'

+ 0:6d

Let us now 
onsider the 
ase when for any pair of 
omponents i, j (1 � i < j � d) we

have flog a

i

g + flog a

j

g > 0:8. In this 
ase the gap between the upper and lower bounds

of Proposition 2.1. is obviously less than 0:6d.

The following theorem asserts that the gap between f(a) and t(a) is small for ve
tors a

with all 
oordinates large.

Theorem 3.5. For every dimension d � 1 and every � > 0 there is an n > 0 su
h

that for any integer ve
tor a = (a

1

; : : : ; a

d

) with all 
oordinates greater than n we have

f(a) � d

P

d

i=1

log a

i

+ �e.

The proof uses nothing but the monotonity of f and the following two simple observations.

The �rst of the observations is noted in [3℄. We present a simpler proof here to be self-


ontained.

Lemma 3.6. [3, Theorem 3.1.3.℄ For the two-dimensional ve
tor v = (2

k

� 1; 2

k

+ 1)

where k � 1 integer we have f(v) = 2k.

Proof. As 2k is the lower bound in Proposition 2.1 it is enough to give a strategy that

�nds the unknown ve
tor x = (x

1

; x

2

) asking at most 2k queries. We ask queries \is

x � b?" with b = (2

k

� 2

k�i

; 2

k

) for i = 1; 2; : : : ; k but only till we hear the �rst answer

\yes". If this happens after the i

th

question then 2

k

� 2

k�i�1

< x

1

� 2

k

� 2

k�i

and so it


an be found in k� i queries by binary sear
h, while 1 � x

2

� 2

k


an be found in k queries

by binary sear
h. In 
ase all answers are negative to our �rst k queries, than x

2

= 2

k

+ 1

and 1 � x

1

� 2

k

� 1 
an be found in k queries by binary sear
h.

Re
all that we denote by ab the 
oordinate-wise produ
t of the ve
tors a and b.

Lemma 3.7. For arbitrary d-dimensional ve
tors a and b we have f(ab) � f(a) + f(b).

Proof. Note that any ve
tor 1 � x � ab 
an uniquely be written in the form

x = (y � 1)a + z where 1 � y � b and 1 � z � a. We 
an �nd �rst y in f(b)

queries asking queries of the form \is x � 
a?". On
e we found y we 
an �nd z in f(a)
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queries asking queries of the form \is x � (y� 1)a+ 
?". This sear
h strategy establishes

the 
laimed inequality.

Proof of Theorem 3.5. Let us take a positive integer k > log(6d=�). Let v

ik

be the

d-dimensional ve
tor with all 1 
oordinates ex
ept for the �rst 
oordinate being 2

k

�1 and

the i

th


oordinate being 2

k

+ 1 (i = 2; : : : ; d). By Lemma 3.6 we have f(v

ik

) = 2k. Re
all

that fxg = x � bx
 and let l

i

= dflog a

i

g=flog(2

k

+ 1)ge and w = (2

m

1

; : : : ; 2

m

d

) where

m

i

= dlog a

i

� l

i

log(2

k

+ 1)e for i = 2; : : : ; d and m

1

=

l

log a

1

�

P

d

i=2

l

i

log(2

k

� 1)

m

.

We know from 
al
ulus that

k + log e=(2

k

+ 1) < log(2

k

+ 1) < k + log e=2

k

(1)

where e is the base of the natural logarithm. Therefore flog(2

k

+1)g � log e=(2

k

+1) � 1=2

k

and thus l

i

� 2

k

. We 
hoose n = 2

dk2

k

to ensure that log a

i

� dk2

k

and therefore m

i

� 0

and thus w is an integer ve
tor.

We have f(w) =

P

d

i=1

m

i

sin
e the upper and lower bounds in Proposition 2.1 are the

same in this 
ase. Let us de�ne b = w

Q

d

i=2

v

l

i

ik

a 
oordinate-wise produ
t of

P

d

i=2

l

i

+ 1

ve
tors. By the de�nition of w we have a � b and therefore

f(a) � f(b) � 2k

d

X

i=2

l

i

+

d

X

i=1

m

i

by the monotonity of f and Lemma 3.7. We 
laim that

2k

d

X

i=2

l

i

+

d

X

i=1

m

i

�

&

d

X

i=1

log a

i

+ �

'

:

This is 
learly enough to prove the theorem.

Consider the value y

i

= log a

i

� l

i

log(2

k

+1) for i = 2; : : : ; d. By the de�nition of l

i

and m

i

and by (1) we have dy

i

e = m

i

and m

i

� y

i

� flog(2

k

+ 1)g < log e=2

k

. The i

th


oordinate

of b = (b

1

; : : : ; b

d

) is b

i

= (2

k

+ 1)

l

i

2

m

i

so 0 � log b

i

� log a

i

< log e=2

k

for i = 2; : : : d. By

the de�nition of m

1

for the �rst 
oordinate we have 0 � log b

1

� log a

1

< 1. The produ
t of

the 
oordinates of b is the produ
t of the same for all fa
tors. Taking logarithm we obtain

d

X

i=1

log b

i

= log(2

2k

� 1)

d

X

i=2

l

i

+

d

X

i=1

m

i

:

Here

log(2

2k

� 1) > 2k � log e=(2

2k

� 1)

and

d

X

i=2

l

i

� (d� 1)2

k

:

6



Putting all this together we get

2k

d

X

i=2

l

i

+

d

X

i=1

m

i

<

d

X

i=1

log b

i

+ log e(d� 1)2

k

=(2

2k

� 1)

<

d

X

i=1

log a

i

+ log e(d� 1)=2

k

+ log e(d� 1)=(2

k

� 1) + 1

<

d

X

i=1

log a

i

+ �+ 1 �

&

d

X

i=2

log a

i

+ �

'

+ 1:

The third inequality follows from the 
hoi
e of k. Here the �rst and the last expressions

are integers and therefore they di�er by at least 1. This gives the inequality we need to

�nish the proof.

The threshold value n = n(d; �) we obtain from this proof is (6d=�)

6d

2

=�

. This 
an be

improved to (d=�)

6d=�

with no e�ort.

Corollary 3.8. For every dimension d � 1 there is an n > 0 su
h that for any ve
tor a

with all 
oordinates greater than n the trivial lower bound on f(a) of Proposition 2.1 is

o� by at most one.

Proof. Take � = 1 in Theorem 3.5.

Corollary 3.9. Let us �x the dimension d and let �(
) be the ratio of loose ve
tors a

among all ve
tors 1 � a � 
. Then �(
) tends to 0 as all 
oordinates of 
 tend to in�nity.

Proof. Let us 
hoose a small value 0 < � < 1 and apply Theorem 3.5. It 
annot be

applied to ve
tors a with at least one 
oordinate smaller than the bound n = n(d; �) in the

theorem. Fortunately the ratio of these ve
tors with at least one small 
oordinate tend

to 0. For the rest of the ve
tors a = (a

1

; : : : ; a

d

) the theorem implies that a is not loose

unless 1 � � � f

P

d

i=1

log a

i

g < 1. The ratio of the ve
tors satisfying this last inequality


an be made arbitrarily small by 
hoosing � small enough.

4. A note for the 2-dimensional 
ase

Corollary 3.9 shows that the lower bound of Proposition 2.1 is almost always tight. There

exist however plenty of loose ve
tors even in dimension 2. In [3℄ it was established that

there are in�nitely many su
h ve
tors. We extend this result in the following theorem

whi
h implies that for a positive fra
tion of all positive integers u there are in�nitely many

positive integers v su
h that the lower bound in Proposition 3.1 for the ve
tor (u; v) is not

tight. This result was independently a
hieved by E. Kolev and I. Landgev [2℄.
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Theorem 4.1. If u is a positive odd integer with 2� log 3 < flogug < log 3�1 then there

are in�nitely many positive integers v su
h that f((u; v)) = dlog u+ log ve+ 1.

Proof. Let u be an integer satisfying the 
onditions of Theorem 4.1. Take an integer

k � 1 with 2

k

� 1 (mod w) simultaneously for all odd integers 1 � w � u. We 
laim

that v = (2

k

� 1)=u satis�es the statement of the theorem. This is enough for the proof

sin
e k 
an be 
hosen in in�nitely many di�erent ways. By Euler's theorem it 
an be any

multiple of u!.

By Proposition 2.1 we have to prove only f((u; v)) � dlog u+ log ve+ 1 = k + 1. Suppose

that there exists a sear
h strategy �nding x in k queries. Sin
e in k� 1 queries we 
annot

�nd an element of a set if it has more than 2

k�1

elements, the �rst query \is x � (a; b)?"

has to be su
h that at most 2

k�1

di�erent ve
tors x leads to any given answer \yes" or

\no". We may suppose here that 1 � a � u and 1 � b � v. As the total number of possible

ve
tors x is uv = 2

k

� 1 this means that the number of ve
tors giving \yes" answer ab is

2

k�1

or 2

k�1

�1. In 
ase ab = 2

k�1

�1 a is a divisor of 2

k�1

�1 therefore it is odd. On the

other hand by 
hoosing v in the way above, we get, that a is a divisor of 2

k

� 1, too. Sin
e

these two numbers are 
o-primes, a has to be 1. Sin
e ab is too small in this 
ase we have

to have the other possibility ab = 2

k�1

. This 
ase is possible but 
learly in one way only,

namely a has to be the largest power of 2 smaller than u and b has to be the largest power

of 2 smaller than v. Let us note here that by assumption 2 � log 3 < flogug < log 3 � 1

we have u < (3=2)a and v < (3=2)b.

Consider what happens after an answer \no" to the �rst question. There are still 2

k�1

� 1

possible ve
tors x. Out of these ve
tors 2

k�2

or 2

k�2

� 1 will answer the next question

with a \yes" by the same reasons as above. Let the next question be \is x � (
; d)?". The

following is a 
ase analysis, we �nd the 
ontradi
tion by showing that none of the 
ases


an o

ur.

(a) In 
ase d � b the number of possible ve
tors x giving answer \yes" is 0 or (
�a)d �

(u� a)b < ab=2� 1 = 2

k�2

� 1, whi
h is a 
ontradi
tion.

(b) In 
ase 
 � a the number of possible ve
tors x giving answer \yes" is 0 or 
(d� b) �

a(v � b) < ab=2� 1 = 2

k�2

� 1, whi
h is a 
ontradi
tion.

(
) Finally, the only remaining 
ase is 
 > a and d > b. The number of possible ve
tors

x giving answer \yes" is 
d� ab therefore 
d must be either (3=4)2

k

or (3=4)2

k

� 1.

In the latter 
ase 
 divides (3=4)2

k

� 1 and therefore it is odd. Sin
e we 
hose v

in the way above we have that 
 divides 2

k

� 1, too. As these two numbers are


o-primes 
 has to be 1. Therefore 
d 
annot be big enough. This 
ontradi
tion

shows that 
d has to be (3=4)2

k

. But now 
 as a divisor of (3=4)2

k

has to be a

power of 2 or 3 times a power of 2 but there is no su
h number a < 
 � u.

These 
ontradi
tions prove the theorem.
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5. Open problems

Finally let us 
onsider the following problems.

(1) We 
onje
ture that if (u; v) is loose then there are in�nitely many integers v

0

su
h that

(u; v

0

) is loose.

This 
onje
ture is motivated by a 
ase-analysis for small values of u outlined here. For

u � 10 there are no loose ve
tors (u; v). The �rst value of u where Theorem 4.1 applies

is u = 11. (We mention here that this 
ase is already settled in [3℄.) There are no loose

ve
tors (u; v) with u = 12; 14; 15; 16; 17; 18; 20; 21. For u = 13; 19; 22 and 23 there are

in�nitely many loose ve
tors (u; v). For u = 13 and 19 it is possible to ask the �rst two

questions in su
h a way that the number of ve
tors 1 � x � (u; v) 
onsistent with any set

of answers is � 2

dloguve�2

i. e. satis�es the \
ounting 
riterion", but we 
annot ask the

third question this way if v is 
hosen right. For u = 22 and 23 even the se
ond question has

to violate the 
ounting 
riterion for some v. (23 is the se
ond value of u where Theorem

4.1 applies.)

The following stronger 
onje
ture (motivated by the proof of Theorem 4.1) would imply

the previous 
onje
ture.

Let u, v, and v

0

be positive integers. Let k = dlog uve and k

0

= dloguv

0

e. Suppose that

for any w � u we have 2

k

� 2

k

0

(mod w). If (u; v) is loose and v < v

0

then (u; v

0

) is also

loose.

(2) Find x = lim sup

d!1

max

a

f(a)�t(a)

d

. Here a is a positive integer ve
tor and d is its

dimension.

By Theorem 3.1 and Theorem 3.4 we have 2� log 3 � x � 0:6. The upper bound here 
an

be made mu
h 
loser to 1=2 with little e�ort. We 
onje
ture however that the lower bound

gives the 
orre
t value of x, i. e. the ve
tors 3

d

of Theorem 3.1 are the ones for whi
h the

trivial lower bound is the worst.
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