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ABSTRACT

A searh problem of G. O. H. Katona was solved in [3℄ where an unknown

point x in a 2-dimensional grid has to be loated using queries of type \is

x = (x

1

; x

2

) � a = (a

1

; a

2

)?". Here a is an arbitrary lattie point and

x � a means that a

i

� b

i

(i = 1; 2). In the reent paper we onsider the

generalization of this problem for arbitrary dimension d.

1. Introdution

The following model of the ombinatorial searh was initiated by A. R�enyi. A �nite set X

and a family A of its subsets are given. We need to �nd an unknown element x in X by

asking questions of type \is x in A?", for any member A of A. Our goal is to minimize

the number of questions to identify x in the worst or in the average ase.

There are two di�erent approahes of the desribed model. In the �rst we have to ask

all queries in advane and from the answers we have to identify x. This is alled parallel

searh. In the seond ase the queries are asked sequentially, all questions may depend on

the previous answers. This is alled adaptive searh. In this paper we give a worst ase

analysis in the adaptive model for a speial searh problem.
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Consider the well known fat, that in the adaptive ase it is suÆient and neessary to

ask dlogne questions of type \is x � b ?" for some b 2 X to �nd an unknown element

x in an n-element ordered set X. But what an we say if X is partially ordered rather

than ordered? G. O. H. Katona [1℄ asked this problem for partial orders that are diret

produts of hains i. e. when X is the set of bounded integer vetors of a �xed dimension

and we must �nd an unknown vetor x 2 X by asking queries of the form \is x � b?".

(See next setion for formal de�nition.)

In [3℄ M. Ruszink�o onsidered this problem in dimension two and solved it in most ases.

In this paper we onsider the same problem in arbitrary dimension d. So now we want to

�nd an unknown integer vetor x = (x

1

; : : : ; x

d

) bounded by 1 � x

i

� a

i

for i = 1; : : : ; d.

The queries allowed are of the form \is x � b?" for an integer vetor b = (b

1

; : : : ; b

d

)

where answer \yes" means x

i

� b

i

for all i = 1; : : : ; d. It is easy to see that it is neessary to

ask d

P

d

i=1

log a

i

e questions and it is suÆient to ask

P

d

i=1

dlog a

i

e queries (see Proposition

2.1). Thus the gap between these two trivial bounds is at most d� 1. But whih bound is

loser to the orret value?

Chapter 2 ontains the notations, de�nitions and trivial ases. In Chapter 3 we improve

on the trivial upper bound and prove that in \most" latties the lower bound is tight.

On the other hand we show, that for a ertain sequene of latties 
(d) more queries are

needed than the trivial lower bound. In Chapter 4 we prove a theorem for the speial

2-dimensional ase generalizing Theorem 3.3 of [3℄ giving lots of examples where the lower

bound is not tight. In Chapter 5 some open problems are posed.

2. Notations, De�nitions, Trivial Cases

For  2 R we denote by de the smallest integer � , and by b the largest integer � ,

fg = � b. We denote by log the logarithm of base 2.

Let d � 1 be a �xed integer and let us onsider d-dimensional vetors a = (a

1

; : : : ; a

d

). All

vetors onsidered in this paper are integer vetors. We say that a � b if a

i

� b

i

for every

i = 1; : : : ; d. Let us denote the oordinate-wise produt of two vetors a and b by ab. Let

1 = (1; : : : ; 1). We onsider the following searh problem for a vetor a � 1.

Problem. An unknown integer vetor 1 � x � a has to be found by asking

questions of the form \is x � b?" for an arbitrary integer vetor b. The

questions an be asked adaptively, i. e. later questions an depend on the

answers for earlier questions. What is the minimum number of questions

needed to �nd the unknown vetor x in the worst ase?

Let us denote this minimum by f(a), i. e. it is the minimum for all searh strategies of

the maximum for all vetors 1 � x � a of the number of queries used to �nd x.
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Proposition 2.1. For any a = (a

1

; : : : ; a

d

) the following inequalities hold

&

d

X

i=1

log a

i

'

� f(a) �

d

X

i=1

dlog a

i

e:

Proof. The lower bound follows from the observation that the number of queries has to

be at least the logarithm of size of the set we are searhing in and in this ase it is

Q

d

i=1

a

i

.

A binary searh for eah oordinate of x yields the upper bound.

Let us denote the lower bound d

P

d

i=1

log a

i

e by t(a). We all a vetor a loose if this bound

is not tight, i. e. if f(a) > t(a).

In the following setion we prove stronger bounds on the funtion f(a).

3. Tighter upper and lower bounds

The following theorem says that the gap between f and the trivial lower bound an be

large. Let us denote the d-dimensional vetor with all oordinates 3 by 3

d

.

Theorem 3.1. f(3

d

) = 2d:

The main idea of the proof is that in the middle of the searh, instead of dealing with the

set of vetors x onsistent with the answers so far we deal with a \nie" subset of it.

De�nition. We all a set S of d dimensional integer vetors nie if it is a diret produt

of fators of the following type:

(0) A single point f2g or f3g in a oordinate,

(1) Two points f1; 2g or f2; 3g in a oordinate,

(2) The set f1; 2; 3g in a oordinate,

(3) The �ve element set f(1; 3); (2; 3); (3; 1); (3; 2); (3; 3)g in two oordinates.

We de�ne the value of a fator of type (i) to be i for i = 0; 1; 2; 3 and the value v(S) of

a nie set S to be the sum of the values of its fators. The proof will be easy after the

following lemma.

Lemma 3.2. Let S be a nie set of lattie points. For any query of the form \is x � b?"

there is a nie subset T of S suh that for every element x 2 T the question is answered

in the same way and v(T ) � v(S)� 1.

Proof. We all a fator of the nie set S trivial if b's projetion to it is� than all elements

of the fator. The proof is a ase analysis. We de�ne T separately for the following seven
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ases. While some of these ases overlap (then either de�nition of T satis�es the onditions

of the lemma) it is easy to see that together they over all possibilities.

(a) In ase all the fators are trivial we de�ne T = S.

(b) If a fator of type (0) is nontrivial we also de�ne T = S.

() If a fator of type (1) is nontrivial we de�ne T by replaing this fator in S by the

one element set f2g if it was f1; 2g or by f3g if it was f2; 3g.

(d) In ase a fator of type (3) is nontrivial we de�ne T by replaing this fator of S

by a fator f3g (of type (0)) in the oordinate b's projetion is less than 3 and by

a fator of type (2) in the other oordinate.

(e) If at least two di�erent fators of type (2) are nontrivial then we de�ne T by replaing

two suh fators of S by a fator of type (3).

(f) If b's projetion to a fator of type (2) is � 1 then we de�ne T by replaing this

fator of S by f2; 3g.

(g) Finally, if all the fators are trivial exept for one type (2) fator to whih b's

projetion is 2 we de�ne T by replaing this fator of S by f1; 2g, a fator of type

(1).

In the �rst two ases T = S, therefore v(T ) = v(S), while in the last �ve ases we have

v(T ) = v(S) � 1. In the �rst and last ases the answer to the question \is x � b?" is

positive for any x 2 T while in the other �ve ases the answer is negative for all x 2 T .

Proof of Theorem 3.1. Proposition 2.1 gives f(3

d

) � 2d. For the lower bound we

give an adversary argument. We start with the set of all possible vetors x. This is a nie

set of value 2d. After any question and answer we onsider a nie subset of this that is

onsistent with every answer so far. By Lemma 3.2. we an answer the queries suh that

the value of the nie set onsidered dereases by at most 1. This means that after less than

2d queries the value is positive so we have more than one possible vetors x onsistent

with all the answers, so more queries are needed. Therefore f(3

d

) � 2d.

Theorem 3.1. gives an example where the value of the funtion f is large, it is t + b(2 �

log 3)d. Here 2� log 3 = 0:415 : : : Theorem 3.4 states that the di�erene annot be muh

larger. We are going to use the following lemma from [3℄.

Lemma 3.3. [3, Theorem 3.2.℄ If flog a

1

g + flog a

2

g � 0:8 then f(a

1

; a

2

) = dlog a

1

+

log a

2

e.

Theorem 3.4. For any d-dimensional vetor a � 1 we have f(a) < t(a) + 0:6d.

Proof. Let a = (a

1

; : : : ; a

d

). We prove the statement by indution on d using Lemma
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3.3.

For d = 1; 2 the inequality obviously holds.

In ase d > 2 let us �rst suppose, that flog a

1

g+ flog a

2

g � 0:8. Then

f(a = a

1

; : : : ; a

d

) � f(a

1

; a

2

) + f(a

3

; : : : ; a

d

)

� dlog a

1

+ log a

2

e+

&

d

X

i=3

log a

i

'

+ 0:6(d� 2) <

&

d

X

i=1

log a

i

'

+ 0:6d

Let us now onsider the ase when for any pair of omponents i, j (1 � i < j � d) we

have flog a

i

g + flog a

j

g > 0:8. In this ase the gap between the upper and lower bounds

of Proposition 2.1. is obviously less than 0:6d.

The following theorem asserts that the gap between f(a) and t(a) is small for vetors a

with all oordinates large.

Theorem 3.5. For every dimension d � 1 and every � > 0 there is an n > 0 suh

that for any integer vetor a = (a

1

; : : : ; a

d

) with all oordinates greater than n we have

f(a) � d

P

d

i=1

log a

i

+ �e.

The proof uses nothing but the monotonity of f and the following two simple observations.

The �rst of the observations is noted in [3℄. We present a simpler proof here to be self-

ontained.

Lemma 3.6. [3, Theorem 3.1.3.℄ For the two-dimensional vetor v = (2

k

� 1; 2

k

+ 1)

where k � 1 integer we have f(v) = 2k.

Proof. As 2k is the lower bound in Proposition 2.1 it is enough to give a strategy that

�nds the unknown vetor x = (x

1

; x

2

) asking at most 2k queries. We ask queries \is

x � b?" with b = (2

k

� 2

k�i

; 2

k

) for i = 1; 2; : : : ; k but only till we hear the �rst answer

\yes". If this happens after the i

th

question then 2

k

� 2

k�i�1

< x

1

� 2

k

� 2

k�i

and so it

an be found in k� i queries by binary searh, while 1 � x

2

� 2

k

an be found in k queries

by binary searh. In ase all answers are negative to our �rst k queries, than x

2

= 2

k

+ 1

and 1 � x

1

� 2

k

� 1 an be found in k queries by binary searh.

Reall that we denote by ab the oordinate-wise produt of the vetors a and b.

Lemma 3.7. For arbitrary d-dimensional vetors a and b we have f(ab) � f(a) + f(b).

Proof. Note that any vetor 1 � x � ab an uniquely be written in the form

x = (y � 1)a + z where 1 � y � b and 1 � z � a. We an �nd �rst y in f(b)

queries asking queries of the form \is x � a?". One we found y we an �nd z in f(a)
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queries asking queries of the form \is x � (y� 1)a+ ?". This searh strategy establishes

the laimed inequality.

Proof of Theorem 3.5. Let us take a positive integer k > log(6d=�). Let v

ik

be the

d-dimensional vetor with all 1 oordinates exept for the �rst oordinate being 2

k

�1 and

the i

th

oordinate being 2

k

+ 1 (i = 2; : : : ; d). By Lemma 3.6 we have f(v

ik

) = 2k. Reall

that fxg = x � bx and let l

i

= dflog a

i

g=flog(2

k

+ 1)ge and w = (2

m

1

; : : : ; 2

m

d

) where

m

i

= dlog a

i

� l

i

log(2

k

+ 1)e for i = 2; : : : ; d and m

1

=

l

log a

1

�

P

d

i=2

l

i

log(2

k

� 1)

m

.

We know from alulus that

k + log e=(2

k

+ 1) < log(2

k

+ 1) < k + log e=2

k

(1)

where e is the base of the natural logarithm. Therefore flog(2

k

+1)g � log e=(2

k

+1) � 1=2

k

and thus l

i

� 2

k

. We hoose n = 2

dk2

k

to ensure that log a

i

� dk2

k

and therefore m

i

� 0

and thus w is an integer vetor.

We have f(w) =

P

d

i=1

m

i

sine the upper and lower bounds in Proposition 2.1 are the

same in this ase. Let us de�ne b = w

Q

d

i=2

v

l

i

ik

a oordinate-wise produt of

P

d

i=2

l

i

+ 1

vetors. By the de�nition of w we have a � b and therefore

f(a) � f(b) � 2k

d

X

i=2

l

i

+

d

X

i=1

m

i

by the monotonity of f and Lemma 3.7. We laim that

2k

d

X

i=2

l

i

+

d

X

i=1

m

i

�

&

d

X

i=1

log a

i

+ �

'

:

This is learly enough to prove the theorem.

Consider the value y

i

= log a

i

� l

i

log(2

k

+1) for i = 2; : : : ; d. By the de�nition of l

i

and m

i

and by (1) we have dy

i

e = m

i

and m

i

� y

i

� flog(2

k

+ 1)g < log e=2

k

. The i

th

oordinate

of b = (b

1

; : : : ; b

d

) is b

i

= (2

k

+ 1)

l

i

2

m

i

so 0 � log b

i

� log a

i

< log e=2

k

for i = 2; : : : d. By

the de�nition of m

1

for the �rst oordinate we have 0 � log b

1

� log a

1

< 1. The produt of

the oordinates of b is the produt of the same for all fators. Taking logarithm we obtain

d

X

i=1

log b

i

= log(2

2k

� 1)

d

X

i=2

l

i

+

d

X

i=1

m

i

:

Here

log(2

2k

� 1) > 2k � log e=(2

2k

� 1)

and

d

X

i=2

l

i

� (d� 1)2

k

:
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Putting all this together we get

2k

d

X

i=2

l

i

+

d

X

i=1

m

i

<

d

X

i=1

log b

i

+ log e(d� 1)2

k

=(2

2k

� 1)

<

d

X

i=1

log a

i

+ log e(d� 1)=2

k

+ log e(d� 1)=(2

k

� 1) + 1

<

d

X

i=1

log a

i

+ �+ 1 �

&

d

X

i=2

log a

i

+ �

'

+ 1:

The third inequality follows from the hoie of k. Here the �rst and the last expressions

are integers and therefore they di�er by at least 1. This gives the inequality we need to

�nish the proof.

The threshold value n = n(d; �) we obtain from this proof is (6d=�)

6d

2

=�

. This an be

improved to (d=�)

6d=�

with no e�ort.

Corollary 3.8. For every dimension d � 1 there is an n > 0 suh that for any vetor a

with all oordinates greater than n the trivial lower bound on f(a) of Proposition 2.1 is

o� by at most one.

Proof. Take � = 1 in Theorem 3.5.

Corollary 3.9. Let us �x the dimension d and let �() be the ratio of loose vetors a

among all vetors 1 � a � . Then �() tends to 0 as all oordinates of  tend to in�nity.

Proof. Let us hoose a small value 0 < � < 1 and apply Theorem 3.5. It annot be

applied to vetors a with at least one oordinate smaller than the bound n = n(d; �) in the

theorem. Fortunately the ratio of these vetors with at least one small oordinate tend

to 0. For the rest of the vetors a = (a

1

; : : : ; a

d

) the theorem implies that a is not loose

unless 1 � � � f

P

d

i=1

log a

i

g < 1. The ratio of the vetors satisfying this last inequality

an be made arbitrarily small by hoosing � small enough.

4. A note for the 2-dimensional ase

Corollary 3.9 shows that the lower bound of Proposition 2.1 is almost always tight. There

exist however plenty of loose vetors even in dimension 2. In [3℄ it was established that

there are in�nitely many suh vetors. We extend this result in the following theorem

whih implies that for a positive fration of all positive integers u there are in�nitely many

positive integers v suh that the lower bound in Proposition 3.1 for the vetor (u; v) is not

tight. This result was independently ahieved by E. Kolev and I. Landgev [2℄.
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Theorem 4.1. If u is a positive odd integer with 2� log 3 < flogug < log 3�1 then there

are in�nitely many positive integers v suh that f((u; v)) = dlog u+ log ve+ 1.

Proof. Let u be an integer satisfying the onditions of Theorem 4.1. Take an integer

k � 1 with 2

k

� 1 (mod w) simultaneously for all odd integers 1 � w � u. We laim

that v = (2

k

� 1)=u satis�es the statement of the theorem. This is enough for the proof

sine k an be hosen in in�nitely many di�erent ways. By Euler's theorem it an be any

multiple of u!.

By Proposition 2.1 we have to prove only f((u; v)) � dlog u+ log ve+ 1 = k + 1. Suppose

that there exists a searh strategy �nding x in k queries. Sine in k� 1 queries we annot

�nd an element of a set if it has more than 2

k�1

elements, the �rst query \is x � (a; b)?"

has to be suh that at most 2

k�1

di�erent vetors x leads to any given answer \yes" or

\no". We may suppose here that 1 � a � u and 1 � b � v. As the total number of possible

vetors x is uv = 2

k

� 1 this means that the number of vetors giving \yes" answer ab is

2

k�1

or 2

k�1

�1. In ase ab = 2

k�1

�1 a is a divisor of 2

k�1

�1 therefore it is odd. On the

other hand by hoosing v in the way above, we get, that a is a divisor of 2

k

� 1, too. Sine

these two numbers are o-primes, a has to be 1. Sine ab is too small in this ase we have

to have the other possibility ab = 2

k�1

. This ase is possible but learly in one way only,

namely a has to be the largest power of 2 smaller than u and b has to be the largest power

of 2 smaller than v. Let us note here that by assumption 2 � log 3 < flogug < log 3 � 1

we have u < (3=2)a and v < (3=2)b.

Consider what happens after an answer \no" to the �rst question. There are still 2

k�1

� 1

possible vetors x. Out of these vetors 2

k�2

or 2

k�2

� 1 will answer the next question

with a \yes" by the same reasons as above. Let the next question be \is x � (; d)?". The

following is a ase analysis, we �nd the ontradition by showing that none of the ases

an our.

(a) In ase d � b the number of possible vetors x giving answer \yes" is 0 or (�a)d �

(u� a)b < ab=2� 1 = 2

k�2

� 1, whih is a ontradition.

(b) In ase  � a the number of possible vetors x giving answer \yes" is 0 or (d� b) �

a(v � b) < ab=2� 1 = 2

k�2

� 1, whih is a ontradition.

() Finally, the only remaining ase is  > a and d > b. The number of possible vetors

x giving answer \yes" is d� ab therefore d must be either (3=4)2

k

or (3=4)2

k

� 1.

In the latter ase  divides (3=4)2

k

� 1 and therefore it is odd. Sine we hose v

in the way above we have that  divides 2

k

� 1, too. As these two numbers are

o-primes  has to be 1. Therefore d annot be big enough. This ontradition

shows that d has to be (3=4)2

k

. But now  as a divisor of (3=4)2

k

has to be a

power of 2 or 3 times a power of 2 but there is no suh number a <  � u.

These ontraditions prove the theorem.
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5. Open problems

Finally let us onsider the following problems.

(1) We onjeture that if (u; v) is loose then there are in�nitely many integers v

0

suh that

(u; v

0

) is loose.

This onjeture is motivated by a ase-analysis for small values of u outlined here. For

u � 10 there are no loose vetors (u; v). The �rst value of u where Theorem 4.1 applies

is u = 11. (We mention here that this ase is already settled in [3℄.) There are no loose

vetors (u; v) with u = 12; 14; 15; 16; 17; 18; 20; 21. For u = 13; 19; 22 and 23 there are

in�nitely many loose vetors (u; v). For u = 13 and 19 it is possible to ask the �rst two

questions in suh a way that the number of vetors 1 � x � (u; v) onsistent with any set

of answers is � 2

dloguve�2

i. e. satis�es the \ounting riterion", but we annot ask the

third question this way if v is hosen right. For u = 22 and 23 even the seond question has

to violate the ounting riterion for some v. (23 is the seond value of u where Theorem

4.1 applies.)

The following stronger onjeture (motivated by the proof of Theorem 4.1) would imply

the previous onjeture.

Let u, v, and v

0

be positive integers. Let k = dlog uve and k

0

= dloguv

0

e. Suppose that

for any w � u we have 2

k

� 2

k

0

(mod w). If (u; v) is loose and v < v

0

then (u; v

0

) is also

loose.

(2) Find x = lim sup

d!1

max

a

f(a)�t(a)

d

. Here a is a positive integer vetor and d is its

dimension.

By Theorem 3.1 and Theorem 3.4 we have 2� log 3 � x � 0:6. The upper bound here an

be made muh loser to 1=2 with little e�ort. We onjeture however that the lower bound

gives the orret value of x, i. e. the vetors 3

d

of Theorem 3.1 are the ones for whih the

trivial lower bound is the worst.
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