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ABSTRACT

A search problem of G. O. H. Katona was solved in [3] where an unknown
point x in a 2-dimensional grid has to be located using queries of type “is
x = (r1,72) < a = (a1,a2)?”. Here a is an arbitrary lattice point and
x < a means that a; < b; (1 = 1,2). In the recent paper we consider the

generalization of this problem for arbitrary dimension d.

1. Introduction

The following model of the combinatorial search was initiated by A. Rényi. A finite set X
and a family A of its subsets are given. We need to find an unknown element x in X by
asking questions of type “is x in A?”, for any member A of A. Our goal is to minimize
the number of questions to identify x in the worst or in the average case.

There are two different approaches of the described model. In the first we have to ask
all queries in advance and from the answers we have to identify x. This is called parallel
search. In the second case the queries are asked sequentially, all questions may depend on
the previous answers. This is called adaptive search. In this paper we give a worst case
analysis in the adaptive model for a special search problem.
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Consider the well known fact, that in the adaptive case it is sufficient and necessary to
ask [logn] questions of type “is z < b ?” for some b € X to find an unknown element
x in an n-element ordered set X. But what can we say if X is partially ordered rather
than ordered? G. O. H. Katona [1] asked this problem for partial orders that are direct
products of chains i. e. when X is the set of bounded integer vectors of a fixed dimension
and we must find an unknown vector x € X by asking queries of the form “is x < b?7”.
(See next section for formal definition.)

In [3] M. Ruszinké considered this problem in dimension two and solved it in most cases.
In this paper we consider the same problem in arbitrary dimension d. So now we want to

find an unknown integer vector x = (x1,...,24) bounded by 1 < z; < a; fori =1,...,d.
The queries allowed are of the form “is x < b?” for an integer vector b = (by,...,by)
where answer “yes” means x; < b; forall: = 1,...,d. It is easy to see that it is necessary to

ask (2?21 log a;] questions and it is sufficient to ask 2?21 [log a;| queries (see Proposition
2.1). Thus the gap between these two trivial bounds is at most d — 1. But which bound is
closer to the correct value?

Chapter 2 contains the notations, definitions and trivial cases. In Chapter 3 we improve
on the trivial upper bound and prove that in “most” lattices the lower bound is tight.
On the other hand we show, that for a certain sequence of lattices Q(d) more queries are
needed than the trivial lower bound. In Chapter 4 we prove a theorem for the special
2-dimensional case generalizing Theorem 3.3 of [3] giving lots of examples where the lower
bound is not tight. In Chapter 5 some open problems are posed.

2. Notations, Definitions, Trivial Cases

For ¢ € R we denote by [¢] the smallest integer > ¢, and by |c| the largest integer < ¢,
{c} = ¢ —[c]. We denote by log the logarithm of base 2.

Let d > 1 be a fixed integer and let us consider d-dimensional vectors a = (a1, ...,aq). All
vectors considered in this paper are integer vectors. We say that a < b if a; < b; for every
t=1,...,d. Let us denote the coordinate-wise product of two vectors a and b by ab. Let
1=(1,...,1). We consider the following search problem for a vector a > 1.

Problem. An unknown integer vector 1 < x < a has to be found by asking
questions of the form “is x < b?” for an arbitrary integer vector b. The
questions can be asked adaptively, i. e. later questions can depend on the
answers for earlier questions. What is the minimum number of questions
needed to find the unknown vector x in the worst case?

Let us denote this minimum by f(a), i. e. it is the minimum for all search strategies of
the maximum for all vectors 1 < x < a of the number of queries used to find x.
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Proposition 2.1. For any a = (a1,...,a4) the following inequalities hold
d d
DI EVOED vt
i=1 i=1

Proof. The lower bound follows from the observation that the number of queries has to
be at least the logarithm of size of the set we are searching in and in this case it is Hle ;.
A binary search for each coordinate of x yields the upper bound. ]

Let us denote the lower bound [Z?Zl loga;] by t(a). We call a vector a loose if this bound
is not tight, i. e. if f(a) > t(a).

In the following section we prove stronger bounds on the function f(a).

3. Tighter upper and lower bounds

The following theorem says that the gap between f and the trivial lower bound can be
large. Let us denote the d-dimensional vector with all coordinates 3 by 3.

Theorem 3.1.  f(3,) = 2d.
The main idea of the proof is that in the middle of the search, instead of dealing with the

set of vectors x consistent with the answers so far we deal with a “nice” subset of it.

Definition. We call a set S of d dimensional integer vectors nice if it is a direct product
of factors of the following type:

(0) A single point {2} or {3} in a coordinate,

(1) Two points {1,2} or {2,3} in a coordinate,

(2) The set {1,2,3} in a coordinate,

(3) The five element set {(1,3),(2,3),(3,1),(3,2),(3,3)} in two coordinates.

We define the value of a factor of type (i) to be i for i = 0,1,2,3 and the value v(S) of
a nice set S to be the sum of the values of its factors. The proof will be easy after the
following lemma.

Lemma 3.2. Let S be a nice set of lattice points. For any query of the form “is x < b?”
there is a nice subset T of S such that for every element x € T the question is answered
in the same way and v(T) > v(S) — 1.

Proof. We call a factor of the nice set S trivial if b’s projection to it is > than all elements
of the factor. The proof is a case analysis. We define T separately for the following seven
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cases. While some of these cases overlap (then either definition of T satisfies the conditions
of the lemma) it is easy to see that together they cover all possibilities.

(a) In case all the factors are trivial we define T'=S.
(b) If a factor of type (0) is nontrivial we also define "= S.

(c) If a factor of type (1) is nontrivial we define T' by replacing this factor in S by the
one element set {2} if it was {1,2} or by {3} if it was {2, 3}.

(d) In case a factor of type (3) is nontrivial we define T by replacing this factor of S
by a factor {3} (of type (0)) in the coordinate b’s projection is less than 3 and by
a factor of type (2) in the other coordinate.

(e) If at least two different factors of type (2) are nontrivial then we define T' by replacing
two such factors of S by a factor of type (3).

(f) If b’s projection to a factor of type (2) is < 1 then we define T by replacing this
factor of S by {2,3}.

(g) Finally, if all the factors are trivial except for one type (2) factor to which b’s
projection is 2 we define T' by replacing this factor of S by {1, 2}, a factor of type

(1).

In the first two cases T' = S, therefore v(T) = v(S), while in the last five cases we have
v(T) = v(S) — 1. In the first and last cases the answer to the question “is x < b?” is
positive for any x € T while in the other five cases the answer is negative for all x € T'.

Proof of Theorem 3.1.  Proposition 2.1 gives f(34) < 2d. For the lower bound we
give an adversary argument. We start with the set of all possible vectors x. This is a nice
set of value 2d. After any question and answer we consider a nice subset of this that is
consistent with every answer so far. By Lemma 3.2. we can answer the queries such that
the value of the nice set considered decreases by at most 1. This means that after less than
2d queries the value is positive so we have more than one possible vectors x consistent
with all the answers, so more queries are needed. Therefore f(34) > 2d. 1

Theorem 3.1. gives an example where the value of the function f is large, it is ¢t + [(2 —
log 3)d]. Here 2 —log3 = 0.415... Theorem 3.4 states that the difference cannot be much
larger. We are going to use the following lemma from [3].

Lemma 3.3. [3, Theorem 3.2.] If {logai} + {logas} < 0.8 then f(ay,a2) = [logai+
logas]. i

Theorem 3.4.  For any d-dimensional vector a > 1 we have f(a) < t(a) + 0.6d.
Proof. Let a = (a1,...,aq). We prove the statement by induction on d using Lemma
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3.3.
For d = 1, 2 the inequality obviously holds.
In case d > 2 let us first suppose, that {loga;} + {logas} < 0.8. Then

fla=ar,....a0) < far,az) + f(as, .., aq)
d d

< [logay 4+ logas] + {Z logazw +0.6(d—2) < {Z log a,} + 0.6d

Let us now consider the case when for any pair of components i, j (1 < i < j < d) we
have {loga;} + {loga;} > 0.8. In this case the gap between the upper and lower bounds
of Proposition 2.1. is obviously less than 0.6d. ]

The following theorem asserts that the gap between f(a) and ¢(a) is small for vectors a
with all coordinates large.

Theorem 3.5. For every dimension d > 1 and every ¢ > (0 there is an n > 0 such
that for any integer vector a = (a1,...,aq) with all coordinates greater than n we have

f(a) < [0 loga; +€].

The proof uses nothing but the monotonity of f and the following two simple observations.
The first of the observations is noted in [3]. We present a simpler proof here to be self-
contained.

Lemma 3.6. [3, Theorem 3.1.3.] For the two-dimensional vector v = (2% — 1,2 + 1)
where k > 1 integer we have f(v) = 2k.

Proof. As 2k is the lower bound in Proposition 2.1 it is enough to give a strategy that
finds the unknown vector x = (z1,x2) asking at most 2k queries. We ask queries “is
x < b?” with b = (2% — 2F=% 2%) for 4 = 1,2,...,k but only till we hear the first answer
“yes”. If this happens after the i*" question then 2F — 2k=i=1 < 5, < 2k _ 2k=i and s0 it
can be found in k —4 queries by binary search, while 1 < 25 < 2¥ can be found in k queries
by binary search. In case all answers are negative to our first k queries, than zo = 28 + 1

and 1 < 21 < 2% — 1 can be found in k queries by binary search. ]

Recall that we denote by ab the coordinate-wise product of the vectors a and b.

Lemma 3.7. For arbitrary d-dimensional vectors a and b we have f(ab) < f(a) + f(b).
Proof. Note that any vector 1 < x < ab can uniquely be written in the form
x =(y—1a+z where 1 <y < band1 < z < a. We can find first y in f(b)

queries asking queries of the form “is x < ca?”. Once we found y we can find z in f(a)
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queries asking queries of the form “is x < (y —1)a+ ¢?”. This search strategy establishes
the claimed inequality. ]

Proof of Theorem 3.5.  Let us take a positive integer k > log(6d/e). Let vy be the
d-dimensional vector with all 1 coordinates except for the first coordinate being 2% — 1 and
the it coordinate being 28 +1 (i = 2,...,d). By Lemma 3.6 we have f(v;;) = 2k. Recall
that {x} = = — |z and let I; = [{loga;}/{log(2* + 1)}] and w = (2™, ...,2™d) where
m; = [loga; — l;log(2¥ +1)] for i = 2,...,d and my = {log ap — Z;.i=2 l; log(2F — 1)-‘

We know from calculus that
k+loge/(2F +1) < log(2F +1) < k + loge/2* (1)

where e is the base of the natural logarithm. Therefore {log(2¥+1)} > loge/(28+1) > 1/2*

and thus [; < 2k. We choose n = 92k2" 4 ensure that loga; > dk2F and therefore m; > 0
and thus w is an integer vector.

We have f(w) = Z?zl m; since the upper and lower bounds in Proposition 2.1 are the

same in this case. Let us define b =w H?:z Vik a coordinate-wise product of Z?:z l; +1

vectors. By the definition of w we have a < b and therefore

d d
fla) < f(b) <2k Li+ Y m;
=2 i=1

by the monotonity of f and Lemma 3.7. We claim that

d d d
1=2 =1 =1

This is clearly enough to prove the theorem.

Consider the value y; = loga; —I; log(2¥+1) for i = 2,...,d. By the definition of /; and m;
and by (1) we have [y;] = m; and m; —y; < {log(2* + 1)} < loge/2F. The i** coordinate
of b= (b1,...,bg) is b; = (2% +1)1i2™i 50 0 < logb; — loga; < loge/2F for i = 2,...d. By
the definition of m; for the first coordinate we have 0 < logb; —loga; < 1. The product of
the coordinates of b is the product of the same for all factors. Taking logarithm we obtain

d d d
Zlog b; = log(2%* — 1) Zli + Zmi.
i=1 i=2 i=1
Here
log(22% — 1) > 2k — loge/(2%% — 1)

and

d
> i< (d—1)28.

1=2



Putting all this together we get

d d d
QkZli + Zmi < Zlogbi +loge(d —1)2%F/(2%% — 1)
=2 =1 =1
d
< loga; +loge(d —1)/2F +loge(d — 1)/(2¥ = 1) + 1
=1

d d
< Zlogai+e+1 < {Zlogai+ew + 1.

i=1 i=2
The third inequality follows from the choice of k. Here the first and the last expressions
are integers and therefore they differ by at least 1. This gives the inequality we need to
finish the proof. ]

The threshold value n = n(d,€) we obtain from this proof is (6d/¢)%¢/¢. This can be
improved to (d/€)%%¢ with no effort.

Corollary 3.8. For every dimension d > 1 there is an n > 0 such that for any vector a
with all coordinates greater than n the trivial lower bound on f(a) of Proposition 2.1 is
off by at most one.

Proof. Take ¢ =1 in Theorem 3.5. ]

Corollary 3.9. Let us fix the dimension d and let a(c) be the ratio of loose vectors a
among all vectors 1 < a < c¢. Then «a(c) tends to 0 as all coordinates of ¢ tend to infinity.

Proof. Let us choose a small value 0 < ¢ < 1 and apply Theorem 3.5. It cannot be
applied to vectors a with at least one coordinate smaller than the bound n = n(d, €) in the
theorem. Fortunately the ratio of these vectors with at least one small coordinate tend
to 0. For the rest of the vectors a = (aq,...,aq) the theorem implies that a is not loose
unless 1 — € < {Zle loga;} < 1. The ratio of the vectors satisfying this last inequality
can be made arbitrarily small by choosing € small enough. ]

4. A note for the 2-dimensional case

Corollary 3.9 shows that the lower bound of Proposition 2.1 is almost always tight. There
exist however plenty of loose vectors even in dimension 2. In [3] it was established that
there are infinitely many such vectors. We extend this result in the following theorem
which implies that for a positive fraction of all positive integers u there are infinitely many
positive integers v such that the lower bound in Proposition 3.1 for the vector (u,v) is not
tight. This result was independently achieved by E. Kolev and I. Landgev [2].
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Theorem 4.1. Ifu is a positive odd integer with 2—1log3 < {logu} < log3—1 then there
are infinitely many positive integers v such that f((u,v)) = [logu + logv| + 1.

Proof. Let u be an integer satisfying the conditions of Theorem 4.1. Take an integer
k> 1 with 28 =1 (mod w) simultaneously for all odd integers 1 < w < u. We claim
that v = (2% — 1) /u satisfies the statement of the theorem. This is enough for the proof
since k can be chosen in infinitely many different ways. By Euler’s theorem it can be any
multiple of wu!.

By Proposition 2.1 we have to prove only f((u,v)) > [logu+ logv] + 1=k + 1. Suppose
that there exists a search strategy finding x in £ queries. Since in k£ — 1 queries we cannot
find an element of a set if it has more than 2¥~! elements, the first query “is x < (a,b)?”
has to be such that at most 2¥~1 different vectors x leads to any given answer “yes” or
“no”. We may suppose here that 1 < a <wand 1 <b<w. As the total number of possible
vectors X is uv = 2¥ — 1 this means that the number of vectors giving “yes” answer ab is
2F=1 or 2k=1 1. In case ab = 2¥=1 —1 a is a divisor of 2¥~1 —1 therefore it is odd. On the
other hand by choosing v in the way above, we get, that a is a divisor of 2¥ — 1, too. Since
these two numbers are co-primes, a has to be 1. Since ab is too small in this case we have
to have the other possibility ab = 28~!. This case is possible but clearly in one way only,
namely a has to be the largest power of 2 smaller than « and b has to be the largest power
of 2 smaller than v. Let us note here that by assumption 2 — log3 < {logu} < log3 — 1
we have u < (3/2)a and v < (3/2)b.

Consider what happens after an answer “no” to the first question. There are still 28=1 —1
possible vectors x. Out of these vectors 282 or 282 — 1 will answer the next question
with a “yes” by the same reasons as above. Let the next question be “is x < (¢,d)?”. The
following is a case analysis, we find the contradiction by showing that none of the cases
can Occur.

(a) In case d < b the number of possible vectors x giving answer “yes” is 0 or (¢ —a)d <
(u—a)b < ab/2 —1=2%"2— 1, which is a contradiction.

(b) In case ¢ < a the number of possible vectors x giving answer “yes” is 0 or ¢(d—b) <
a(v—b) < ab/2 — 1 =2%-2 — 1, which is a contradiction.

(¢) Finally, the only remaining case is ¢ > a and d > b. The number of possible vectors
x giving answer “yes” is cd — ab therefore cd must be either (3/4)2% or (3/4)2F — 1.
In the latter case c divides (3/4)2% — 1 and therefore it is odd. Since we chose v
in the way above we have that ¢ divides 2¥ — 1, too. As these two numbers are
co-primes ¢ has to be 1. Therefore cd cannot be big enough. This contradiction
shows that cd has to be (3/4)2F. But now c as a divisor of (3/4)2% has to be a
power of 2 or 3 times a power of 2 but there is no such number a < ¢ < u.

These contradictions prove the theorem. ]



5. Open problems

Finally let us consider the following problems.

(1) We conjecture that if (u, v) is loose then there are infinitely many integers v’ such that
(u,v") is loose.

This conjecture is motivated by a case-analysis for small values of u outlined here. For
u < 10 there are no loose vectors (u,v). The first value of u where Theorem 4.1 applies
is u = 11. (We mention here that this case is already settled in [3].) There are no loose
vectors (u,v) with v = 12,14,15,16,17,18,20,21. For w = 13,19,22 and 23 there are
infinitely many loose vectors (u,v). For u = 13 and 19 it is possible to ask the first two
questions in such a way that the number of vectors 1 < x < (u,v) consistent with any set
of answers is < 2M1°8uv1=2 o gatisfies the “counting criterion”, but we cannot ask the
third question this way if v is chosen right. For u = 22 and 23 even the second question has
to violate the counting criterion for some v. (23 is the second value of u where Theorem
4.1 applies.)

The following stronger conjecture (motivated by the proof of Theorem 4.1) would imply
the previous conjecture.

Let u, v, and v’ be positive integers. Let k = [loguv]| and k' = [loguv']. Suppose that
for any w < u we have 28 = 28 (mod w). If (u,v) is loose and v < v’ then (u,?’) is also
loose.

(2) Find z = limsup,_, ., max, w. Here a is a positive integer vector and d is its
dimension.

By Theorem 3.1 and Theorem 3.4 we have 2 —log3 < x < 0.6. The upper bound here can
be made much closer to 1/2 with little effort. We conjecture however that the lower bound
gives the correct value of z, i. e. the vectors 3; of Theorem 3.1 are the ones for which the
trivial lower bound is the worst.
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