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Abstra
t

We prove that the maximum number of k-sets in a set S of n points in IR

3

is O(nk

3=2

). This

improves substantially the previous best known upper bound of O(nk

5=3

) (see [7℄ and [1℄).

1 Introdu
tion

Let S be a set of n points in IR

d

. A k-set of S is a subset S

0

� S su
h that S

0

= S \H for some

halfspa
e H and jS

0

j = k. The problem of determining tight asymptoti
 bounds on the maximum

number of k-sets is one of the most intriguing open problems in 
ombinatorial geometry. Due

to its importan
e in analyzing geometri
 algorithms [5, 9℄, the problem has 
aught the attention

of 
omputational geometers as well [3, 7, 8, 14, 16℄. A 
lose to optimal solution for the problem

remains elusive even in the plane. The best asymptoti
 upper and lower bounds in the plane are

O(nk

1=3

) (see [6℄) and n � 2


(

p

log k)

(see [15℄), respe
tively. In this paper we obtain the following

result:

Theorem 1.1 The number of k-sets in a set of n points in IR

3

is O(nk

3=2

).

This result improves the previous best known asymptoti
 upper bound of O(nk

5=3

) (see Dey and

Edelsbrunner [7℄ and Agarwal et al. [1℄). The best known asymptoti
 lower bound for the number

of k-sets in three dimensions is nk � 2


(

p

log k)

(see [15℄).

2 An Overview of our Te
hnique

(a) The paper [1℄ presents a general te
hnique, based on random sampling, for transforming an

upper bound on the number of k-sets that is independent of k to a bound that does depend on k.

Our main thrust will thus be to establish the upper bound O(n

5=2

) for the number of k-sets. This,


ombined with the te
hnique of [1℄, will imply Theorem 1.1.
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(b) We assume that the set S is in general position, meaning that no four points in S lie in a


ommon plane. Applying a small perturbation to the points of any set S yields a set of points in

general position and the number of k-sets does not de
rease.

(
) We 
onsider the set T of halving triangles spanned by S: A triangle � = ab
, with verti
es

a; b; 
 2 S is a halving triangle if the plane 
ontaining � has the same number of points of S on

either side. (Note that n has to be odd for halving triangles to exist, and we will indeed assume,

without loss of generality, that n is odd.) We show that jT j = O(n

5=2

). This implies that the

number of k-triangles, for any k, is also bounded by O(n

5=2

), where a k-triangle is a triangle �

spanned by three points in S with exa
tly k points of S on one side of the plane 
ontaining �.

Indeed, 
hoose a dire
tion d not 
ontained in the plane of any k-triangle and add jn� 3� 2kj extra

points to S far enough in the dire
tion d or �d. Ea
h k-triangle in S turns into a halving triangle

in one of the two resulting 
on�gurations. It is well known [2℄, that the O(n

5=2

) bound on the

number of k-triangles for any k 
arries over to the same bound on the number of k-sets.

(d) All the previous approa
hes are based on (the 3-dimensional extension of) Lov�asz Lemma

[4℄: Any line 
rosses (the relative interiors of) at most O(n

2

) halving triangles. The pre
eding

te
hniques aimed to derive a general lower bound for the number of su
h 
rossings. Spe
i�
ally,

they showed that for any 
olle
tion of t triangles spanned by the points of S there exists a line

that 
rosses many triangles, where the best lower bound for this number of 
rossings is 
(t

3

=n

6

)

[7℄. Combining this lower bound with the upper bound provided by Lov�asz Lemma, one obtains

an upper bound of O(n

8=3

) for the number of k-sets.

(e) In 
ontrast, our te
hnique fo
uses on the spe
i�
 set T of halving triangles, and exploits the

stru
ture of this set. The main property of this set, whi
h is also used in deriving Lov�asz Lemma,

is the antipodality property, whi
h we re-establish rigorously in Lemma 3.4 below. Informally, it

asserts that the halving triangles with a 
ommon edge pq alternate sides, as we rotate a plane


ontaining pq. See Figure 1 for an illustration of this property. This is the only property of the set

T that is needed in the proof.

pq

1

2

3

4

5

6

7

8

9

Figure 1: The antipodality property of halving triangles: The 
ommon edge pq is shown head-on,

as a point; as we rotate a plane 
ontainig pq we en
ounter the other endpoints of these triangles in

the order shown.

(f) Our te
hnique only 
onsiders intera
tion between pairs of triangles of T with a 
ommon

vertex. Spe
i�
ally, we 
onsider 
rossings between su
h pairs of triangles, where two triangles pab

and p
d 
ross ea
h other if their relative interiors have a nonempty interse
tion (in this 
ase p is
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the only 
ommon vertex of these triangles).

(g) Our proof pro
eeds by deriving both an upper bound and a lower bound on the number

of triangle 
rossings (of the above spe
ial type) in T . The upper bound is O(n

4

) and it is an

easy 
onsequen
e of Lov�asz Lemma in 3-spa
e. The lower bound is 
(t

2

=n), and is proven using

arguments that extend those that were used in [6℄ for the analysis of k-sets in the plane. These

upper and lower bounds immediately yield the desired bound on the number of k-sets.

3 Proof of the Theorem

Let n be odd, let S be a set of n points in IR

3

in general position, and let T be the set of all halving

triangles of S. Put t = jT j.

De�nition 3.1 We say that two triangles �

1

;�

2

2 T 
ross if �

1

and �

2

share exa
tly one vertex,

say p, and the edge opposite to p in one of the triangles 
rosses the other triangle (this is equivalent

to the de�nition given in Se
tion 2). Let X denote the number of 
rossing pairs of triangles in T .

The following extension of the two-dimensional Lov�asz Lemma [10℄ has been derived in [4℄ and

used in [3, 4℄. We say that a line 
rosses a triangle if it interse
ts the triangle but not any of its

edges. One 
an prove this lemma using the Antipodality Lemma below by translating a line from

in�nity to the given lo
ation, and by observing how the number of triangles 
rossed by the line


hanges as it moves|this number 
hanges only when the line 
rosses a segment 
onne
ting two

points and then it 
hanges by �1.

Lemma 3.2 [4, 11℄ A line 
rosses fewer than n

2

=4 halving triangles.

As a 
onsequen
e we obtain:

Lemma 3.3 The number X of 
rossing pairs of halving triangles for a set S as above is less than

3n

4

=8.

Proof: Fix an edge e = pq with endpoints in S. This edge 
rosses fewer than n

2

=4 triangles.

For ea
h triangle � = ab
 that it 
rosses, e 
an 
ontribute at most three 
rossings to X, namely a


rossing between ab
 and apq, between ab
 and bpq, and between ab
 and 
pq. Sin
e there are only

�

n

2

�

edges, we have in total fewer than 3n

4

=8 
rossings. 2

The following well-known lemma, whi
h is the basis for the 3-dimensional version of Lov�asz

Lemma (see, e.g., [3, 4℄), will be 
ru
ial for our analysis. We in
lude a proof for the sake of


ompleteness.

Lemma 3.4 (Antipodality Lemma) Let p; q 2 S and let T

pq

denote the subset of all triangles

in T in
ident to both p and q. Rotate a halfplane h, bounded by the line ` passing through p and q,

about `; h meets the triangles in T

pq

in a 
y
li
 order. Let � and �

0

be two 
onse
utive elements

of T

pq

in this 
y
li
 order, let W be the wedge swept by h as it rotates from � to �

0

, and let W

0

denote the antipodal wedge, emanating from ` and bounded by the same pair of planes. Then there

is a unique `antipodal' triangle �

00

2 T

pq


ontained in W

0

.

Proof: Consider the halfplane h rotating about pq. If during the rotation h 
ontains a halving

triangle pqr and the next su
h triangle is pqr

0

, then as h leaves r the plane 
ontaining h has one

more point of S on its side 
ontaining r than on the opposite side. Just before rea
hing r

0

the

3



plane 
ontaining h has one more point on its side 
ontaining r

0

than on the opposite side 
ontaining

r. Sin
e the di�eren
e between the number of points of S 
ontained in the two sides 
hanges by

one ea
h time the plane rea
hes or leaves a point of S, there must be a position in between when

the di�eren
e is zero. At that point the plane 
ontaining h 
ontains a halving triangle from T

pq

,

but sin
e � and �

0

are 
onse
utive, this halving triangle is not 
ontained in h but in the opposite

halfplane and therefore in W

0

.

The uniqueness of this antipodal triangle is a 
onsequen
e of the existen
e proof: If there were

two or more antipodal triangles in T

pq

for � and �

0

, then one 
ould 
hoose two 
onse
utive ones

and this pair of two 
onse
utive elements of T

pq

would have no antipodal triangle. 2

Remarks: (a) Note that jT

pq

j must be odd to satisfy the assertion of the lemma, unless T

pq

is

empty. It is easy to show that T

pq

is not empty for any edge pq. If T

pq

has a single element the

assertion of the lemma holds automati
ally. In all other 
ases the lemma implies that any halfspa
e

with p and q on its boundary 
ontains at least one element of T

pq

.

(b) We say that a 
olle
tion T of triangles that is spanned by S is antipodal if it satis�es the

property in Lemma 3.4. Inspe
ting the foregoing proof, it is easily veri�ed that it also applies to

any antipodal 
olle
tion T . Hen
e any su
h 
olle
tion 
an have at most O(n

5=2

) triangles. As a

matter of fa
t, this also holds for weakly antipodal 
olle
tions T , meaning that, for ea
h edge pq,

the antipodality property holds for all but a 
onstant number of 
onse
utive pairs of triangles in

T

pq

.

We �x a 
oordinate frame and assume that no horizontal plane (i.e., one parallel to the xy

plane) 
ontains more than one point of S. We further assume that the plane of no triangle in T is

parallel to the y-axis. This 
an be a
hieved by a suitable rotation.

Fix a point p 2 S, and let T

p

denote the set of triangles in T that are in
ident to p. Let h

p

be

the horizontal plane passing through p. Let �

p

be any horizontal plane above p. Clip ea
h triangle

in T

p

to the halfspa
e above h

p

, and proje
t ea
h (nonempty) 
lipped triangle 
entrally from p onto

�

p

. The resulting set of proje
ted triangles has the following stru
ture. Ea
h point u 2 S that lies

above h

p

is mapped to a point u

�

2 �

p

. Ea
h triangle puv in T

p

for whi
h both u and v lie above

h

p

is mapped to the segment u

�

v

�

, and ea
h triangle puv in T

p

for whi
h u lies above h

p

but v

lies below h

p

is mapped to a ray emanating from u

�

. Triangles puv in T

p

for whi
h both of u and

v lie below h

p

are ex
luded from the analysis. Let G

p

denote this geometri
 graph drawn on �

p

(stri
tly speaking, G

p

is not a geometri
 graph in the sense of [12℄, be
ause of the in�nite rays that

it 
ontains), and let S

�

p

be its set of verti
es, the proje
ted images of points of S above h

p

. We refer

to both the bounded edges and the rays as edges of G

p

.

Noti
e that a 
rossing pair of edges in G

p


orresponds to a 
rossing pair of triangles in T

p

. We

do not ne
essarily get all 
rossing pairs of triangles in T

p

this way, nevertheless Lemma 3.3 bounds

the total number of edge 
rossings in the graphs G

p

.

Let e

p

and r

p

be the number of (bounded or unbounded) edges and the number of rays in G

p

,

respe
tively. In the following lemma we �nd the average of these numbers.

Lemma 3.5 (a)

P

p2S

e

p

= 2t;

(b)

P

p2S

r

p

= t.

Proof: Consider any triangle � in T and let the verti
es of � in as
ending order of their

z-
oordinates be p, q, and r. The triangle � 
ontributes a bounded edge to G

p

sin
e q and r are

both above h

p

. � 
ontributes a ray to G

q

sin
e r is above h

q

but p is below it. Finally, � does not


ontribute to G

r

sin
e both p and q are below h

r

. Ea
h triangle in T 
ontributes two to the sum

in (a) and one to the sum in (b), thus proving the lemma. 2
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We next observe that G

p

has the following antipodality property, whi
h is an immediate from

the antipodality property of Lemma 3.4.

Lemma 3.6 Let u

�

2 S

�

p

and let us sort the edges of G

p

in
ident to u

�

in the angular order around

u

�

. For any two 
onse
utive elements e

1

and e

2

of this 
y
li
 order there is a unique `antipodal'

edge e

3

in G

p

in
ident to u

�

, namely, one that extends from u

�

into the wedge that is antipodal to

the wedge formed between e

1

and e

2

.

Proof: The edges e in G

p

in
ident to u

�

are in 1-1 
orresponden
e with the triangles in T that

are in
ident to both p and u. (Here u

�

is the proje
ted image of the point u 2 S.) Our lemma

follows from Lemma 3.4 sin
e the 
y
li
 ordering of these edges 
oin
ides with the 
y
li
 ordering of

the triangles around the line pu and antipodality for edges 
orresponds to antipodality of triangles.

2

We use the antipodality established above to de
ompose the edges of ea
h G

p

into a 
olle
tion

of x-monotone 
onvex 
hains, in a manner similar to that in [6℄. We in
lude a des
ription of this


onstru
tion so as to make our paper self-
ontained and to handle properly the presen
e of in�nite

rays in our graphs.

Noti
e that our assumption on the 
oordinate system implies that no edge of G

p

is parallel to

the y-axis, and thus we 
an distinguish between left and right endpoints of edges. For de�ning the


hains we des
ribe how to 
ontinue a 
hain to the right past an edge e of G

p

. We extend e to the

right past its right endpoint q

�

and turn the extended segment about q

�


ounter
lo
kwise (looking

from above) until we en
ounter the �rst edge e

0

in G

p

in
ident to q

�

and extending from it to the

right. The 
hain 
ontaining e 
ontinues through e

0

. If e is a ray having no right endpoint or if there

is no su
h e

0

as required, then e is the rightmost edge in its 
hain. A 
hain is extended to the left

in a fully symmetri
 manner, repla
ing `right' by `left' and `
ounter
lo
kwise' by `
lo
kwise'. The

proof of Lemma 3.7 below implies that these right-extension and left-extension rules are 
onsistent

with ea
h other. See Figure 2 for an illustration of the de
omposition of G

p

into 
hains.

Lemma 3.7 (a) Ea
h edge of G

p

appears in a unique 
hain.

(b) A single 
hain terminates at any given vertex of S

�

p

(either on its right side or on its left side).

(
) The number of 
hains 


p

is at least r

p

=2.

Proof: For (a) it suÆ
es to show that no two di�erent edges of G

p

with a 
ommon right

endpoint 
an have the same right neighbor in their respe
tive 
hains. Consider a vertex q

�

2 S

�

p

and let the edges in G

p

extending from q

�

to the left in 
ounter
lo
kwise angular order be e

1

; : : : ; e

k

.

Using Lemma 3.6 we �nd a unique edge f

i

in
ident to q

�

in the wedge antipodal to e

i

e

i+1

for ea
h of

the values i = 1; : : : ; k�1. Note that sin
e the wedges are pairwise openly disjoint, the edges f

i

are

distin
t, and extend from q

�

to the right. Our 
onstru
tion guarantees that the 
hain 
ontaining e

i


ontinues through f

i

for i = 1; : : : ; k � 1 and the 
hain through e

k

does not 
ontinue through any

of the edges f

i

.

For (b), noti
e that if there are no edges in
ident to q

�

other than the edges e

i

and f

i

then the


hain 
ontaining e

k

terminates at q

�

(and this is the only 
hain terminating there). If, however,

there are more edges of G

p

in
ident to q

�

, then (again by Lemma 3.6) there are exa
tly two more

edges, both extending from q

�

to the right, and the 
hain 
ontaining e

k

extends through one of

them, while the other edge represents a 
hain that terminates (on its left) at q

�

.

We remark here that the above arguments also prove that the dual de�nition (of 
ontinuing


hains to the left) results in the same set of 
onvex 
hains.
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a

b




d

e

f

g

Figure 2: An illustration of the graph G

p

. One 
onvex 
hain is drawn as dashed and one as dotted.

The remaining 
hains are: (�1; a; 
;+1), (
; g;+1), (d; e), (a; b; g), (�1; b). Here �1= +1

means that the 
hain starts/stops on a ray. The (�1; a; 
;+1) 
hain 
ontains the lower ray ending

at a.

For (
) noti
e that ea
h 
hain 
ontains at most two rays. 2

The following lemma implies that for typi
al values of e

p

and r

p

(whi
h are both �(t=n)) and for

t � 100n

2

, a positive fra
tion of all pairs of edges in G

p

are 
rossing. This is a substantial improve-

ment over the 
(jT

p

j

3

=n

2

) bound on the 
rossing number of the graph obtained by proje
ting T

p


entrally from p to a sphere around p (see, e.g., [13, Theorem 14.12℄). (Noti
e that G

p

is the 
entral

proje
tion from p onto �

p

of the portion of this spheri
al graph that lies in the upper hemisphere.)

Using this weaker bound instead (and 
omparing it with the upper bound of Lemma 3.3), would

yield a simple proof of the known result [7℄ that a set of n points in 3-spa
e has O(n

8=3

) k-sets, for

any �xed k.

Lemma 3.8 The number of edge-
rossings in G

p

is at least r

2

p

=8� 3e

p

n.

Proof: We 
all a pair of 
hains C

1

; C

2


rossing if there exist edges e

1

2 C

1

, e

2

2 C

2

that 
ross

ea
h other (in their relative interiors). That is, pairs of 
hains \
rossing" at a vertex do not 
ount.

In view of Lemma 3.7(a), it suÆ
es to obtain a lower bound for the number of pairs of 
hains that


ross ea
h other. Instead, let us derive an upper bound for the number of non-
rossing pairs of


hains. Let C

1

; C

2

be a non-
rossing pair of 
hains. Then either (a) C

1

and C

2

are disjoint, or

(b) C

1

and C

2

meet at a vertex. We assume that both C

1

and C

2

start and end on rays of G

p

.

The total number of pairs of 
hains that violate this assumption is at most 


p

n, as follows from

Lemma 3.7(b).
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Suppose that C

1

and C

2

are disjoint, in whi
h 
ase one of the 
hains, say C

1

, lies fully above C

2

(in the y-dire
tion). Take any edge e

2

of C

2

, and let `

1

be the line tangent to C

1

and parallel to e

2

.

(The line `

1

exists be
ause C

1

lies above C

2

and C

2

lies above the line 
ontaining e

2

.) Let p

1

be a

vertex of C

1

in
ident to `

1

; see Figure 3. The pair (p

1

; e

2

) determines the pair (C

1

; C

2

). Indeed, the

edge e

2

identi�es the 
hain C

2

uniquely, by Lemma 3.7(a). The pair (e

2

; p

1

) determine the tangent

line `

1

, and the 
onstru
tion of the 
hains is easily seen to imply that p

1

and `

1

uniquely identify

C

1

. Hen
e, the number of disjoint pairs of 
hains is at most e

p

n.

C

1

C

2

e

2

p

1

`

1

Figure 3: A pair of non-
rossing 
hains

Suppose next that C

1

and C

2

meet at a vertex. Let e

1

2 C

1

and e

2

2 C

2

be edges of the 
hains

with a 
ommon right endpoint. Clearly e

1

and e

2

determine C

1

and C

2

. Here e

1

is one of the e

p

edges of G

p

and e

2

is one of the at most n edges in G

p

in
ident to the right endpoint of e

1

. (Here

we use the fa
t that the maximum degree of G

p

is bounded by n, sin
e at most n triangles in T

are in
ident to a �xed pair of points of S.) Hen
e, the number of pairs of 
hains having a 
ommon

vertex is at most e

p

n.

We thus have at least

�




p

2

�

� 


p

n�2e

p

n 
rossing pairs of edges in G

p

whi
h is, by Lemma 3.7(
),

at least the 
laimed number r

2

p

=8� 3e

p

n. 2

We �nish the proof by 
omparing the upper bound in Lemma 3.3 and the lower bound in

Lemma 3.8 for the number X of 
rossing pairs of triangles in T with a 
ommon vertex. We have

3n

4

=8 � X �

X

p2S

(r

2

p

=8� 3e

p

n) � t

2

=(8n) � 6tn;

where the last inequality follows from Lemma 3.5. We thus have t

2

� 3n

5

+ 48tn

2

, whi
h implies

that t = O(n

5=2

).

This, and the observations in Se
tion 2 (a) and (
), 
omplete the proof of Theorem 1.1.

4 Open Problems

(a) Our analysis is based on the upper bound O(n

4

) on the number of 
rossings derived in

Lemma 3.3. However, this bound seems to be weak, be
ause, for an edge ab 
onne
ting two

7



points a; b of S, we want to 
ount the number of halving triangles p
d that it 
rosses, with the

additional 
onstraint that pab is also a halving triangle. In our derivation we do not exploit this


onstraint at all, so the �rst open problem is whether this bound 
an be improved, taking into

a

ount this 
onstraint.

(b) We 
onje
ture that the following holds: Given a set S of n points in 3-spa
e in general position

and an arbitrary set T of t triangles spanned by S, there exists a line that 
rosses 
(t

2

=n

3

) triangles

of T . This bound is signi�
antly larger than the bound 
(t

3

=n

6

) of [7℄ and it would yield a trivial

proof of Theorem 1.1 (using Lov�asz Lemma). We are not aware of any 
onstru
tion that 
ontradi
ts

this 
onje
tured bound. This bound is best possible, for t = 
(n

2

), whi
h 
an be shown by a simple


onstru
tion.

(
) An even stronger 
onje
ture is the following: Given a set S of n points in the plane in general

position and an arbitrary set T of t triangles spanned by S, there exists a point that lies in 
(t

2

=n

3

)

triangles of T . The best known lower bound, due to [3℄, is 
(t

3

=(n

6

log

5

n)). Again, the 
onje
tured

bound is best possible for t = 
(n

2

). (Note that if (
) is true then the following strengthening of

(b) also holds: Given S and T as in (b), then for any dire
tion u there exists a line parallel to u

that 
rosses 
(t

2

=n

3

) triangles of T .)

(d) Finally, 
an the te
hnique used in this paper be extended to higher dimensions? A main diÆ
ulty

in su
h an extension is that, already in four dimensions, the fa
t that two halving simpli
es (even

with some 
ommon verti
es) 
ross ea
h other does not ne
essarily imply that an edge of one of them


rosses the relative interior of the other. This pre
ludes an immediate extension of Lemma 3.3 to

four dimensions.
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