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Abstrat

We prove that the maximum number of k-sets in a set S of n points in IR

3

is O(nk

3=2

). This

improves substantially the previous best known upper bound of O(nk

5=3

) (see [7℄ and [1℄).

1 Introdution

Let S be a set of n points in IR

d

. A k-set of S is a subset S

0

� S suh that S

0

= S \H for some

halfspae H and jS

0

j = k. The problem of determining tight asymptoti bounds on the maximum

number of k-sets is one of the most intriguing open problems in ombinatorial geometry. Due

to its importane in analyzing geometri algorithms [5, 9℄, the problem has aught the attention

of omputational geometers as well [3, 7, 8, 14, 16℄. A lose to optimal solution for the problem

remains elusive even in the plane. The best asymptoti upper and lower bounds in the plane are

O(nk

1=3

) (see [6℄) and n � 2


(

p

log k)

(see [15℄), respetively. In this paper we obtain the following

result:

Theorem 1.1 The number of k-sets in a set of n points in IR

3

is O(nk

3=2

).

This result improves the previous best known asymptoti upper bound of O(nk

5=3

) (see Dey and

Edelsbrunner [7℄ and Agarwal et al. [1℄). The best known asymptoti lower bound for the number

of k-sets in three dimensions is nk � 2


(

p

log k)

(see [15℄).

2 An Overview of our Tehnique

(a) The paper [1℄ presents a general tehnique, based on random sampling, for transforming an

upper bound on the number of k-sets that is independent of k to a bound that does depend on k.

Our main thrust will thus be to establish the upper bound O(n

5=2

) for the number of k-sets. This,

ombined with the tehnique of [1℄, will imply Theorem 1.1.
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(b) We assume that the set S is in general position, meaning that no four points in S lie in a

ommon plane. Applying a small perturbation to the points of any set S yields a set of points in

general position and the number of k-sets does not derease.

() We onsider the set T of halving triangles spanned by S: A triangle � = ab, with verties

a; b;  2 S is a halving triangle if the plane ontaining � has the same number of points of S on

either side. (Note that n has to be odd for halving triangles to exist, and we will indeed assume,

without loss of generality, that n is odd.) We show that jT j = O(n

5=2

). This implies that the

number of k-triangles, for any k, is also bounded by O(n

5=2

), where a k-triangle is a triangle �

spanned by three points in S with exatly k points of S on one side of the plane ontaining �.

Indeed, hoose a diretion d not ontained in the plane of any k-triangle and add jn� 3� 2kj extra

points to S far enough in the diretion d or �d. Eah k-triangle in S turns into a halving triangle

in one of the two resulting on�gurations. It is well known [2℄, that the O(n

5=2

) bound on the

number of k-triangles for any k arries over to the same bound on the number of k-sets.

(d) All the previous approahes are based on (the 3-dimensional extension of) Lov�asz Lemma

[4℄: Any line rosses (the relative interiors of) at most O(n

2

) halving triangles. The preeding

tehniques aimed to derive a general lower bound for the number of suh rossings. Spei�ally,

they showed that for any olletion of t triangles spanned by the points of S there exists a line

that rosses many triangles, where the best lower bound for this number of rossings is 
(t

3

=n

6

)

[7℄. Combining this lower bound with the upper bound provided by Lov�asz Lemma, one obtains

an upper bound of O(n

8=3

) for the number of k-sets.

(e) In ontrast, our tehnique fouses on the spei� set T of halving triangles, and exploits the

struture of this set. The main property of this set, whih is also used in deriving Lov�asz Lemma,

is the antipodality property, whih we re-establish rigorously in Lemma 3.4 below. Informally, it

asserts that the halving triangles with a ommon edge pq alternate sides, as we rotate a plane

ontaining pq. See Figure 1 for an illustration of this property. This is the only property of the set

T that is needed in the proof.

pq

1

2

3

4

5

6

7

8

9

Figure 1: The antipodality property of halving triangles: The ommon edge pq is shown head-on,

as a point; as we rotate a plane ontainig pq we enounter the other endpoints of these triangles in

the order shown.

(f) Our tehnique only onsiders interation between pairs of triangles of T with a ommon

vertex. Spei�ally, we onsider rossings between suh pairs of triangles, where two triangles pab

and pd ross eah other if their relative interiors have a nonempty intersetion (in this ase p is
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the only ommon vertex of these triangles).

(g) Our proof proeeds by deriving both an upper bound and a lower bound on the number

of triangle rossings (of the above speial type) in T . The upper bound is O(n

4

) and it is an

easy onsequene of Lov�asz Lemma in 3-spae. The lower bound is 
(t

2

=n), and is proven using

arguments that extend those that were used in [6℄ for the analysis of k-sets in the plane. These

upper and lower bounds immediately yield the desired bound on the number of k-sets.

3 Proof of the Theorem

Let n be odd, let S be a set of n points in IR

3

in general position, and let T be the set of all halving

triangles of S. Put t = jT j.

De�nition 3.1 We say that two triangles �

1

;�

2

2 T ross if �

1

and �

2

share exatly one vertex,

say p, and the edge opposite to p in one of the triangles rosses the other triangle (this is equivalent

to the de�nition given in Setion 2). Let X denote the number of rossing pairs of triangles in T .

The following extension of the two-dimensional Lov�asz Lemma [10℄ has been derived in [4℄ and

used in [3, 4℄. We say that a line rosses a triangle if it intersets the triangle but not any of its

edges. One an prove this lemma using the Antipodality Lemma below by translating a line from

in�nity to the given loation, and by observing how the number of triangles rossed by the line

hanges as it moves|this number hanges only when the line rosses a segment onneting two

points and then it hanges by �1.

Lemma 3.2 [4, 11℄ A line rosses fewer than n

2

=4 halving triangles.

As a onsequene we obtain:

Lemma 3.3 The number X of rossing pairs of halving triangles for a set S as above is less than

3n

4

=8.

Proof: Fix an edge e = pq with endpoints in S. This edge rosses fewer than n

2

=4 triangles.

For eah triangle � = ab that it rosses, e an ontribute at most three rossings to X, namely a

rossing between ab and apq, between ab and bpq, and between ab and pq. Sine there are only

�

n

2

�

edges, we have in total fewer than 3n

4

=8 rossings. 2

The following well-known lemma, whih is the basis for the 3-dimensional version of Lov�asz

Lemma (see, e.g., [3, 4℄), will be ruial for our analysis. We inlude a proof for the sake of

ompleteness.

Lemma 3.4 (Antipodality Lemma) Let p; q 2 S and let T

pq

denote the subset of all triangles

in T inident to both p and q. Rotate a halfplane h, bounded by the line ` passing through p and q,

about `; h meets the triangles in T

pq

in a yli order. Let � and �

0

be two onseutive elements

of T

pq

in this yli order, let W be the wedge swept by h as it rotates from � to �

0

, and let W

0

denote the antipodal wedge, emanating from ` and bounded by the same pair of planes. Then there

is a unique `antipodal' triangle �

00

2 T

pq

ontained in W

0

.

Proof: Consider the halfplane h rotating about pq. If during the rotation h ontains a halving

triangle pqr and the next suh triangle is pqr

0

, then as h leaves r the plane ontaining h has one

more point of S on its side ontaining r than on the opposite side. Just before reahing r

0

the
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plane ontaining h has one more point on its side ontaining r

0

than on the opposite side ontaining

r. Sine the di�erene between the number of points of S ontained in the two sides hanges by

one eah time the plane reahes or leaves a point of S, there must be a position in between when

the di�erene is zero. At that point the plane ontaining h ontains a halving triangle from T

pq

,

but sine � and �

0

are onseutive, this halving triangle is not ontained in h but in the opposite

halfplane and therefore in W

0

.

The uniqueness of this antipodal triangle is a onsequene of the existene proof: If there were

two or more antipodal triangles in T

pq

for � and �

0

, then one ould hoose two onseutive ones

and this pair of two onseutive elements of T

pq

would have no antipodal triangle. 2

Remarks: (a) Note that jT

pq

j must be odd to satisfy the assertion of the lemma, unless T

pq

is

empty. It is easy to show that T

pq

is not empty for any edge pq. If T

pq

has a single element the

assertion of the lemma holds automatially. In all other ases the lemma implies that any halfspae

with p and q on its boundary ontains at least one element of T

pq

.

(b) We say that a olletion T of triangles that is spanned by S is antipodal if it satis�es the

property in Lemma 3.4. Inspeting the foregoing proof, it is easily veri�ed that it also applies to

any antipodal olletion T . Hene any suh olletion an have at most O(n

5=2

) triangles. As a

matter of fat, this also holds for weakly antipodal olletions T , meaning that, for eah edge pq,

the antipodality property holds for all but a onstant number of onseutive pairs of triangles in

T

pq

.

We �x a oordinate frame and assume that no horizontal plane (i.e., one parallel to the xy

plane) ontains more than one point of S. We further assume that the plane of no triangle in T is

parallel to the y-axis. This an be ahieved by a suitable rotation.

Fix a point p 2 S, and let T

p

denote the set of triangles in T that are inident to p. Let h

p

be

the horizontal plane passing through p. Let �

p

be any horizontal plane above p. Clip eah triangle

in T

p

to the halfspae above h

p

, and projet eah (nonempty) lipped triangle entrally from p onto

�

p

. The resulting set of projeted triangles has the following struture. Eah point u 2 S that lies

above h

p

is mapped to a point u

�

2 �

p

. Eah triangle puv in T

p

for whih both u and v lie above

h

p

is mapped to the segment u

�

v

�

, and eah triangle puv in T

p

for whih u lies above h

p

but v

lies below h

p

is mapped to a ray emanating from u

�

. Triangles puv in T

p

for whih both of u and

v lie below h

p

are exluded from the analysis. Let G

p

denote this geometri graph drawn on �

p

(stritly speaking, G

p

is not a geometri graph in the sense of [12℄, beause of the in�nite rays that

it ontains), and let S

�

p

be its set of verties, the projeted images of points of S above h

p

. We refer

to both the bounded edges and the rays as edges of G

p

.

Notie that a rossing pair of edges in G

p

orresponds to a rossing pair of triangles in T

p

. We

do not neessarily get all rossing pairs of triangles in T

p

this way, nevertheless Lemma 3.3 bounds

the total number of edge rossings in the graphs G

p

.

Let e

p

and r

p

be the number of (bounded or unbounded) edges and the number of rays in G

p

,

respetively. In the following lemma we �nd the average of these numbers.

Lemma 3.5 (a)

P

p2S

e

p

= 2t;

(b)

P

p2S

r

p

= t.

Proof: Consider any triangle � in T and let the verties of � in asending order of their

z-oordinates be p, q, and r. The triangle � ontributes a bounded edge to G

p

sine q and r are

both above h

p

. � ontributes a ray to G

q

sine r is above h

q

but p is below it. Finally, � does not

ontribute to G

r

sine both p and q are below h

r

. Eah triangle in T ontributes two to the sum

in (a) and one to the sum in (b), thus proving the lemma. 2
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We next observe that G

p

has the following antipodality property, whih is an immediate from

the antipodality property of Lemma 3.4.

Lemma 3.6 Let u

�

2 S

�

p

and let us sort the edges of G

p

inident to u

�

in the angular order around

u

�

. For any two onseutive elements e

1

and e

2

of this yli order there is a unique `antipodal'

edge e

3

in G

p

inident to u

�

, namely, one that extends from u

�

into the wedge that is antipodal to

the wedge formed between e

1

and e

2

.

Proof: The edges e in G

p

inident to u

�

are in 1-1 orrespondene with the triangles in T that

are inident to both p and u. (Here u

�

is the projeted image of the point u 2 S.) Our lemma

follows from Lemma 3.4 sine the yli ordering of these edges oinides with the yli ordering of

the triangles around the line pu and antipodality for edges orresponds to antipodality of triangles.

2

We use the antipodality established above to deompose the edges of eah G

p

into a olletion

of x-monotone onvex hains, in a manner similar to that in [6℄. We inlude a desription of this

onstrution so as to make our paper self-ontained and to handle properly the presene of in�nite

rays in our graphs.

Notie that our assumption on the oordinate system implies that no edge of G

p

is parallel to

the y-axis, and thus we an distinguish between left and right endpoints of edges. For de�ning the

hains we desribe how to ontinue a hain to the right past an edge e of G

p

. We extend e to the

right past its right endpoint q

�

and turn the extended segment about q

�

ounterlokwise (looking

from above) until we enounter the �rst edge e

0

in G

p

inident to q

�

and extending from it to the

right. The hain ontaining e ontinues through e

0

. If e is a ray having no right endpoint or if there

is no suh e

0

as required, then e is the rightmost edge in its hain. A hain is extended to the left

in a fully symmetri manner, replaing `right' by `left' and `ounterlokwise' by `lokwise'. The

proof of Lemma 3.7 below implies that these right-extension and left-extension rules are onsistent

with eah other. See Figure 2 for an illustration of the deomposition of G

p

into hains.

Lemma 3.7 (a) Eah edge of G

p

appears in a unique hain.

(b) A single hain terminates at any given vertex of S

�

p

(either on its right side or on its left side).

() The number of hains 

p

is at least r

p

=2.

Proof: For (a) it suÆes to show that no two di�erent edges of G

p

with a ommon right

endpoint an have the same right neighbor in their respetive hains. Consider a vertex q

�

2 S

�

p

and let the edges in G

p

extending from q

�

to the left in ounterlokwise angular order be e

1

; : : : ; e

k

.

Using Lemma 3.6 we �nd a unique edge f

i

inident to q

�

in the wedge antipodal to e

i

e

i+1

for eah of

the values i = 1; : : : ; k�1. Note that sine the wedges are pairwise openly disjoint, the edges f

i

are

distint, and extend from q

�

to the right. Our onstrution guarantees that the hain ontaining e

i

ontinues through f

i

for i = 1; : : : ; k � 1 and the hain through e

k

does not ontinue through any

of the edges f

i

.

For (b), notie that if there are no edges inident to q

�

other than the edges e

i

and f

i

then the

hain ontaining e

k

terminates at q

�

(and this is the only hain terminating there). If, however,

there are more edges of G

p

inident to q

�

, then (again by Lemma 3.6) there are exatly two more

edges, both extending from q

�

to the right, and the hain ontaining e

k

extends through one of

them, while the other edge represents a hain that terminates (on its left) at q

�

.

We remark here that the above arguments also prove that the dual de�nition (of ontinuing

hains to the left) results in the same set of onvex hains.

5



a

b



d

e

f

g

Figure 2: An illustration of the graph G

p

. One onvex hain is drawn as dashed and one as dotted.

The remaining hains are: (�1; a; ;+1), (; g;+1), (d; e), (a; b; g), (�1; b). Here �1= +1

means that the hain starts/stops on a ray. The (�1; a; ;+1) hain ontains the lower ray ending

at a.

For () notie that eah hain ontains at most two rays. 2

The following lemma implies that for typial values of e

p

and r

p

(whih are both �(t=n)) and for

t � 100n

2

, a positive fration of all pairs of edges in G

p

are rossing. This is a substantial improve-

ment over the 
(jT

p

j

3

=n

2

) bound on the rossing number of the graph obtained by projeting T

p

entrally from p to a sphere around p (see, e.g., [13, Theorem 14.12℄). (Notie that G

p

is the entral

projetion from p onto �

p

of the portion of this spherial graph that lies in the upper hemisphere.)

Using this weaker bound instead (and omparing it with the upper bound of Lemma 3.3), would

yield a simple proof of the known result [7℄ that a set of n points in 3-spae has O(n

8=3

) k-sets, for

any �xed k.

Lemma 3.8 The number of edge-rossings in G

p

is at least r

2

p

=8� 3e

p

n.

Proof: We all a pair of hains C

1

; C

2

rossing if there exist edges e

1

2 C

1

, e

2

2 C

2

that ross

eah other (in their relative interiors). That is, pairs of hains \rossing" at a vertex do not ount.

In view of Lemma 3.7(a), it suÆes to obtain a lower bound for the number of pairs of hains that

ross eah other. Instead, let us derive an upper bound for the number of non-rossing pairs of

hains. Let C

1

; C

2

be a non-rossing pair of hains. Then either (a) C

1

and C

2

are disjoint, or

(b) C

1

and C

2

meet at a vertex. We assume that both C

1

and C

2

start and end on rays of G

p

.

The total number of pairs of hains that violate this assumption is at most 

p

n, as follows from

Lemma 3.7(b).
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Suppose that C

1

and C

2

are disjoint, in whih ase one of the hains, say C

1

, lies fully above C

2

(in the y-diretion). Take any edge e

2

of C

2

, and let `

1

be the line tangent to C

1

and parallel to e

2

.

(The line `

1

exists beause C

1

lies above C

2

and C

2

lies above the line ontaining e

2

.) Let p

1

be a

vertex of C

1

inident to `

1

; see Figure 3. The pair (p

1

; e

2

) determines the pair (C

1

; C

2

). Indeed, the

edge e

2

identi�es the hain C

2

uniquely, by Lemma 3.7(a). The pair (e

2

; p

1

) determine the tangent

line `

1

, and the onstrution of the hains is easily seen to imply that p

1

and `

1

uniquely identify

C

1

. Hene, the number of disjoint pairs of hains is at most e

p

n.

C

1

C

2

e

2

p

1

`

1

Figure 3: A pair of non-rossing hains

Suppose next that C

1

and C

2

meet at a vertex. Let e

1

2 C

1

and e

2

2 C

2

be edges of the hains

with a ommon right endpoint. Clearly e

1

and e

2

determine C

1

and C

2

. Here e

1

is one of the e

p

edges of G

p

and e

2

is one of the at most n edges in G

p

inident to the right endpoint of e

1

. (Here

we use the fat that the maximum degree of G

p

is bounded by n, sine at most n triangles in T

are inident to a �xed pair of points of S.) Hene, the number of pairs of hains having a ommon

vertex is at most e

p

n.

We thus have at least

�



p

2

�

� 

p

n�2e

p

n rossing pairs of edges in G

p

whih is, by Lemma 3.7(),

at least the laimed number r

2

p

=8� 3e

p

n. 2

We �nish the proof by omparing the upper bound in Lemma 3.3 and the lower bound in

Lemma 3.8 for the number X of rossing pairs of triangles in T with a ommon vertex. We have

3n

4

=8 � X �

X

p2S

(r

2

p

=8� 3e

p

n) � t

2

=(8n) � 6tn;

where the last inequality follows from Lemma 3.5. We thus have t

2

� 3n

5

+ 48tn

2

, whih implies

that t = O(n

5=2

).

This, and the observations in Setion 2 (a) and (), omplete the proof of Theorem 1.1.

4 Open Problems

(a) Our analysis is based on the upper bound O(n

4

) on the number of rossings derived in

Lemma 3.3. However, this bound seems to be weak, beause, for an edge ab onneting two

7



points a; b of S, we want to ount the number of halving triangles pd that it rosses, with the

additional onstraint that pab is also a halving triangle. In our derivation we do not exploit this

onstraint at all, so the �rst open problem is whether this bound an be improved, taking into

aount this onstraint.

(b) We onjeture that the following holds: Given a set S of n points in 3-spae in general position

and an arbitrary set T of t triangles spanned by S, there exists a line that rosses 
(t

2

=n

3

) triangles

of T . This bound is signi�antly larger than the bound 
(t

3

=n

6

) of [7℄ and it would yield a trivial

proof of Theorem 1.1 (using Lov�asz Lemma). We are not aware of any onstrution that ontradits

this onjetured bound. This bound is best possible, for t = 
(n

2

), whih an be shown by a simple

onstrution.

() An even stronger onjeture is the following: Given a set S of n points in the plane in general

position and an arbitrary set T of t triangles spanned by S, there exists a point that lies in 
(t

2

=n

3

)

triangles of T . The best known lower bound, due to [3℄, is 
(t

3

=(n

6

log

5

n)). Again, the onjetured

bound is best possible for t = 
(n

2

). (Note that if () is true then the following strengthening of

(b) also holds: Given S and T as in (b), then for any diretion u there exists a line parallel to u

that rosses 
(t

2

=n

3

) triangles of T .)

(d) Finally, an the tehnique used in this paper be extended to higher dimensions? A main diÆulty

in suh an extension is that, already in four dimensions, the fat that two halving simplies (even

with some ommon verties) ross eah other does not neessarily imply that an edge of one of them

rosses the relative interior of the other. This preludes an immediate extension of Lemma 3.3 to

four dimensions.
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