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A new entropy inequality for the Erd}os distan
e problem

Nets Hawk Katz and G�abor Tardos

Abstra
t. This note 
ombines the te
hniques of two earlier papers [T℄ and

[K℄ for an improved lower bound on the long standing (see e.g. [E℄,[M℄,[SzT℄,

and [CSzT℄) Erd}os problem on distin
t distan
es in the plane: Given n distin
t

points in the plane what is the minimum number of distin
t distan
es they

determine. We improve the 
(n

19=22��

) bound for this problem stated in [K℄

to




�

n

48�14e

55�16e

��

�

;

where e is the base of the natural logarithm and � > 0 is arbitrary.

The proof of this lower bound (just as the proofs of the last three su
h

bounds) is based on the 
onne
tion between this problem and the following

problem on distin
t sums: Given an n by s real matrix with all sn entries

distin
t, what is the minimum number of distin
t pairwise sums formed by

adding two distin
t entries of a 
ommon row of the matrix. The 
onne
tion

between the two problems was dis
overed by J. Solymosi and Cs. T�oth [ST℄;

the distin
t sum problem was expli
itly formulated in [T℄ where some bounds

were established. The paper [K℄ proves stronger bounds for the distin
t sum

problem in the spe
ial 
ase s = 5. This note 
ombines the te
hniques of that

paper with those of [T℄ to obtain similar bounds for higher values of s.

Lower bounds on the distin
t sum problem were also applied in [STT℄

and [PT℄. Plugging in our bounds, one 
an automati
ally improve the results

of these papers on the number of o

urren
es of the k most frequent distan
es

among n points and the number of isos
eles triangles determined by n points

in the plane.

x1. Introdu
tion, de�nitions

The results of this note follow by simply 
ombining the te
hniques of two earlier

papers of the authors [K℄ and [T℄. We will use the notation of [T℄ and many of

the lemmas there, so the reader is advised to read that paper �rst. Nonetheless we

re
all the de�nitions from that paper.

For an n by s matrix A = (a

ij

) we de�ne S(A) = fa

ij

+ a

ik

j 1 � i � n; 1 �

j < k � sg the set of pairwise sums of entries from the same row. Let f

s

(n) be the

1991 Mathemati
s Subje
t Classi�
ation. 05D99.

Key words and phrases. entropy, Erd}os distan
e problem, restri
ted sumsets.

The �rst author was in part supported by the NSF grant 0100601. The se
ond author was

partially supported by the grant OTKA T037486.





XXXX Ameri
an Mathemati
al So
iety

1



2 NETS HAWK KATZ AND G

�

ABOR TARDOS

minimum size jS(A)j for a real n by s matrix with all its sn entries being pairwise

distin
t.

Both f

3

(n) and f

4

(n) are �(n

1=3

). The order of magnitude of f

s

(n) for higher

values of s is not known. I. Ruzsa [R℄ gave the best known 
onstru
tion, whi
h

establishes

f

2k

(n) = O

�

n

1

2

�

1

4k�2

�

;

for any �xed k. The �rst lower bound was proved in [T℄:

f

2k�1

(n) � n

1




k

;

with the values 


k

de�ned below. The paper [K℄ improves the lower bound for f

5

(n)

establishing

f

5

(n) = 


�

n

7

19

��

�

;

for any � > 0. As 1=


k

< 1=e < 7=19 for any k this also improves the lower bound

for all the fun
tions f

s

(n) for s > 5 as f

s

(n) is 
learly in
reasing in s. Nevertheless

we present here the formula de�ning 


k

as these values will play a role in the bounds

presented in this note.

For 2 � k � 14 we let




k

=

k

X

i=0

1

i!

+

1

(k � 1)k!

:

For k � 14 we let




k

=

k

X

i=0

1

i!

+

k

3

� 7k

2

+ 20k � 40

(k

4

� 8k

3

+ 26k

2

� 46k + 40)k!

:

Either de�nition gives the same value for 


14

and we 
learly have that the values




k

tend to e, the base of the natural logarithm, as k goes to in�nity.

The proof of the lower bound in [T℄ is based on an involved 
al
ulation of

entropies of di�erent fun
tions. For a dis
reet random variable R, its entropy is

given by

H(R) = �

X

x

P [R = x℄ logP [R = x℄;

where the summation extends for all values x taken by R with positive probability.

Here and later in this note H denotes the binary entropy and log stands for the

binary logarithm. The entropy of a random variable is the amount of information

obtained by resolving its value. The idea whi
h this note will re�ne is that be
ause

of various arithmeti
 identities between entries of a matrix and their sums, the

amount of information obtained from resolving an entry 
an be 
ontrolled using

the amount of information obtained in resolving a sum.

Consider an n by s real matrixA with all its entries distin
t. The basi
 probabil-

ity spa
e 
onsidered is that of a uniformly distributed random rowR = (R

1

; : : : ; R

s

)

of A. Clearly

H(R) = logn:

Let I = f1; 2; : : : ; sg be the set of 
olumn indexes. In [T℄ we 
onsidered subsets

U and V of I (not both the empty set) and de�ned p

UV

(R) to be the sequen
e of
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numbers 
onsisting of the di�eren
es R

i

� R

j

for i; j 2 U and for i; j 2 V and the

sums R

i

+R

j

for i 2 U and j 2 V . We de�ned

H(U; V ) = H(p

UV

(R));

and formed the normalized averages

H

i;j

= 1�

1

logn

�

n

i

��

n�i

j

�

X

U;V

H(U; V );

for i; j � 0 with 1 � i+ j � s where the summation extends for all disjoint pairs of

subsets U and V of I with jU j = i, jV j = j.

The paper [T℄ is based on establishing numerous linear inequalities 
onne
ting

the values H(U; V ) (Lemma 3 of [T℄) and using them to bound jS(A)j. We are

going to simply quote these inequalities. The novelty in the paper [K℄ is basi
ally

proving yet another similar inequality. This is not expli
it in the paper, so we have

to prove the new inequality. We do this in the next se
tion. In the third se
tion we


ombine all these inequalities to give our new lower bounds for jS(A)j. In the �nal

se
tion we dis
uss the impli
ations of our result (in
luding the improved bound on

the Erd}os problem on distin
t distan
es in the plane) and the possible dire
tions

for further improvements.

x2 The new inequality

Let i, j and k be three distin
t indi
es from I . Let U = fi; j; kg.

Lemma 1.

2H(fig; fjg) + 2H(fjg; fkg) +H(fig; fkg) � H(fi; kg; fjg)� 2H(U; ;) + 3 logn:

Proof. The important new idea in [K℄(whi
h appeared in a slightly di�erent


ontext in [KT℄) is to 
onsider (instead of a single random row) random pairs of

rows of the matrix A and a spe
ially de�ned fun
tion � on them. Consider the

following distribution [R;S℄ on pairs of rows of A: sele
t R uniformly randomly

from the n rows of A and then sele
t S uniformly randomly among those rows of

A satisfying

p

U;

(R) = p

U;

(S):

Throughout this se
tion, we use square bra
kets instead of parentheses for tuples

of random variables so as not to 
on
i
t with the notation of the previous se
tion.

Noti
e that S is also distributed uniformly among the n rows and we have

H(R) = H(S) = logn; (1)

H([R;S℄) = 2 logn�H(U; ;): (2)

The equivalen
e of the three de�nitions of the following fun
tion 
omes from

p

U;

(R) = p

U;

(S):

�(R;S) = (R

i

+R

k

) + 2S

j

= (R

i

+R

j

) + (S

j

+ S

k

) = (R

j

+R

k

) + (S

i

+ S

j

):

First we use subadditivity of the entropy whi
h states that for random variables

X and Y we have H(X) +H(Y ) � H([X;Y ℄). We also use monotoni
ity stating

that if the value of X determines the value of Y then H(X) � H(Y ). These are

obvious from an information theoreti
 point of view.
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Clearly, �(R;S) and R

i

+ R

k

together determine S

j

, and sin
e all the entries

of A are distin
t, S

j

determines the entire row S. Furthermore, S determines the

pattern p

U;

(R) and thus, together with R

i

+R

k

they determine the values R

i

and

R

k

and by that the entire row R. By the subadditivity and the monotoni
ity of

the entropy we thus have

H(�(R;S)) +H(R

i

+R

k

) � H([R;S℄): (3)

Next we use the submodularity of the entropy fun
tion: if either one of the ran-

dom variablesX and Y determines the value of the variable Z, thenH(X)+H(Y ) �

H([X;Y ℄) + H(Z). This inequality implies the other information inequalities we

used. It is usually referred to as the non-negativity of the 
onditional mutual in-

formation. For this, and all other simple properties of the entropy we use in this

note see e.g. Lemma 3.2 on page 49 of [CsK℄.

As either one of the pairs [R

i

+ R

j

; S

j

+ S

k

℄ or [R

j

+ R

k

; S

i

+ S

j

℄ determines

the value of the fun
tion � (as their sum) we have

H([R

i

+R

j

; S

j

+ S

k

℄) +H([R

j

+R

k

; S

i

+ S

j

℄)

� H([R

i

+R

j

; S

j

+ S

k

; R

j

+R

k

; S

i

+ S

j

℄) +H(�(R;S)):

(4)

By the subadditivity we have

H(R

i

+R

j

) +H(S

j

+ S

k

) � H([R

i

+R

j

; S

j

+ S

k

℄); (5)

H(R

j

+R

k

) +H(S

i

+ S

j

) � H([R

j

+R

k

; S

i

+ S

j

℄): (6)

The row R determines the pattern p

U;

(S) and, together with S

i

+ S

j

they

determine S

i

and S

j

and thus the entire row S. We apply submodularity to X =

R; Y = [R

i

+R

j

; S

j

+S

k

; R

j

+R

k

; S

i

+S

j

℄, and Z = [R

i

+R

j

; R

j

+R

k

℄; observing

by monotoni
ity that H [R;R

i

+R

j

; S

j

+S

k

; R

j

+R

k

; S

i

+S

j

℄ � H [R;S℄ to obtain

H([R

i

+R

j

; S

j

+S

k

; R

j

+R

k

; S

i

+S

j

℄)+H(R) � H([R;S℄)+H([R

i

+R

j

; R

j

+R

k

℄):

(7)

Simply add the Inequalities (3-7) to get

H(R

i

+R

k

) +H(R

i

+R

j

) +H(R

j

+R

k

) +H(S

i

+ S

j

) +H(S

j

+ S

k

)

� 2H([R;S℄)�H(R) +H([R

i

+R

j

; R

j

+R

k

℄):

(8)

Here H(R

i

+R

k

) = H(fig; fkg) as R is uniformly distributed among the rows

of A. Similar arguments about the other four terms simplify the left hand side of

(8) to H(fig; fkg) + 2H(fig; fjg) + 2H(fjg; fkg). The �rst two terms of the right

hand side of (8) is given by Equations (1) and (2). Finally for the last term of

(8) we have H([R

i

+R

j

; R

j

+R

k

℄) = H(fi; kg; fjg) as R is a uniformly distributed

random row and (R

i

+R

j

; R

j

+R

k

) and the pattern p

fi;kgfjg

(R) mutually determine

ea
h other, so they have the same entropy. Applying all these simpli�
ations to

Inequality (8) the statement of the lemma follows. �

x3 Combining the old and new inequalities

We start with the standard averaging argument that shifts fo
us from the

variables H(U; V ) to the variables H

i;j

.

Lemma 2. 5H

1;1

�H

2;1

+ 2H

3;0

� 3.
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Proof. Consider the inequality 
laimed by Lemma 1 for all possible triples

(i; j; k). Simply sum all these inequalities and then a rearrangement gives the

statement of this lemma. �

Our lower bound method works for odd values of s � 5. We assume s = 2k� 1

for some k � 3.

We 
olle
t all the inequalities we need for our bound. All of them 
ome from

[T℄ ex
ept the statement of Lemma 2 whi
h basi
ally 
omes from [K℄. We will freely

use the trivial fa
t of H

i;j

= H

j;i

(see e.g. Lemma 4/a of [T℄) and use the following

equivalent form of Lemma 2:

5H

1;1

�H

1;2

+ 2H

0;3

� 3: (9)

By Lemma 4/e (
onvexity) of [T℄ we have

2H

1;1

� H

0;1

+H

1;2

; (10)

H

1;2

�H

2;3

� 2(H

0;2

�H

1;2

): (11)

By Lemmas 4/
 and 4/f of [T℄ we have

H

1;1

+H

0;2

� 1: (12)

Finally we also need an inequality of the following form:

H

2;3

� �

3

H

0;3

; (13)

where the 
onstant �

3

is to be determined later. Su
h an inequality is proved in

the proof of Theorems 8 and 10 of [T℄. We sket
h the argument here. For the

reader's 
onvenien
e we restate Lemmas 5, 6, and 9 of [T℄ as parts a, b, and 
 of

the following lemma.

Lemma 3.

a.) We have H

k�2;k�1

�

3

k�1

H

0;k�1

b.) Suppose we have H

j�1;j

� �H

0;j

for some 3 � j < k and � > 0. If

(j�3)� � 2 then we also have H

j�2;j�1

� �H

0;j�1

for � =

2+�

j+�

> 0 and (j�4)� �

2 is also satis�ed.


.) If k � 14 we have H

k�3;k�2

�

2k+3

k

2

�k+4

H

0;k�2

.

We use Lemma 3/b re
ursively to �nd an inequality of the form (13). The base


ase for k � 14 is �

k�1

= 3=(k + 1) provided by Lemma 3/a, while for k � 14

Lemma 3/
 provides the base 
ase: �

k�2

= (2k + 3)=(k

2

� k + 4). We pro
eed

by reverse indu
tion obtaining inequalities with progressively lower subs
ripts until

�

2

= (2 + �

3

)=(3 + �

3

) = 


k

� 2 is found. This is done in detail in [T℄ Theorems

8 and 10. Here 


k

is the value de�ned in Se
tion 1. Thus we have that Inequality

(13) holds with

�

3

=

1

3� 


k

� 3: (14)

For k = 3 the above argument is not valid (the base 
ase of the reverse indu
tion is

�

2

= 3=4 so we 
annot argue about �

3

). But for k = 3 Equation (14) gives �

3

= 1

and thus Inequality (13) follows simply from the monotoni
ity 
ondition Lemma

4/b of [T℄.
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Let us 
ombine the Inequalities (9-13) with the positive 
oeÆ
ients �

3

, 6��

3

,

2, 4, and 2, respe
tively. We get

(16 + 3�

3

)H

1;1

� 10 + 2�

3

: (15)

Using Lemma 4/d of [T℄, Inequality (15) and Equation (14) we get

log jS(A)j

logn

� 1�H

1;1

�

6 + �

3

16 + 3�

3

=

10� 3


k

24� 7


k

:

We have just proved the following

Theorem 4. For any k � 3 we have

f

2k+1

(n) � n

10�3


k

24�7


k

:

4. Corollaries and 
on
luding remarks

First we use that 


k

tends to e, the base of the natural logarithm to state

Corollary 5. For any � > 0 there exists an s > 0 su
h that for all n > 0 we

have

f

s

(n) � n

10�3e

24�7e

��

:

Using the 
onne
tion between the distin
t sum problem studied in this note

and the distin
t distan
e problem of Erd}os found in [ST℄ and stated expli
itly in

Corollary 14 of [T℄ we have

Corollary 6. For any 
onstant � > 0 the following is true. Any 
olle
tion P

of n distin
t points in the plane has an element from whi
h the number of distin
t

distan
es to the other points is




�

n

48�14e

55�16e

��

�

:

The main results of the papers [STT℄ and [PT℄ automati
ally improve when

plugging in the new bound for f

s

(n) stated in Corollary 5. We state the improved

bounds here for 
ompleteness. Both of these results follow from bounds on the

number of in
iden
es between a set of points and another set of systems of 
on
entri



ir
les. The bounds on the number of these in
iden
es also improves but we refrain

from stating the 
ompli
ated upper bound here.

Corollary 7. For any 
onstant � > 0 the following is true. Any 
olle
tion

of n distin
t points in the plane the number of o

uren
es of the \most popular" k

distan
es is

O

 

n

5

3

�

�

k

n

1

3

�

55�16e

89�26e

+�

!

:

Corollary 8. For any 
onstant � > 0 the following is true. Any 
olle
tion of

n distin
t points in the plane determine

O

�

n

117�34e

55�16e

+�

�

isos
eles triangles.

The spe
ial 
ases of Theorem 4 for the �rst few values of k are as follows:

f

5

(n) � n

7

19

;
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f

7

(n) � n

33

89

;

f

9

(n) � n

59

159

:

All these are slight improvements of the 
(n

7=19��

) bound of [K℄.

The numeri
 values of the exponents in the Corollaries 5 and 6 are

10� 3e

24� 7e

= 0:371107 : : : ;

48� 14e

55� 16e

= 0:864137 : : : :

These represent slight improvement over the 
orresponding exponents

7

19

= 0:368421 : : : ;

19

22

= 0:863636 : : :

of [K℄.

Note that the lower bounds of [T℄ on jS(A)j work for all matri
es A with the

property that no two rows share more than a single 
ommon entry. Our results

here use however that all entries of A are distin
t.

The improvements of [K℄ and this note over the results in [T℄ were possible

be
ause a new probability distribution (on pairs of rows) was 
onsidered. We expe
t

that our results 
ould be further improved by 
onsidering another distribution or

simply the entropies of another fun
tions of these distributions. Whenever one

dis
overs a linear 
onstraint on the entropies whi
h 
ontradi
ts the optimal solution

under the present 
onstraints, it is a straightforward (but sometimes te
hni
al) task

to solve the new linear program and �nd an improved bound this way. In this note,

we have followed pre
isely this approa
h based on the new inequality impli
it in

[K℄.
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