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A new entropy inequality for the Erd}os distane problem

Nets Hawk Katz and G�abor Tardos

Abstrat. This note ombines the tehniques of two earlier papers [T℄ and

[K℄ for an improved lower bound on the long standing (see e.g. [E℄,[M℄,[SzT℄,

and [CSzT℄) Erd}os problem on distint distanes in the plane: Given n distint

points in the plane what is the minimum number of distint distanes they

determine. We improve the 
(n

19=22��

) bound for this problem stated in [K℄

to




�

n

48�14e

55�16e

��

�

;

where e is the base of the natural logarithm and � > 0 is arbitrary.

The proof of this lower bound (just as the proofs of the last three suh

bounds) is based on the onnetion between this problem and the following

problem on distint sums: Given an n by s real matrix with all sn entries

distint, what is the minimum number of distint pairwise sums formed by

adding two distint entries of a ommon row of the matrix. The onnetion

between the two problems was disovered by J. Solymosi and Cs. T�oth [ST℄;

the distint sum problem was expliitly formulated in [T℄ where some bounds

were established. The paper [K℄ proves stronger bounds for the distint sum

problem in the speial ase s = 5. This note ombines the tehniques of that

paper with those of [T℄ to obtain similar bounds for higher values of s.

Lower bounds on the distint sum problem were also applied in [STT℄

and [PT℄. Plugging in our bounds, one an automatially improve the results

of these papers on the number of ourrenes of the k most frequent distanes

among n points and the number of isoseles triangles determined by n points

in the plane.

x1. Introdution, de�nitions

The results of this note follow by simply ombining the tehniques of two earlier

papers of the authors [K℄ and [T℄. We will use the notation of [T℄ and many of

the lemmas there, so the reader is advised to read that paper �rst. Nonetheless we

reall the de�nitions from that paper.

For an n by s matrix A = (a

ij

) we de�ne S(A) = fa

ij

+ a

ik

j 1 � i � n; 1 �

j < k � sg the set of pairwise sums of entries from the same row. Let f

s

(n) be the
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minimum size jS(A)j for a real n by s matrix with all its sn entries being pairwise

distint.

Both f

3

(n) and f

4

(n) are �(n

1=3

). The order of magnitude of f

s

(n) for higher

values of s is not known. I. Ruzsa [R℄ gave the best known onstrution, whih

establishes

f

2k

(n) = O

�

n

1

2

�

1

4k�2

�

;

for any �xed k. The �rst lower bound was proved in [T℄:

f

2k�1

(n) � n

1



k

;

with the values 

k

de�ned below. The paper [K℄ improves the lower bound for f

5

(n)

establishing

f

5

(n) = 


�

n

7

19

��

�

;

for any � > 0. As 1=

k

< 1=e < 7=19 for any k this also improves the lower bound

for all the funtions f

s

(n) for s > 5 as f

s

(n) is learly inreasing in s. Nevertheless

we present here the formula de�ning 

k

as these values will play a role in the bounds

presented in this note.

For 2 � k � 14 we let



k

=

k

X

i=0

1

i!

+

1

(k � 1)k!

:

For k � 14 we let



k

=

k

X

i=0

1

i!

+

k

3

� 7k

2

+ 20k � 40

(k

4

� 8k

3

+ 26k

2

� 46k + 40)k!

:

Either de�nition gives the same value for 

14

and we learly have that the values



k

tend to e, the base of the natural logarithm, as k goes to in�nity.

The proof of the lower bound in [T℄ is based on an involved alulation of

entropies of di�erent funtions. For a disreet random variable R, its entropy is

given by

H(R) = �

X

x

P [R = x℄ logP [R = x℄;

where the summation extends for all values x taken by R with positive probability.

Here and later in this note H denotes the binary entropy and log stands for the

binary logarithm. The entropy of a random variable is the amount of information

obtained by resolving its value. The idea whih this note will re�ne is that beause

of various arithmeti identities between entries of a matrix and their sums, the

amount of information obtained from resolving an entry an be ontrolled using

the amount of information obtained in resolving a sum.

Consider an n by s real matrixA with all its entries distint. The basi probabil-

ity spae onsidered is that of a uniformly distributed random rowR = (R

1

; : : : ; R

s

)

of A. Clearly

H(R) = logn:

Let I = f1; 2; : : : ; sg be the set of olumn indexes. In [T℄ we onsidered subsets

U and V of I (not both the empty set) and de�ned p

UV

(R) to be the sequene of
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numbers onsisting of the di�erenes R

i

� R

j

for i; j 2 U and for i; j 2 V and the

sums R

i

+R

j

for i 2 U and j 2 V . We de�ned

H(U; V ) = H(p

UV

(R));

and formed the normalized averages

H

i;j

= 1�

1

logn

�

n

i

��

n�i

j

�

X

U;V

H(U; V );

for i; j � 0 with 1 � i+ j � s where the summation extends for all disjoint pairs of

subsets U and V of I with jU j = i, jV j = j.

The paper [T℄ is based on establishing numerous linear inequalities onneting

the values H(U; V ) (Lemma 3 of [T℄) and using them to bound jS(A)j. We are

going to simply quote these inequalities. The novelty in the paper [K℄ is basially

proving yet another similar inequality. This is not expliit in the paper, so we have

to prove the new inequality. We do this in the next setion. In the third setion we

ombine all these inequalities to give our new lower bounds for jS(A)j. In the �nal

setion we disuss the impliations of our result (inluding the improved bound on

the Erd}os problem on distint distanes in the plane) and the possible diretions

for further improvements.

x2 The new inequality

Let i, j and k be three distint indies from I . Let U = fi; j; kg.

Lemma 1.

2H(fig; fjg) + 2H(fjg; fkg) +H(fig; fkg) � H(fi; kg; fjg)� 2H(U; ;) + 3 logn:

Proof. The important new idea in [K℄(whih appeared in a slightly di�erent

ontext in [KT℄) is to onsider (instead of a single random row) random pairs of

rows of the matrix A and a speially de�ned funtion � on them. Consider the

following distribution [R;S℄ on pairs of rows of A: selet R uniformly randomly

from the n rows of A and then selet S uniformly randomly among those rows of

A satisfying

p

U;

(R) = p

U;

(S):

Throughout this setion, we use square brakets instead of parentheses for tuples

of random variables so as not to onit with the notation of the previous setion.

Notie that S is also distributed uniformly among the n rows and we have

H(R) = H(S) = logn; (1)

H([R;S℄) = 2 logn�H(U; ;): (2)

The equivalene of the three de�nitions of the following funtion omes from

p

U;

(R) = p

U;

(S):

�(R;S) = (R

i

+R

k

) + 2S

j

= (R

i

+R

j

) + (S

j

+ S

k

) = (R

j

+R

k

) + (S

i

+ S

j

):

First we use subadditivity of the entropy whih states that for random variables

X and Y we have H(X) +H(Y ) � H([X;Y ℄). We also use monotoniity stating

that if the value of X determines the value of Y then H(X) � H(Y ). These are

obvious from an information theoreti point of view.
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Clearly, �(R;S) and R

i

+ R

k

together determine S

j

, and sine all the entries

of A are distint, S

j

determines the entire row S. Furthermore, S determines the

pattern p

U;

(R) and thus, together with R

i

+R

k

they determine the values R

i

and

R

k

and by that the entire row R. By the subadditivity and the monotoniity of

the entropy we thus have

H(�(R;S)) +H(R

i

+R

k

) � H([R;S℄): (3)

Next we use the submodularity of the entropy funtion: if either one of the ran-

dom variablesX and Y determines the value of the variable Z, thenH(X)+H(Y ) �

H([X;Y ℄) + H(Z). This inequality implies the other information inequalities we

used. It is usually referred to as the non-negativity of the onditional mutual in-

formation. For this, and all other simple properties of the entropy we use in this

note see e.g. Lemma 3.2 on page 49 of [CsK℄.

As either one of the pairs [R

i

+ R

j

; S

j

+ S

k

℄ or [R

j

+ R

k

; S

i

+ S

j

℄ determines

the value of the funtion � (as their sum) we have

H([R

i

+R

j

; S

j

+ S

k

℄) +H([R

j

+R

k

; S

i

+ S

j

℄)

� H([R

i

+R

j

; S

j

+ S

k

; R

j

+R

k

; S

i

+ S

j

℄) +H(�(R;S)):

(4)

By the subadditivity we have

H(R

i

+R

j

) +H(S

j

+ S

k

) � H([R

i

+R

j

; S

j

+ S

k

℄); (5)

H(R

j

+R

k

) +H(S

i

+ S

j

) � H([R

j

+R

k

; S

i

+ S

j

℄): (6)

The row R determines the pattern p

U;

(S) and, together with S

i

+ S

j

they

determine S

i

and S

j

and thus the entire row S. We apply submodularity to X =

R; Y = [R

i

+R

j

; S

j

+S

k

; R

j

+R

k

; S

i

+S

j

℄, and Z = [R

i

+R

j

; R

j

+R

k

℄; observing

by monotoniity that H [R;R

i

+R

j

; S

j

+S

k

; R

j

+R

k

; S

i

+S

j

℄ � H [R;S℄ to obtain

H([R

i

+R

j

; S

j

+S

k

; R

j

+R

k

; S

i

+S

j

℄)+H(R) � H([R;S℄)+H([R

i

+R

j

; R

j

+R

k

℄):

(7)

Simply add the Inequalities (3-7) to get

H(R

i

+R

k

) +H(R

i

+R

j

) +H(R

j

+R

k

) +H(S

i

+ S

j

) +H(S

j

+ S

k

)

� 2H([R;S℄)�H(R) +H([R

i

+R

j

; R

j

+R

k

℄):

(8)

Here H(R

i

+R

k

) = H(fig; fkg) as R is uniformly distributed among the rows

of A. Similar arguments about the other four terms simplify the left hand side of

(8) to H(fig; fkg) + 2H(fig; fjg) + 2H(fjg; fkg). The �rst two terms of the right

hand side of (8) is given by Equations (1) and (2). Finally for the last term of

(8) we have H([R

i

+R

j

; R

j

+R

k

℄) = H(fi; kg; fjg) as R is a uniformly distributed

random row and (R

i

+R

j

; R

j

+R

k

) and the pattern p

fi;kgfjg

(R) mutually determine

eah other, so they have the same entropy. Applying all these simpli�ations to

Inequality (8) the statement of the lemma follows. �

x3 Combining the old and new inequalities

We start with the standard averaging argument that shifts fous from the

variables H(U; V ) to the variables H

i;j

.

Lemma 2. 5H

1;1

�H

2;1

+ 2H

3;0

� 3.
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Proof. Consider the inequality laimed by Lemma 1 for all possible triples

(i; j; k). Simply sum all these inequalities and then a rearrangement gives the

statement of this lemma. �

Our lower bound method works for odd values of s � 5. We assume s = 2k� 1

for some k � 3.

We ollet all the inequalities we need for our bound. All of them ome from

[T℄ exept the statement of Lemma 2 whih basially omes from [K℄. We will freely

use the trivial fat of H

i;j

= H

j;i

(see e.g. Lemma 4/a of [T℄) and use the following

equivalent form of Lemma 2:

5H

1;1

�H

1;2

+ 2H

0;3

� 3: (9)

By Lemma 4/e (onvexity) of [T℄ we have

2H

1;1

� H

0;1

+H

1;2

; (10)

H

1;2

�H

2;3

� 2(H

0;2

�H

1;2

): (11)

By Lemmas 4/ and 4/f of [T℄ we have

H

1;1

+H

0;2

� 1: (12)

Finally we also need an inequality of the following form:

H

2;3

� �

3

H

0;3

; (13)

where the onstant �

3

is to be determined later. Suh an inequality is proved in

the proof of Theorems 8 and 10 of [T℄. We sketh the argument here. For the

reader's onveniene we restate Lemmas 5, 6, and 9 of [T℄ as parts a, b, and  of

the following lemma.

Lemma 3.

a.) We have H

k�2;k�1

�

3

k�1

H

0;k�1

b.) Suppose we have H

j�1;j

� �H

0;j

for some 3 � j < k and � > 0. If

(j�3)� � 2 then we also have H

j�2;j�1

� �H

0;j�1

for � =

2+�

j+�

> 0 and (j�4)� �

2 is also satis�ed.

.) If k � 14 we have H

k�3;k�2

�

2k+3

k

2

�k+4

H

0;k�2

.

We use Lemma 3/b reursively to �nd an inequality of the form (13). The base

ase for k � 14 is �

k�1

= 3=(k + 1) provided by Lemma 3/a, while for k � 14

Lemma 3/ provides the base ase: �

k�2

= (2k + 3)=(k

2

� k + 4). We proeed

by reverse indution obtaining inequalities with progressively lower subsripts until

�

2

= (2 + �

3

)=(3 + �

3

) = 

k

� 2 is found. This is done in detail in [T℄ Theorems

8 and 10. Here 

k

is the value de�ned in Setion 1. Thus we have that Inequality

(13) holds with

�

3

=

1

3� 

k

� 3: (14)

For k = 3 the above argument is not valid (the base ase of the reverse indution is

�

2

= 3=4 so we annot argue about �

3

). But for k = 3 Equation (14) gives �

3

= 1

and thus Inequality (13) follows simply from the monotoniity ondition Lemma

4/b of [T℄.
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Let us ombine the Inequalities (9-13) with the positive oeÆients �

3

, 6��

3

,

2, 4, and 2, respetively. We get

(16 + 3�

3

)H

1;1

� 10 + 2�

3

: (15)

Using Lemma 4/d of [T℄, Inequality (15) and Equation (14) we get

log jS(A)j

logn

� 1�H

1;1

�

6 + �

3

16 + 3�

3

=

10� 3

k

24� 7

k

:

We have just proved the following

Theorem 4. For any k � 3 we have

f

2k+1

(n) � n

10�3

k

24�7

k

:

4. Corollaries and onluding remarks

First we use that 

k

tends to e, the base of the natural logarithm to state

Corollary 5. For any � > 0 there exists an s > 0 suh that for all n > 0 we

have

f

s

(n) � n

10�3e

24�7e

��

:

Using the onnetion between the distint sum problem studied in this note

and the distint distane problem of Erd}os found in [ST℄ and stated expliitly in

Corollary 14 of [T℄ we have

Corollary 6. For any onstant � > 0 the following is true. Any olletion P

of n distint points in the plane has an element from whih the number of distint

distanes to the other points is




�

n

48�14e

55�16e

��

�

:

The main results of the papers [STT℄ and [PT℄ automatially improve when

plugging in the new bound for f

s

(n) stated in Corollary 5. We state the improved

bounds here for ompleteness. Both of these results follow from bounds on the

number of inidenes between a set of points and another set of systems of onentri

irles. The bounds on the number of these inidenes also improves but we refrain

from stating the ompliated upper bound here.

Corollary 7. For any onstant � > 0 the following is true. Any olletion

of n distint points in the plane the number of ourenes of the \most popular" k

distanes is

O

 

n

5

3

�

�

k

n

1

3

�

55�16e

89�26e

+�

!

:

Corollary 8. For any onstant � > 0 the following is true. Any olletion of

n distint points in the plane determine

O

�

n

117�34e

55�16e

+�

�

isoseles triangles.

The speial ases of Theorem 4 for the �rst few values of k are as follows:

f

5

(n) � n

7

19

;
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f

7

(n) � n

33

89

;

f

9

(n) � n

59

159

:

All these are slight improvements of the 
(n

7=19��

) bound of [K℄.

The numeri values of the exponents in the Corollaries 5 and 6 are

10� 3e

24� 7e

= 0:371107 : : : ;

48� 14e

55� 16e

= 0:864137 : : : :

These represent slight improvement over the orresponding exponents

7

19

= 0:368421 : : : ;

19

22

= 0:863636 : : :

of [K℄.

Note that the lower bounds of [T℄ on jS(A)j work for all matries A with the

property that no two rows share more than a single ommon entry. Our results

here use however that all entries of A are distint.

The improvements of [K℄ and this note over the results in [T℄ were possible

beause a new probability distribution (on pairs of rows) was onsidered. We expet

that our results ould be further improved by onsidering another distribution or

simply the entropies of another funtions of these distributions. Whenever one

disovers a linear onstraint on the entropies whih ontradits the optimal solution

under the present onstraints, it is a straightforward (but sometimes tehnial) task

to solve the new linear program and �nd an improved bound this way. In this note,

we have followed preisely this approah based on the new inequality impliit in

[K℄.
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