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1 Introdu
tion

Let K be a 
ompa
t 
onvex body in R

n

not 
ontained in a hyperplane, and

denote the norm whose unit ball is

1

2

(K �K) by k � k

K

. Given a translative

pa
king of K, we are interested in how long segments (with respe
t to k � k

K

)

lie in the 
omplement of the interiors of the translates. The main result of

this note is showing the existen
e of a translative pa
king with an exponential

upper bound on the length of the segments avoiding it (see below). But we

start here with a lower bound.

We show that any pa
king of the unit Eu
lidean ball B

n

avoids a segment

of length exponential in n. It is a rather interesting question to �nd how long

segments ne
essarily exist that avoid any pa
king of any 
onvex, open body in

R

n

. Our lower bound proof does not work for bodies allowing dense pa
kings.

Let us 
onsider any pa
king of B

n

, and denote the area and the pa
king

density of the unit ball by �

n

and Æ(B

n

), respe
tively. Choose a unit segment

s, and denote the proje
tion of B

n

into some hyperplane orthogonal to s by

B

n�1

, and set � =

�

n

3�

n�1

�Æ(B

n

)

. The de�nition of the pa
king density yields

that there exists a translate Z of the 
ylinder ��s+n�B

n�1

whi
h is interse
ted

by at most

V (Z + B

n

) �

Æ(B

n

)

�

n

�

�+ 2

3�

� (n+ 1)

n�1

< n

n�1

balls in the pa
king. (The latter inequality only holds for large enough n

and follows from our estimate on � below.) Therefore the total area of the

proje
tions of these balls into the base of Z is less than the area of the base,
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and there exists a segment s

0

parallel to s in the 
omplement of the balls

su
h that

length(s

0

) = � =

�

n

3�

n�1

�

1

Æ(B

n

)

� 2

0:599n+o(n)

: (1)

Here we used the estimate Æ(B

n

) � 2

�0:599n+o(n)

of Kabatjanskii & Levenstein

[4℄.

Slight modi�
ation of the argument above yields that for any latti
e pa
k-

ing of equal balls, there exists a line avoiding all balls (see A. Heppes [3℄).

On the other hand, Ch. Zong 
onje
tured that there exists a pa
king where

the length of the longest segment in the 
omplement is at most 


n

for some


onstant 
, and the paper M. Henk & Ch. Zong [2℄ 
onstru
ted a pa
king

where the segments in the 
omplement have bounded length.

Let j � j denote the n{dimensional Lebesgue measure.

Theorem 1 Let K a 
ompa
t 
onvex body in R

n

not 
ontained in a hyper-

plane. Then there exists a periodi
 translative pa
king of K su
h that any

segment of length 


0

n

2

�

jK�Kj

jKj

(with respe
t to k � k

K

) interse
ts the interior

of some translate where 


0

is an absolute 
onstant.

Remark: Note that the bound in the theorem is 


0

n

2

2

n

for 
entrally

symmetri
 bodies K, while in the general 
ase it is bounded by 


0

n

2

4

n

, sin
e

jK �Kj �

�

2n

n

�

� jKj a

ording to the 
elebrated result of C.A. Rogers & G.

Shepard [6℄, and we have

�

2n

n

�

< 4

n

.

If the upper bound of Theorem 1 is improved to 


n+o(n)

for some 
 <

2 for the ball, then (1) yields that Æ(B

n

) � 


�n+o(n)

. Therefore su
h an

improvement seems to be hard to prove. A
tually, in order to improve on

the 
lassi
al lower bound Æ(B

n

) � 2

�n

, it is suÆ
ient to 
onstru
t a pa
king

su
h that any segment parallel to a given dire
tion and having length of at

least 


n+o(n)

, 
 < 2, interse
ts the interior of some of the balls.

Let us 
onsider a 
onsequen
e of Theorem 1. A 
loud for the 
onvex body

K is de�ned as a pa
king of translates K whi
h do not overlap K, and any

half line emanating from K interse
ts the interior of at least one translate.

It was proved in K. B�or�o
zky & V. Soltan [1℄ that there always exists a �nite


loud. As for the 
ardinality of a 
loud, Ch. Zong veri�ed the upper bound

n

n

2

, whi
h was improved to 


n

2

independently by I. Talata [8℄, I. B�ar�any and

I. Leader (see Ch. Zong [9℄). Here I. Talata [8℄ proved 2

1:401n

2

+o(n

2

)

if K is

a ball, 3

n

2

+o(n

2

)

if K is 
entrally symmetri
, and 6

n

2

+o(n

2

)

in general. Now

�x any translate of K in the pa
king given by Theorem 1, and 
onsider all

translates in the pa
king whi
h are at most distan
e 


0

n

2

�

jK�Kj

jKj

from the

�xed 
opy. We dedu
e
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Corollary 1 For any 
entrally symmetri
 
onvex K in R

n

, there exists a


loud by 2

n

2

+o(n

2

)

translates. For a general 
onvex body K, a 
loud 
an be

formed using 4

n

2

+o(n

2

)

translates.

With respe
t to a lower bound, I. Talata [8℄ veri�ed that a 
loud of the

unit ball always has at least 2

0:599n

2

+o(n

2

)

elements. A lower bound with

slightly weaker 
onstant was independently obtained by I. B�ar�any (see Ch.

Zong [9℄).

Finally, it is 
ustomary to 
onsider a pa
king fx

i

+Kg su
h that kx

i

�

x

j

k

K

� % for i 6= j and for a pres
ribed 
onstant % � 2. Our arguments

show that for su
h a pa
king, there exists a segment of length 


1

(n)%

n

in the


omplement, and there exists a pa
king where the length of any segment in

the 
omplement is at most




2

(n)%

n

log %:

For 
louds, it easy to see that at least 


3

(n)%

n

2

�n

translates are needed for

any 
loud (even if the sour
e is only one point), and our argument yields a

family 
onsisting of at most




4

(n)%

n

2

�n

(log %)

n

translates 
louding K. Here 


1

(n), 


2

(n), 


3

(n) and 


4

(n) are positive 
on-

stants depending only on the dimension n.

2 The proof of Theorem 1

Let K be a 
ompa
t 
onvex body in R

n

not 
ontained in a hyperplane. All

distan
es and lengths below are measured with respe
t to k � k

K

.

Our proof is probabilisti
: we sele
t random translates of K for the pa
k-

ing and show that with high probability their 
olle
tion satis�es the require-

ment of Theorem 1. More pre
isely, we 
onsider a large enough 
ompa
t

fa
tor T

n

of R

n

and throw uniform random translates of K into T

n

one by

one. By keeping those that are disjoint from all earlier translates we obtain

our periodi
 pa
king. Note that this method is not greedy, as our rule ex-


ludes a translate from the pa
king if it interse
ts some earlier translates even

though all those translates may have been ex
luded themselves. This subop-

timal rule is ne
essary to obtain independen
e between the 
on�gurations of

regions far from ea
h other.

The detailed argument is as follows. We set 


0

= 10 000 and assume n > 2

for simpli
ity. A

ording to the Minkowski-Hlawka theorem, there exists a
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latti
e � su
h that � + 2


0

n

2

� 4

n

(K �K) is a pa
king and

det � � 2

n

�

�

�

2


0

n

2

� 4

n

(K �K)

�

�

: (2)

The 
ondition on � yields that if kx � yk

K

< 2


0

n

2

4

n

then the distan
e of

images of x and y in the torus T

n

= R

n

=� is still kx� yk

K

.

We throw points x

1

; x

2

; : : : into T

n

independently with uniform distribu-

tion with respe
t to the Lebesgue measure. We 
olor an x

i

red if kx

j

�x

i

k

K

>

2 holds for any j < i, or in other words, if x

i

+K is disjoint from any x

j

+K

for j < i. For a measurable A � T

n

, denote the probability that A 
ontains

no red point by P (A).

Lemma 1 Let A;B � T

n

be measurable su
h that the diameter of B is less

than 2, and there exist translates y

i

+B � A, i = 1; : : : ; N with ky

i

�y

j

k

K

� 6

for i 6= j. Then

P (A) �

�

1�

jBj

jK �Kj

�

N

:

Proof: First we 
al
ulate the probability that B 
ontains a red point. The

probability that x

i

lands in B and it is 
olored red is

P

i

= jBj � (1� jK �Kj)

i�1

:

Sin
e the diameter of B is less than 2, only at most one x

i

2 B is 
olored

red, and we dedu
e that

1� P (B) =

X

i�1

P

i

=

jBj

jK �Kj

: (3)

Now the sets y

i

+B� (K�K) are disjoint, and hen
e the events that y

i

+B


ontains no red point, i = 1; : : : ; N , are independent. Ea
h of these events

have equal probability as 
al
ulated in (3), hen
e the lemma follows.

Q.E.D.

A

ording to C.A. Rogers [5℄, there exists a 
overing fz +

1

n

Kjz 2 Zg of

T

n

whose density is at most n lnn + n ln lnn + 4n. Therefore we dedu
e by

(2) that

jZj � (n lnn+ n ln lnn+ 4n) � n

n

�

det �

jKj

� 2

10n

2

:

Let S be the family of segments in T

n

whose length is between 


0

n

2

�

jK�Kj

jKj

�1

and 


0

n

2

�

jK�Kj

jKj

+ 1, and the endpoints are 
hosen from Z. Clearly, #S �

(#Z)

2

� 2

20n

2

.
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Now Lemma 1 
an be applied to A = s

k

� (1�

2

n

)K with B = �(1�

2

n

)K

and N = b




0

6

�n

2

jK�Kj

jKj


. We dedu
e that the probability P

0

that there exists

an s 2 S su
h that s� (1�

2

n

)K 
ontains no red point is

P

0

� #S �

�

1�

jBj

jK �Kj

�

N

(4)

� 2

20n

2

�

1�

�

1�

2

n

�

n

jKj

jK �Kj

�

N

< 1: (5)

Therefore there exists a sequen
e x

1

; x

2

; : : : su
h that for any s 2 S, the

set s � (1 �

2

n

)K 
ontains a red point. Denote the family of red points by

r

1

; : : : ; r

m

.

Now � + fr

1

+ K; : : : ; r

m

+ Kg is a periodi
 translative pa
king in R

n

.

Let us 
onsider a segment s

0

= aa

0

with length 


0

n

2

jK�Kj

jKj

. Embedding a and

a

0

into T

n

, there exist points z; z

0

2 Z with a 2 z +

1

n

K, a 2 z

0

+

1

n

K. We

now have s = zz

0

2 S and s � s

0

�

1

n

K. We have seen that that there exists

some r

i

2 s� (1�

2

n

)K � s

0

� (1�

1

n

)K, and hen
e s interse
ts the interior

of r

i

+K. In turn, we 
on
lude Theorem 1.
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