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Abstrat

A new upper bound is shown for the number of inidenes between n points and n families

of onentri irles in the plane. As a onsequene, it is shown that the number of the k most

frequent distanes among n points in the plane is f

n

(k) = O(n

1:4571

k

:6286

) improving earlier

bound of Akatsu, Tamaki, and Tokuyama.

1 Introdution

The famous theorem of Szemer�edi and Trotter [16℄ states that the number of inidenes between

n points and ` lines in the plane is at O(n

2=3

`

2=3

+ n + `). A onstrution due to Erd}os [9℄

shows that this bound is tight, and later Sz�ekely [15℄ gave an elegant proof to this theorem by

means of geometri graphs. Ever sine, onsiderable e�orts were made to �nd tight bounds on

the number of inidenes between a set of points and other objets in d-dimensional Eulidean

spae. Only partial results [10, 6, 13, 5℄ are known so far for most other inidene problems, a

tight bound of Szemer�edi and Trotter is only known to generalize to inidenes of points and

lines in the omplex plane C

2

[18℄.

One interesting inidene problem is that of points and irles. It is onjetured that the

number of inidenes between n points and ` irles in the plane is at most O(n

2=3

`

2=3

log



(n`)+

n+`). This would be tight as well for some onstant  in the

p

n�

p

n square grid as was shown

by Erd}os [7℄. Reently, Aronov and Sharir [3℄ have improved the upper bound to the irle-point

inidene number to O

"

(n+n

2=3

`

2=3

+n

6=11+3"

`

9=11�"

+`) for arbitrary small positive ". In this

paper, we investigate the number of inidenes between n point and n families of k onentri

irles using a reent tehnique of [14℄.

Theorem 1 Given n points and n families of onentri irles eah with at most k irles in

the plane, the maximal number of inidenes between the points and the irles is

I(n; k) = O

"

 

n

5

3

�

�

k

n

1=3

�

5e�1

7e+1

+"

!

= O(n

1:4571

k

:6286

);

where e is the base of the natural logarithm and 0 < " � 1=e is an arbitrarily small positive

number.

We expet that our bound is not best possible. Espeially for small values of k there is

a better bond than ours. Akatsu, Tamaki, and Tokuyama [2℄ showed by a straightforward

�
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appliation of Sz�ekely's [15℄ method that I(n; k) = O(n

10=7

k

5=7

). Theorem 1 improves this

bound for k > n

1=3

. It has interesting appliations to the k most frequent (or favorite) distanes

problem and to pattern mathing.

Similarly to I(n; k), funtion I(n; `;m) an be de�ned as the maximal number of inidenes

between n points and ` irles in the plane suh that the irles have exatly m distint enters.

Our theorem gives a new bound for a speial ase of n = m, but funtion I(n; `;m) deserves

interest in itself. For ` = m, that is where all irles have distint enters, we might hope that

I(n; `; `) = O(n

2=3

`

2=3

+ n+ `) orresponding to the Szemer�edi-Trotter bound. The number of

inidenes between points and irles is known to be higher than this only in highly symmetri

on�gurations, where there are many onentri families of irles.

1.1 The k most frequent distanes

For a point set P , denote by f(P; k) the number of ourrenes of the k most frequent distanes

in the point set P . Let f

n

(k) = max

jP j=n

f(P; k). For example, the maximal number of unit

distanes is f

n

(1), (f

n

(1) = O(n

4=3

) [15℄). Akatsu, Tamaki, and Tokuyama proved [2℄, using

Sz�ekely's method, that f

n

(k) = O(n

10=7

k

5=7

). This in turn implies another result of Sz�ekely [15℄,

i.e. the number of distint distanes determined by n points in the plane is at least 
(n

4=5

).

Theorem 1 is somewhat stronger than the orresponding bound on f

n

(k) implied by it (see

below) in that one an hoose the k most frequent distanes separately for every one of the n

points.

Corollary 2

f

n

(k) = O

"

 

n

5

3

�

�

k

n

1=3

�

5e�1

7e+1

+"

!

= O(n

1:4571

k

:6286

);

where e is the base of the natural logarithm and 0 < " � 1=e is an arbitrarily small positive

number.

This bound improves earlier bounds in the interval n

1=3

� k � n

4=(5�1=e)

= n

0:864

, i.e. the

same interval where the Akatsu, Tamaki, Tokuyama bound was the best. It also implies the

best known lower bound [14, 17℄ for the number t of distint distanes of n points in the plane:

putting f

n

(t) =

�

n

2

�

we obtain t = 


"

(n

4e=(5e�1)�"

) = 
(n

0:864

). Comparing with earlier bounds

on f

n

(k), we have the following.

Corollary 3 f

n

(k) = O

"

(min(n

4=3

k; n

10e+2

7e+1

�"

k

5e�1

7e+1

+3"

; n

2

)).

Remark 4 Corollary 2 implies a new bound for the inner produt of two planar point sets

introdued by Akatsu, Tamaki, and Tokuyama [2℄. The inner produt of P and Q plays a

ruial role in the omplexity of the following pattern mathing problem. Given two point sets

P and Q, �nd a subset P

0

� P of largest ardinality suh that there is a rigid motion � with

�(P

0

) � Q.

The inner produt for P and Q is de�ned as �(P;Q) =

P

d2D(P )

h

P

(d) � h

Q

(d) where D(P )

denotes the set of distanes in the point set P and h

P

(d) denotes the number of ourrenes of

distane d in P . �(n;m) = max

jP j=n;jQj=m

�(P;Q).

Our Corollary 2 together with the omputations of [2℄ yield

�(n;m) = n

10e+2

7e+1

�"

m

10e+2

7e+1

�"

m

4e

5e�1

X

k=1

O

"

�

k

2

(

5e�1

7e+1

+3"

)

�2

�

= O(n

1:4576

m

1:6798

);

improving the earlier bound �(n;m) = O(n

10=7

m

62=35

) = O(n

1:429

m

1:771

) in the interval n

1=3

�

m � n.
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1.2 Terminology

A topologial (multi-)graph is a (multi-)graph G(V;E) drawn in the plane suh that the verties

of G are represented by distint points in the plane, and its edges by simple ars between the

orresponding point pairs. Any two ars representing distint edges have �nitely many points

in ommon. We will make no notational distintion between the verties (resp., edges) and the

points (resp., ars) representing them.

Unlike in the standard de�nition of topologial graphs, we allow ars representing edges of

G to pass through other verties. Suh topologial graphs were �rst employed by Pah and

Sharir [10℄. Two edges of a topologial graph are said to form a rossing, if they have a ommon

point whih is not an endpoint of both urves. The rossing number of a topologial graph or

multigraph is the total number of rossing pairs of edges. The rossing number of an abstrat

graph or multigraph G is the minimum rossing number over all possible representations (i.e.,

drawings) of G as a topologial graph. We remark the rossing number de�ned here is only one

of several alternatives, see [12℄.

2 Interpreting Bek's theorem

We state here the theorem of Szemer�edi and Trotter, whih is used all over this paper. It omes

in two equivalent formulations, both stated below. The urrent reord for the onstant fator

is due to Pah and T�oth [11℄

Theorem 5 (Szemer�edi-Trotter [16, 11℄) Given n distint points in the plane, we all a

line m-rih if it passes through at least m of them.

(a) Given n distint points and ` distint lines in the plane, the number of point-line inidenes

is

O(n

2=3

`

2=3

+ n+ `):

(b) Given n distint points in the plane and an integer m � 2 the number of inidenes between

the points and the m-rih lines is

I

m

= O(n

2

=m

2

+ n):

() Given n distint points in the plane and an integer m � 2, the number of m-rih lines is

L

m

= O(n

2

=m

3

+ n=m):

All of these bounds are asymptotially tight.

Proof. We just give the straightforward proof of parts (b) and () from the standard formulation

(a). Given n distint points in the plane and m � 2 we learly have L

m

� I

m

=m and part (a)

gives I

m

= O(n

2=3

L

2=3

m

+n+L

m

) = O(n

2=3

I

2=3

m

=m

2=3

+ n+ I

m

=m). From whih one onludes

that either I

m

= O(n

2

=m

2

), or I

m

= O(n), or m = O(1). Notie that sine m � 2 we have

I

m

< n

2

and thus the ase m = O(1) is also overed by I

m

= O(n

2

=m

2

) proving assertion (b).

Now part () follows from (b) and L

m

� I

m

=m. 2

We prove here a detailed formulation of Bek's theorem [4℄. The original theorem of Bek

(stated as Theorem 7) will follow as a simple orollary.

Theorem 6 Given a set P of n points in the plane and a set F of f pairs of points from P

one of the following statements holds:

1. At least f=4 pairs of F are on lines inident to at least f=n points.

2. At least f=4 pairs of F are on lines inident to at most Cn

2

=f points.
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Here  and C are positive absolute onstants.

The proof we present here is a simple extension of the standard proof of Bek's theorem from

the Szemer�edi-Trotter theorem.

Proof. For u < v let N

u;v

be the number of pairs of distint points of P determining a line

going through at least u but at most v points of P . Using Theorem 5(), the number of u-rih

lines is O(n

2

=u

3

+ n=u). Clearly eah line going through at most v points of P is determined

by at most v

2

pairs from P , thus we have

N

u;v

= O(n

2

v

2

=u

3

+ nv

2

=u):

We get a better bound by partitioning the [u; v℄ interval �rst:

N

u;v

�

blog(v=u)

X

i=0

N

2

i

u;2

i+1

u

=

blog(v=u)

X

i=0

O

�

4n

2

2

i

u

+ 4n2

i

u

�

=

O

0

�

n

2

u

blog(v=u)

X

i=0

2

�i

+ nu

blog(v=u)

X

i=0

2

i

1

A

= O(n

2

=u+ nv):

So we have

N

u;v

� C

0

(n

2

=u+ nv)

for an appropriate onstant C

0

> 0.

We let now C = 4C

0

and  = 1=C and set u = Cn

2

=f and v = f=n. If u � v the statement

of the Theorem is trivial. Otherwise we have

N

u;v

� C

0

(f=C + f) = f=2:

Thus at most f=2 of the pairs in P

2

determine a line going through at least u but at most v

points of P . Therefore at least f=2 of the f pairs in F are not in this ategory. Thus either f=4

of the pairs in F determine a line going through less than u points of P or at least f=4 of the

pairs in F determine a line going through more than v points of P , as required. 2

Spei�ally, taking F to be all the pairs of distint points from P , we obtain the following.

Theorem 7 (Bek [4℄) Given n points in the plane, at least one of the following two state-

ments holds:

1. There is a line inident to 
(n) points.

2. There are at least 
(n

2

) lines inident to at least two points.

3 Proof of Theorem 1

Consider a set P of n points, a set Q of n enter points (points of P and Q may oinide), and

at most k onentri irles around eah point of Q for a �xed natural number k. Let F denote

the pairs of points (p; q) where p 2 P , q 2 Q, and p is inident to a irle around q. Put f = jF j

be the number of point-irle inidenes and apply Theorem 6 to Q [ P and F .

In the �rst ase, at least f=4 pairs are on lines inident to 
(f=n) points. Aording to the

Szemer�edi-Trotter Theorem 5 (b), the number of inidenes between suh lines and points is

O(n

4

=f

2

+ n). On eah line, one point of Q may our in at most 2k pairs. So we have f=4 �

2kO(n

4

=f

2

+ n) = O(n

4

k=f

2

+ nk), whih learly implies the required bound for 1 � k � n.

The seond ase of Theorem 6 is onsidered in the rest of the proof. Let F

0

be the set of

at least f=4 pairs of F on lines inident to O(n

2

=f) points. For a point q 2 Q let P

q

= fp 2

P j pq 2 F

0

g. Clearly

P

q2Q

jP

q

j = jF

0

j � f=4. Consider the set C

q

of all irles entered at

q 2 Q that ontain at least one point of P

q

.

4



Let s be a large integer to be hosen later. The value of s will depend on " alone. We treat

s and all other parameters depending on " alone as onstants. After deleting at most (s � 1)

points from eah irle in C

q

, partition the remaining points into pairwise disjoint onseutive

s-tuples (x

1

; x

2

; : : : ; x

s

) 2 P

s

. We an also make sure that the irular ars orresponding to

an s-tuple never intersets the ray parallel to the positive x axis and starting at q.

The number of suh s-tuples over all irles is t = 
(f=s) = 


"

(f), beause we deleted at

most (s� 1)kn < f=8 points (or otherwise f = O

"

(kn) and we are done).

A line ` is alled rih if ` is inident to at least m points in Q, where m is a number to be

spei�ed later. An s-tuple (x

1

; x

2

; : : : ; x

s

) is said to be good if the bisetor of at least one of the

segments x

i

x

j

, 1 � i < j � s is not rih; otherwise it is alled bad.

Denote by g the number of good s-tuples.

De�ne a topologial multigraph G on the vertex set V = P , as follows. If an s-tuple

(x

1

; x

2

; : : : ; x

s

) is good, add to the graph one edge between a pair of points from fx

1

; x

2

; : : : ; x

s

g

whose bisetor is not rih. We generate exatly one edge for eah good s-tuple. Draw eah suh

edge along the irular ar determined by the s-tuple.

The number of verties of G is jV j = n; the number of edges of G is jEj = g. The graph

G may have multiple edges when two points, u and v, happen to belong to more than one

good s-tuples, assoiated with di�erent points of Q (as enters of the orresponding irles).

However, the multipliity of eah edge is at most m, beause all of these points of Q must lie

on the bisetor of u and v, whih, by assumption, is not rih.

The following lemma of [15℄ is a straightforward extension of a result of Ajtai, Chv�atal,

Newborn, and Szemer�edi [1℄ and of Leighton [8℄, to topologial multigraphs. As we pointed out

in the introdution, we use a slightly non-standard de�nition of topologial multigraphs, whih

allows edges to pass through verties, but Sz�ekely's proof applies verbatim to this ase as well.

Lemma 8 (Sz�ekely [15℄) Let G(V;E) be a topologial multigraph, in whih every pair of ver-

ties is onneted by at most m edges. If jEj � 5jV jm, then the rossing number of G is

r(G) �

�jEj

3

mjV j

2

;

for an absolute onstant � > 0.

Apply Lemma 8 to the graph G de�ned above, with

m = 

"

f

3

=(n

4

k

2

);

where 

"

> 0 is a small onstant only depending on ". We distinguish two ases. If the ondition

in the lemma is not satis�ed, then g = jEj < 5jV jm = 5

"

f

3

=(n

3

k

2

). Using the Akatsu, Tamaki,

Tokuyama bound [2℄ on f and, by hoosing 

"

suÆiently small, we have g � t=2. Otherwise,

aording to the statement,

r(G) �

�g

3

(

"

f

3

=(n

4

k

2

)) � n

2

=

�g

3



"

f

3

� n

2

k

2

:

As the edges of G are onstruted along at most nk irles (at most k onentri irles around

eah point of Q), and two irles have at most two ommon points, eah responsible for at most

a single rossing, so we learly have

r(G) � 2 �

�

nk

2

�

� n

2

k

2

:

Comparing the last two inequalities, we obtain, just as in the previous ase, that g � t=2,

provided that 

"

is hosen suÆiently small.

Therefore, we an onlude that the number of bad s-tuples is t� g � t=2 = 


"

(f).
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Let us reall the main result of the paper [17℄. For a real N by s matrix A = (a

ij

) we de�ne

S(A) = fa

ij

+ a

ij

0

j 1 � i � N; 1 � j < j

0

� sg:

Let e stand for the base of the natural logarithm.

Lemma 9 (Tardos [17℄) For every " > 0, there exists an integer s > 1 suh that for a positive

integer N and a real N by s matrix A = (a

ij

), onsisting of all distint entries, we have

jS(A)j = 


"

(N

1=e�"

):

This lemma is used there to prove the following generalization:

Lemma 10 (Tardos [17℄) For every " > 0, there exists an integer s > 1 suh that the following

holds.

Let N � k be positive integers and let A = (a

ij

) be an N by s real matrix onsisting of Ns

pairwise distint entries. If max

j

a

ij

< min

j

a

i+1;j

holds for all but at most k� 1 of the indies

i = 1; : : : ; N � 1 we have

jS(A)j = 


"

�

N

k

1�1=e+"

�

:

Notie that Lemma 9 is the k = N speial ase of Lemma 10. Here we need a further

generalization of Lemma 10 for the ase where not all the entries of A are distint. The proof

of Lemma 10 readily generalizas to this ase.

Lemma 11 For every " > 0, there exist an integer s > 1 suh that the following holds.

Let N � k be positive integers and let A = (a

ij

) be an N by s real matrix not having two

equal entries in the same row. If max

j

a

ij

< min

j

a

i+1;j

holds for all but at most k � 1 of the

indies i = 1; : : : ; N � 1 we have

jS(A)j = 


"

�

N

k

1�1=e+"

M

1=e�"

�

;

where M is the maximum multipliity with whih a number appears as an entry of A.

Notie here that M � k by de�nition. In ase we do not bound M at all we only have the

trivial bound jS(A)j � N=k.

Proof. The dependene of s on " is the same as in Lemma 9. For a matrix A we �nd z � N=(3k)

pairwise disjoint real intervals I

1

; : : : ; I

z

eah ontaining all entries of at least k rows of A. This

an be done from left to right on the real line using a greedy strategy. Let A

i

be the submatrix

of A onsisting of the k rows fully ontained in the interval I

i

for i = 1; : : : ; z. Now hoose an

N

0

by s submatrix A

0

i

of A

i

with all entries distint. Greedy strategy an ensure N

0

� k=(Ms)

sine seleting a row of A

i

to be ontained in A

0

i

rules out at most s(M � 1) other rows. Now

apply Lemma 9 to get jS(A

0

i

)j = 


"

(N

1=e�"

0

). Clearly S(A

0

i

) � 2I

i

, thus sets S(A

0

i

) are pairwise

disjoint. All of them are ontained in S(A), so we have

jS(A)j = 


"

(zN

1=e�"

0

) = 


"

 

N

k

�

k

M

�

1=e�"

!

;

as laimed. 2

The present authors expet that Lemma 9 and thus lemma 11 are not tight. However,

Ruzsa gave an onstrution showing that Lemma 9 would be false with the stronger statement

jS(A)j = 
(N

1=2

).

We set the onstant s depending on the desired onstant " > 0 as provided in Lemma 11

and let � = 1=e� ".
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We apply Lemma 11 to the system N

q

of bad s-tuples along the irles C

q

entered at a point

q 2 Q. Consider the mapping that maps eah point u 6= q to the orientation of the ray ~qu, i.e.,

to the ounterlokwise angle in [0; 2�) between the positive x-axis and ~au. Note that when

forming the s-tuples we made sure that the irular ar orresponding to an s-tuple of N

q

does

not interset the ray mapped to 0. We onstrut an jN

q

j by s matrix A

q

= (a

(q)

ij

). The images

of the points of the s-tuples in N

q

form the rows of A

q

. Notie that if the rows orresponding to

s-tuples on the same irle form onsequitive bloks with their natural order then the ondition

max

j

a

(q)

ij

< min

j

a

(q)

i+1;j

holds for all but at most k � 1 of the indies i = 1; : : : ; jN

q

j � 1. By

the onstrution of P

q

, any number in [0; 2�) appears as an entry in A

q

at most M = O(n

2

=f)

times. By onstrution, eah orientation in the set S(A

q

) is twie the orientation of a rih line,

whih is the bisetor of some pair of points on the same irle around q 2 Q, and thus passes

through q. Hene q is inident to at least jS(A

q

)j=2 rih lines as two orientations an orrespond

to the same line. Now Lemma 11 gives that

jS(A

q

)j = 


"

�

jN

q

j

k

1��

M

�

�

:

Therefore, I , the number of inidenes between rih lines and points of Q, satis�es

I =

X

q2Q




"

�

jN

q

j

k

1��

M

�

�

= 


"

�

f

k

1��

M

�

�

= 


"

�

f

1+�

k

1��

n

2�

�

; (1)

as we have

P

q2Q

jN

q

j = t� g = 


"

(f).

The same number an be estimated from above, using the Szemer�edi-Trotter theorem. By

Theorem 5(b),

I = O

�

n

2

m

2

+ n

�

= O

"

�

n

10

k

4

f

6

+ n

�

: (2)

If, instead of (1) we use the simpler onsequene I = 
(f=k) and ontrast it with (2), we

obtain the Akatsu, Tamaki, Tokuyama bound of f = O(n

10=7

k

5=7

). But for k > n

1=3

ontrasting

Equalities (1) and (2) gives more, we obtain that




"

�

f

1+�

k

1��

n

2�

�

= O

"

�

n

10

k

4

f

6

+ n

�

;

yielding the statement of Theorem 1 by simple rearrangement. 2
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