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Abstra
t

A new upper bound is shown for the number of in
iden
es between n points and n families

of 
on
entri
 
ir
les in the plane. As a 
onsequen
e, it is shown that the number of the k most

frequent distan
es among n points in the plane is f

n

(k) = O(n

1:4571

k

:6286

) improving earlier

bound of Akatsu, Tamaki, and Tokuyama.

1 Introdu
tion

The famous theorem of Szemer�edi and Trotter [16℄ states that the number of in
iden
es between

n points and ` lines in the plane is at O(n

2=3

`

2=3

+ n + `). A 
onstru
tion due to Erd}os [9℄

shows that this bound is tight, and later Sz�ekely [15℄ gave an elegant proof to this theorem by

means of geometri
 graphs. Ever sin
e, 
onsiderable e�orts were made to �nd tight bounds on

the number of in
iden
es between a set of points and other obje
ts in d-dimensional Eu
lidean

spa
e. Only partial results [10, 6, 13, 5℄ are known so far for most other in
iden
e problems, a

tight bound of Szemer�edi and Trotter is only known to generalize to in
iden
es of points and

lines in the 
omplex plane C

2

[18℄.

One interesting in
iden
e problem is that of points and 
ir
les. It is 
onje
tured that the

number of in
iden
es between n points and ` 
ir
les in the plane is at most O(n

2=3

`

2=3

log




(n`)+

n+`). This would be tight as well for some 
onstant 
 in the

p

n�

p

n square grid as was shown

by Erd}os [7℄. Re
ently, Aronov and Sharir [3℄ have improved the upper bound to the 
ir
le-point

in
iden
e number to O

"

(n+n

2=3

`

2=3

+n

6=11+3"

`

9=11�"

+`) for arbitrary small positive ". In this

paper, we investigate the number of in
iden
es between n point and n families of k 
on
entri



ir
les using a re
ent te
hnique of [14℄.

Theorem 1 Given n points and n families of 
on
entri
 
ir
les ea
h with at most k 
ir
les in

the plane, the maximal number of in
iden
es between the points and the 
ir
les is

I(n; k) = O

"

 

n

5

3

�

�

k

n

1=3

�

5e�1

7e+1

+"

!

= O(n

1:4571

k

:6286

);

where e is the base of the natural logarithm and 0 < " � 1=e is an arbitrarily small positive

number.

We expe
t that our bound is not best possible. Espe
ially for small values of k there is

a better bond than ours. Akatsu, Tamaki, and Tokuyama [2℄ showed by a straightforward

�
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appli
ation of Sz�ekely's [15℄ method that I(n; k) = O(n

10=7

k

5=7

). Theorem 1 improves this

bound for k > n

1=3

. It has interesting appli
ations to the k most frequent (or favorite) distan
es

problem and to pattern mat
hing.

Similarly to I(n; k), fun
tion I(n; `;m) 
an be de�ned as the maximal number of in
iden
es

between n points and ` 
ir
les in the plane su
h that the 
ir
les have exa
tly m distin
t 
enters.

Our theorem gives a new bound for a spe
ial 
ase of n = m, but fun
tion I(n; `;m) deserves

interest in itself. For ` = m, that is where all 
ir
les have distin
t 
enters, we might hope that

I(n; `; `) = O(n

2=3

`

2=3

+ n+ `) 
orresponding to the Szemer�edi-Trotter bound. The number of

in
iden
es between points and 
ir
les is known to be higher than this only in highly symmetri



on�gurations, where there are many 
on
entri
 families of 
ir
les.

1.1 The k most frequent distan
es

For a point set P , denote by f(P; k) the number of o

urren
es of the k most frequent distan
es

in the point set P . Let f

n

(k) = max

jP j=n

f(P; k). For example, the maximal number of unit

distan
es is f

n

(1), (f

n

(1) = O(n

4=3

) [15℄). Akatsu, Tamaki, and Tokuyama proved [2℄, using

Sz�ekely's method, that f

n

(k) = O(n

10=7

k

5=7

). This in turn implies another result of Sz�ekely [15℄,

i.e. the number of distin
t distan
es determined by n points in the plane is at least 
(n

4=5

).

Theorem 1 is somewhat stronger than the 
orresponding bound on f

n

(k) implied by it (see

below) in that one 
an 
hoose the k most frequent distan
es separately for every one of the n

points.

Corollary 2

f

n

(k) = O

"

 

n

5

3

�

�

k

n

1=3

�

5e�1

7e+1

+"

!

= O(n

1:4571

k

:6286

);

where e is the base of the natural logarithm and 0 < " � 1=e is an arbitrarily small positive

number.

This bound improves earlier bounds in the interval n

1=3

� k � n

4=(5�1=e)

= n

0:864

, i.e. the

same interval where the Akatsu, Tamaki, Tokuyama bound was the best. It also implies the

best known lower bound [14, 17℄ for the number t of distin
t distan
es of n points in the plane:

putting f

n

(t) =

�

n

2

�

we obtain t = 


"

(n

4e=(5e�1)�"

) = 
(n

0:864

). Comparing with earlier bounds

on f

n

(k), we have the following.

Corollary 3 f

n

(k) = O

"

(min(n

4=3

k; n

10e+2

7e+1

�"

k

5e�1

7e+1

+3"

; n

2

)).

Remark 4 Corollary 2 implies a new bound for the inner produ
t of two planar point sets

introdu
ed by Akatsu, Tamaki, and Tokuyama [2℄. The inner produ
t of P and Q plays a


ru
ial role in the 
omplexity of the following pattern mat
hing problem. Given two point sets

P and Q, �nd a subset P

0

� P of largest 
ardinality su
h that there is a rigid motion � with

�(P

0

) � Q.

The inner produ
t for P and Q is de�ned as �(P;Q) =

P

d2D(P )

h

P

(d) � h

Q

(d) where D(P )

denotes the set of distan
es in the point set P and h

P

(d) denotes the number of o

urren
es of

distan
e d in P . �(n;m) = max

jP j=n;jQj=m

�(P;Q).

Our Corollary 2 together with the 
omputations of [2℄ yield

�(n;m) = n

10e+2

7e+1

�"

m

10e+2

7e+1

�"

m

4e

5e�1

X

k=1

O

"

�

k

2

(

5e�1

7e+1

+3"

)

�2

�

= O(n

1:4576

m

1:6798

);

improving the earlier bound �(n;m) = O(n

10=7

m

62=35

) = O(n

1:429

m

1:771

) in the interval n

1=3

�

m � n.
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1.2 Terminology

A topologi
al (multi-)graph is a (multi-)graph G(V;E) drawn in the plane su
h that the verti
es

of G are represented by distin
t points in the plane, and its edges by simple ar
s between the


orresponding point pairs. Any two ar
s representing distin
t edges have �nitely many points

in 
ommon. We will make no notational distin
tion between the verti
es (resp., edges) and the

points (resp., ar
s) representing them.

Unlike in the standard de�nition of topologi
al graphs, we allow ar
s representing edges of

G to pass through other verti
es. Su
h topologi
al graphs were �rst employed by Pa
h and

Sharir [10℄. Two edges of a topologi
al graph are said to form a 
rossing, if they have a 
ommon

point whi
h is not an endpoint of both 
urves. The 
rossing number of a topologi
al graph or

multigraph is the total number of 
rossing pairs of edges. The 
rossing number of an abstra
t

graph or multigraph G is the minimum 
rossing number over all possible representations (i.e.,

drawings) of G as a topologi
al graph. We remark the 
rossing number de�ned here is only one

of several alternatives, see [12℄.

2 Interpreting Be
k's theorem

We state here the theorem of Szemer�edi and Trotter, whi
h is used all over this paper. It 
omes

in two equivalent formulations, both stated below. The 
urrent re
ord for the 
onstant fa
tor

is due to Pa
h and T�oth [11℄

Theorem 5 (Szemer�edi-Trotter [16, 11℄) Given n distin
t points in the plane, we 
all a

line m-ri
h if it passes through at least m of them.

(a) Given n distin
t points and ` distin
t lines in the plane, the number of point-line in
iden
es

is

O(n

2=3

`

2=3

+ n+ `):

(b) Given n distin
t points in the plane and an integer m � 2 the number of in
iden
es between

the points and the m-ri
h lines is

I

m

= O(n

2

=m

2

+ n):

(
) Given n distin
t points in the plane and an integer m � 2, the number of m-ri
h lines is

L

m

= O(n

2

=m

3

+ n=m):

All of these bounds are asymptoti
ally tight.

Proof. We just give the straightforward proof of parts (b) and (
) from the standard formulation

(a). Given n distin
t points in the plane and m � 2 we 
learly have L

m

� I

m

=m and part (a)

gives I

m

= O(n

2=3

L

2=3

m

+n+L

m

) = O(n

2=3

I

2=3

m

=m

2=3

+ n+ I

m

=m). From whi
h one 
on
ludes

that either I

m

= O(n

2

=m

2

), or I

m

= O(n), or m = O(1). Noti
e that sin
e m � 2 we have

I

m

< n

2

and thus the 
ase m = O(1) is also 
overed by I

m

= O(n

2

=m

2

) proving assertion (b).

Now part (
) follows from (b) and L

m

� I

m

=m. 2

We prove here a detailed formulation of Be
k's theorem [4℄. The original theorem of Be
k

(stated as Theorem 7) will follow as a simple 
orollary.

Theorem 6 Given a set P of n points in the plane and a set F of f pairs of points from P

one of the following statements holds:

1. At least f=4 pairs of F are on lines in
ident to at least 
f=n points.

2. At least f=4 pairs of F are on lines in
ident to at most Cn

2

=f points.
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Here 
 and C are positive absolute 
onstants.

The proof we present here is a simple extension of the standard proof of Be
k's theorem from

the Szemer�edi-Trotter theorem.

Proof. For u < v let N

u;v

be the number of pairs of distin
t points of P determining a line

going through at least u but at most v points of P . Using Theorem 5(
), the number of u-ri
h

lines is O(n

2

=u

3

+ n=u). Clearly ea
h line going through at most v points of P is determined

by at most v

2

pairs from P , thus we have

N

u;v

= O(n

2

v

2

=u

3

+ nv

2

=u):

We get a better bound by partitioning the [u; v℄ interval �rst:

N

u;v

�

blog(v=u)


X

i=0

N

2

i

u;2

i+1

u

=

blog(v=u)


X

i=0

O

�

4n

2

2

i

u

+ 4n2

i

u

�

=

O

0

�

n

2

u

blog(v=u)


X

i=0

2

�i

+ nu

blog(v=u)


X

i=0

2

i

1

A

= O(n

2

=u+ nv):

So we have

N

u;v

� C

0

(n

2

=u+ nv)

for an appropriate 
onstant C

0

> 0.

We let now C = 4C

0

and 
 = 1=C and set u = Cn

2

=f and v = 
f=n. If u � v the statement

of the Theorem is trivial. Otherwise we have

N

u;v

� C

0

(f=C + 
f) = f=2:

Thus at most f=2 of the pairs in P

2

determine a line going through at least u but at most v

points of P . Therefore at least f=2 of the f pairs in F are not in this 
ategory. Thus either f=4

of the pairs in F determine a line going through less than u points of P or at least f=4 of the

pairs in F determine a line going through more than v points of P , as required. 2

Spe
i�
ally, taking F to be all the pairs of distin
t points from P , we obtain the following.

Theorem 7 (Be
k [4℄) Given n points in the plane, at least one of the following two state-

ments holds:

1. There is a line in
ident to 
(n) points.

2. There are at least 
(n

2

) lines in
ident to at least two points.

3 Proof of Theorem 1

Consider a set P of n points, a set Q of n 
enter points (points of P and Q may 
oin
ide), and

at most k 
on
entri
 
ir
les around ea
h point of Q for a �xed natural number k. Let F denote

the pairs of points (p; q) where p 2 P , q 2 Q, and p is in
ident to a 
ir
le around q. Put f = jF j

be the number of point-
ir
le in
iden
es and apply Theorem 6 to Q [ P and F .

In the �rst 
ase, at least f=4 pairs are on lines in
ident to 
(f=n) points. A

ording to the

Szemer�edi-Trotter Theorem 5 (b), the number of in
iden
es between su
h lines and points is

O(n

4

=f

2

+ n). On ea
h line, one point of Q may o

ur in at most 2k pairs. So we have f=4 �

2kO(n

4

=f

2

+ n) = O(n

4

k=f

2

+ nk), whi
h 
learly implies the required bound for 1 � k � n.

The se
ond 
ase of Theorem 6 is 
onsidered in the rest of the proof. Let F

0

be the set of

at least f=4 pairs of F on lines in
ident to O(n

2

=f) points. For a point q 2 Q let P

q

= fp 2

P j pq 2 F

0

g. Clearly

P

q2Q

jP

q

j = jF

0

j � f=4. Consider the set C

q

of all 
ir
les 
entered at

q 2 Q that 
ontain at least one point of P

q

.

4



Let s be a large integer to be 
hosen later. The value of s will depend on " alone. We treat

s and all other parameters depending on " alone as 
onstants. After deleting at most (s � 1)

points from ea
h 
ir
le in C

q

, partition the remaining points into pairwise disjoint 
onse
utive

s-tuples (x

1

; x

2

; : : : ; x

s

) 2 P

s

. We 
an also make sure that the 
ir
ular ar
s 
orresponding to

an s-tuple never interse
ts the ray parallel to the positive x axis and starting at q.

The number of su
h s-tuples over all 
ir
les is t = 
(f=s) = 


"

(f), be
ause we deleted at

most (s� 1)kn < f=8 points (or otherwise f = O

"

(kn) and we are done).

A line ` is 
alled ri
h if ` is in
ident to at least m points in Q, where m is a number to be

spe
i�ed later. An s-tuple (x

1

; x

2

; : : : ; x

s

) is said to be good if the bise
tor of at least one of the

segments x

i

x

j

, 1 � i < j � s is not ri
h; otherwise it is 
alled bad.

Denote by g the number of good s-tuples.

De�ne a topologi
al multigraph G on the vertex set V = P , as follows. If an s-tuple

(x

1

; x

2

; : : : ; x

s

) is good, add to the graph one edge between a pair of points from fx

1

; x

2

; : : : ; x

s

g

whose bise
tor is not ri
h. We generate exa
tly one edge for ea
h good s-tuple. Draw ea
h su
h

edge along the 
ir
ular ar
 determined by the s-tuple.

The number of verti
es of G is jV j = n; the number of edges of G is jEj = g. The graph

G may have multiple edges when two points, u and v, happen to belong to more than one

good s-tuples, asso
iated with di�erent points of Q (as 
enters of the 
orresponding 
ir
les).

However, the multipli
ity of ea
h edge is at most m, be
ause all of these points of Q must lie

on the bise
tor of u and v, whi
h, by assumption, is not ri
h.

The following lemma of [15℄ is a straightforward extension of a result of Ajtai, Chv�atal,

Newborn, and Szemer�edi [1℄ and of Leighton [8℄, to topologi
al multigraphs. As we pointed out

in the introdu
tion, we use a slightly non-standard de�nition of topologi
al multigraphs, whi
h

allows edges to pass through verti
es, but Sz�ekely's proof applies verbatim to this 
ase as well.

Lemma 8 (Sz�ekely [15℄) Let G(V;E) be a topologi
al multigraph, in whi
h every pair of ver-

ti
es is 
onne
ted by at most m edges. If jEj � 5jV jm, then the 
rossing number of G is


r(G) �

�jEj

3

mjV j

2

;

for an absolute 
onstant � > 0.

Apply Lemma 8 to the graph G de�ned above, with

m = 


"

f

3

=(n

4

k

2

);

where 


"

> 0 is a small 
onstant only depending on ". We distinguish two 
ases. If the 
ondition

in the lemma is not satis�ed, then g = jEj < 5jV jm = 5


"

f

3

=(n

3

k

2

). Using the Akatsu, Tamaki,

Tokuyama bound [2℄ on f and, by 
hoosing 


"

suÆ
iently small, we have g � t=2. Otherwise,

a

ording to the statement,


r(G) �

�g

3

(


"

f

3

=(n

4

k

2

)) � n

2

=

�g

3




"

f

3

� n

2

k

2

:

As the edges of G are 
onstru
ted along at most nk 
ir
les (at most k 
on
entri
 
ir
les around

ea
h point of Q), and two 
ir
les have at most two 
ommon points, ea
h responsible for at most

a single 
rossing, so we 
learly have


r(G) � 2 �

�

nk

2

�

� n

2

k

2

:

Comparing the last two inequalities, we obtain, just as in the previous 
ase, that g � t=2,

provided that 


"

is 
hosen suÆ
iently small.

Therefore, we 
an 
on
lude that the number of bad s-tuples is t� g � t=2 = 


"

(f).

5



Let us re
all the main result of the paper [17℄. For a real N by s matrix A = (a

ij

) we de�ne

S(A) = fa

ij

+ a

ij

0

j 1 � i � N; 1 � j < j

0

� sg:

Let e stand for the base of the natural logarithm.

Lemma 9 (Tardos [17℄) For every " > 0, there exists an integer s > 1 su
h that for a positive

integer N and a real N by s matrix A = (a

ij

), 
onsisting of all distin
t entries, we have

jS(A)j = 


"

(N

1=e�"

):

This lemma is used there to prove the following generalization:

Lemma 10 (Tardos [17℄) For every " > 0, there exists an integer s > 1 su
h that the following

holds.

Let N � k be positive integers and let A = (a

ij

) be an N by s real matrix 
onsisting of Ns

pairwise distin
t entries. If max

j

a

ij

< min

j

a

i+1;j

holds for all but at most k� 1 of the indi
es

i = 1; : : : ; N � 1 we have

jS(A)j = 


"

�

N

k

1�1=e+"

�

:

Noti
e that Lemma 9 is the k = N spe
ial 
ase of Lemma 10. Here we need a further

generalization of Lemma 10 for the 
ase where not all the entries of A are distin
t. The proof

of Lemma 10 readily generalizas to this 
ase.

Lemma 11 For every " > 0, there exist an integer s > 1 su
h that the following holds.

Let N � k be positive integers and let A = (a

ij

) be an N by s real matrix not having two

equal entries in the same row. If max

j

a

ij

< min

j

a

i+1;j

holds for all but at most k � 1 of the

indi
es i = 1; : : : ; N � 1 we have

jS(A)j = 


"

�

N

k

1�1=e+"

M

1=e�"

�

;

where M is the maximum multipli
ity with whi
h a number appears as an entry of A.

Noti
e here that M � k by de�nition. In 
ase we do not bound M at all we only have the

trivial bound jS(A)j � N=k.

Proof. The dependen
e of s on " is the same as in Lemma 9. For a matrix A we �nd z � N=(3k)

pairwise disjoint real intervals I

1

; : : : ; I

z

ea
h 
ontaining all entries of at least k rows of A. This


an be done from left to right on the real line using a greedy strategy. Let A

i

be the submatrix

of A 
onsisting of the k rows fully 
ontained in the interval I

i

for i = 1; : : : ; z. Now 
hoose an

N

0

by s submatrix A

0

i

of A

i

with all entries distin
t. Greedy strategy 
an ensure N

0

� k=(Ms)

sin
e sele
ting a row of A

i

to be 
ontained in A

0

i

rules out at most s(M � 1) other rows. Now

apply Lemma 9 to get jS(A

0

i

)j = 


"

(N

1=e�"

0

). Clearly S(A

0

i

) � 2I

i

, thus sets S(A

0

i

) are pairwise

disjoint. All of them are 
ontained in S(A), so we have

jS(A)j = 


"

(zN

1=e�"

0

) = 


"

 

N

k

�

k

M

�

1=e�"

!

;

as 
laimed. 2

The present authors expe
t that Lemma 9 and thus lemma 11 are not tight. However,

Ruzsa gave an 
onstru
tion showing that Lemma 9 would be false with the stronger statement

jS(A)j = 
(N

1=2

).

We set the 
onstant s depending on the desired 
onstant " > 0 as provided in Lemma 11

and let � = 1=e� ".
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We apply Lemma 11 to the system N

q

of bad s-tuples along the 
ir
les C

q


entered at a point

q 2 Q. Consider the mapping that maps ea
h point u 6= q to the orientation of the ray ~qu, i.e.,

to the 
ounter
lo
kwise angle in [0; 2�) between the positive x-axis and ~au. Note that when

forming the s-tuples we made sure that the 
ir
ular ar
 
orresponding to an s-tuple of N

q

does

not interse
t the ray mapped to 0. We 
onstru
t an jN

q

j by s matrix A

q

= (a

(q)

ij

). The images

of the points of the s-tuples in N

q

form the rows of A

q

. Noti
e that if the rows 
orresponding to

s-tuples on the same 
ir
le form 
onsequitive blo
ks with their natural order then the 
ondition

max

j

a

(q)

ij

< min

j

a

(q)

i+1;j

holds for all but at most k � 1 of the indi
es i = 1; : : : ; jN

q

j � 1. By

the 
onstru
tion of P

q

, any number in [0; 2�) appears as an entry in A

q

at most M = O(n

2

=f)

times. By 
onstru
tion, ea
h orientation in the set S(A

q

) is twi
e the orientation of a ri
h line,

whi
h is the bise
tor of some pair of points on the same 
ir
le around q 2 Q, and thus passes

through q. Hen
e q is in
ident to at least jS(A

q

)j=2 ri
h lines as two orientations 
an 
orrespond

to the same line. Now Lemma 11 gives that

jS(A

q

)j = 


"

�

jN

q

j

k

1��

M

�

�

:

Therefore, I , the number of in
iden
es between ri
h lines and points of Q, satis�es

I =

X

q2Q




"

�

jN

q

j

k

1��

M

�

�

= 


"

�

f

k

1��

M

�

�

= 


"

�

f

1+�

k

1��

n

2�

�

; (1)

as we have

P

q2Q

jN

q

j = t� g = 


"

(f).

The same number 
an be estimated from above, using the Szemer�edi-Trotter theorem. By

Theorem 5(b),

I = O

�

n

2

m

2

+ n

�

= O

"

�

n

10

k

4

f

6

+ n

�

: (2)

If, instead of (1) we use the simpler 
onsequen
e I = 
(f=k) and 
ontrast it with (2), we

obtain the Akatsu, Tamaki, Tokuyama bound of f = O(n

10=7

k

5=7

). But for k > n

1=3


ontrasting

Equalities (1) and (2) gives more, we obtain that




"

�

f

1+�

k

1��

n

2�

�

= O

"

�

n

10

k

4

f

6

+ n

�

;

yielding the statement of Theorem 1 by simple rearrangement. 2
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